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Abstract—Self-adaptation is used in all main

paradigms of evolutionary computation to increase
efficiency. We claim that the basis of self-adaptation

is the use of neutrality. In the absence of external

control neutrality allows a variation of the search dis-
tribution without the risk of fitness loss.

I. Introduction

It is well known that the genotype-phenotype map-
ping in natural evolution is highly redundant (i.e., the
mapping is not injective) and that neutral variations
frequently occur. (A variation is called neutral if it
alters the genotype but not the phenotype of an in-
dividual.) The potential positive effects of neutrality
have extensively been discussed [6, 12, 14, 24] and there
is growing interest in investigating how these results
from biology carry over to evolutionary algorithms (EAs)
[5, 7, 13, 17, 27, 28, 32]. However, this dissents with
the opinion that redundant encodings are inappropriate
for real-world problems—a bijective genotype-phenotype
mapping is often regarded as a design principle for effi-
cient EAs (e.g., see [20]).

Unlike neutrality, self-adaptation is an established key
concept in evolutionary computation [4]. We will point
out that neutrality is a necessity for self-adaptation.
And since there is no doubt about the benefits of self-
adaptation for a wide range of problems, this is a strong
argument for the usefulness of neutral encodings. Our
point of view is that, in the absence of external control,
neutrality provides a way to vary the search distribution
without the risk of fitness loss. We propose to term this
way of adapting the search strategy self-adaptation. This
approach generalizes standard definitions and underlines
the central role of neutrality.

We reconsider two instructive examples from the litera-
ture: The first example is from molecular biology, where
it is shown how neutrality can increase the variability
of certain regions in the genome and conserve the infor-
mation in other regions. Using our definition, this is self-
adaptation. The second one deals with self-adaptation in
evolution strategies, a well-known example of successful
self-adaptation in evolutionary computation. These algo-
rithms rely on neutrality to adapt the search strategy and
are frequently applied for solving real-world optimization
tasks.

Our arguments are based on recent efforts to provide
a unifying view on the search distribution in evolution-
ary algorithms and its (self-)adaptation [31]. We intro-

duce this formalism in the following section. Section III
describes the relation between self-adaptation and neu-
trality and in section IV we present the two examples to
illustrate our ideas.

II. Modeling evolutionary exploration

In this section, we outline that the individuals in the
population, the genotype-phenotype mapping and the
variation operators including their parameters can be re-
garded as a parameterization of the search distribution.
This is done in the framework of global random search
and evolutionary optimization, although all considera-
tions can be transfered to adaptation in natural evolu-
tion, see Sec. III-B.

Evolutionary algorithms can be considered as a certain
class of global random search algorithms. Let the search
problem under consideration be described by a quality
function Φ : P → �

to be optimized. The set P denotes
the search space. According to [33], the general scheme
of global random search is given by:1

1. Choose a probability distribution P
(t)
P on P .

2. Obtain points g
(t)
1 , . . . , g

(t)
λ by taking λ samples from

the distribution P
(t)
P . Evaluate Φ (perhaps with ran-

dom noise) at these points.

3. According to a fixed (algorithm dependent) rule con-

struct a probability distribution P
(t+1)
P on P .

4. Check for some appropriate stopping condition; if the
algorithm has not terminated, substitute t := t+1 and
return to Step 2.

The core ingredient of this search scheme is the search

distribution P
(t)
P , also called exploration distribution, on

the search space. Random search algorithms can dif-
fer fundamentally in the way they represent and alter
the search distribution. Typically, the distribution is
represented by a semi-parametric model. The choice of
the model determines the exploration distributions the
search algorithm can represent, which is in general only
a small subset of all possible probability distributions on
P . For example, let P =

�
. Then the class of repre-

1This scheme does not account for all kinds of evolutionary com-
putation. For example, if the evolutionary programming scheme
is used, where each parent generates exactly one offspring [9], or
recombination is employed, then the EA is better described as op-

erating on a search distribution P
(t)

Pλ on Pλ. However, in these

cases P
(t)
P

can still be derived from P
(t)

Pλ .



sentable distributions may be given by the class of normal

densities, pP(x; m, σ) = 1√
2πσ

exp
{

− (x−m)2

2σ2

}

, where m

is the expectation and σ2 the variance. This equation
defines a parameterization of the search distribution, it
maps the parameters (m, σ) ∈ � 2 into the set of proba-
bility distributions on P (see Fig. 2). A global random
search algorithm alters its exploration distribution (see
Step 3) by changing such parameters.

We believe that two of the most fundamental questions
in evolution theory can be stated as:

1. How is the exploration distribution parameterized?

2. How is the exploration distribution altered?

In the framework of evolutionary systems, we identify
each element of P with certain phenotypic traits of in-
dividuals and call P the phenotype space. Each pheno-
type p, i.e., element of P , is encoded by a genotype g,
which is an element of a genotype space G. The map-
ping φ : G → P is called genotype-phenotype mapping.
If φ is not injective we speak of a neutral encoding. A

number of genotypes g̃
(t)
1 , . . . , g̃(t)

µ , the parents, are stored
in a population. The superscript indicates the iteration
of the algorithm, i.e., the generation. In each genera-

tion, λ offspring g
(t)
1 , . . . , g

(t)
λ are generated by applying

stochastic and / or deterministic variation operators. Let
the probability that parents g̃1, . . . , g̃µ ∈ G generate an
offspring g ∈ G be described by the probability distribu-
tion PG

(

g | g̃1, . . . , g̃µ; θ
)

. This distribution is addition-
ally parameterized by some external strategy parameters
θ ∈ Θ. Examples of such externally controlled param-
eters include the probabilities that certain variation op-
erators are applied and parameters that determine the
mutation strength. We call the probability

P
(t)
G (g) := PG

(

g | g̃
(t)
1 , . . . , g̃(t)

µ ; θ(t)
)

(1)

that in generation t an offspring g is created the explo-
ration distribution on G at generation t.

The genotype-phenotype mapping φ lifts P
(t)
G from the

genotype space onto the phenotype space:

∀p ∈ P : P
(t)
P (p) =

∑

g′∈φ−1(p)

P
(t)
G (g′) , (2)

where φ−1(p) := {g′ ∈ G | φ(g′) = p} is called the neutral
set of p ∈ P [25]. Thus, the genotype space G together
with the genotype-phenotype mapping φ, the variation
operators, and external parameters θ can be regarded as
a parameterization of the exploration distribution on the
search space P . We refer to [31] for more details on this
way of formalizing evolutionary exploration.

Also algorithms recently developed in the field of evolu-
tionary computing can be captured by this point of view:
Mühlenbein et al. [16] and Pelikan et al. [19] parameter-
ize the exploration density by means of a Bayesian de-
pendency network in order to introduce correlations in

the exploration distribution. The CMA evolution strat-
egy proposed by Hansen and Ostermeier [11] adapts a
covariance matrix that describes the dependencies be-
tween real-valued variables in the exploration density. In
the remainder of this paper, we focus on a different ap-
proach that might be considered biologically more plausi-
ble, namely to utilize an appropriate genotype-phenotype
mapping to parameterize the exploration density PP . It
does not explicitly encode correlations but models such
interactions indirectly via the genotype-phenotype map-
ping. What we will ask for in the next section is the way
it allows for self-adaptation of the exploration strategy.

III. Self-adaptation

A. Introduction

The ability of an evolutionary algorithm to adapt its
search strategy during the optimization process is a key
concept in evolutionary computation, see the overviews
[1, 29, 8]. Online adaptation of strategy parameters is
important, because the best setting of an EA is usually
not known a priori for a given task and a constant search
strategy is usually not optimal during the evolutionary
process. One way to adapt the search strategy online
is self-adaptation, see [4] for an overview. This method
can be described as follows [8]: “The idea of the evo-
lution of evolution can be used to implement the self-
adaptation of parameters. Here the parameters to be
adapted are encoded into the chromosomes and undergo
mutation and recombination. The better values of these
encoded parameters lead to better individuals, which in
turn are more likely to survive and produce offspring and
hence propagate these better parameter values.” In other
words, each individual not only represents a candidate
solution for the problem at hand, but also certain strat-
egy parameters that are subject to the same selection
process—they hitchhike with the object parameters.

Self-adaptation is used in all main paradigms of evo-
lutionary computation. The most prominent examples
stem from evolution strategies, where it is used to adapt
the covariance matrix of the mutation operator, see
Sec. IV-B. Self-adaptation is employed in evolutionary
programming for the same purpose, but also in the orig-
inal framework of finite-state machines [10]. In genetic
algorithms, the concept of self-adaptation has been used
to adapt mutation probabilities [3] and crossover oper-
ators [23]. Self-adaptive crossover operators have also
been investigated in genetic programming [2]. In the fol-
lowing, we will propose an alternative definition of self-
adaptation, which includes these approaches as special
cases.

B. Neutrality and self-adaptation

Following the formalism we developed in the previous

section, a variation of the exploration density P
(t)
P , cor-



responding to Step 3 in the global random search algo-
rithm, occurs if

1. the parent population (g̃
(t)
1 , . . . , g̃(t)

µ ) varies, or

2. the external strategy parameters θ(t) vary, or

3. the genotype-phenotype mapping φ varies.

From a biological point of view, one might associate en-
vironmental conditions (like the temperature, etc.) with
external parameters that vary the mutation probabilities
or the genotype-phenotype mapping. In most cases one
would not consider them as subject to evolution.2 Some-
times mechanisms that adapt the exploration distribu-
tion by genotype variations are regarded as examples of
adaptive genotype-phenotype mappings. To our minds,
this is a misleading point of view. For example, t-RNA
determines a part of the genotype-phenotype mapping
and it is itself encoded in the genome. However, the
genotype-phenotype mapping should be understood as
a whole—mapping all the genotype (including the parts
that code for the t-RNA) to the phenotype, such that it
becomes inconsistent to speak of genotypic information
parameterizing the genotype-phenotype mapping.

The same arguments also apply in the context of evo-
lutionary computation and thus we consider only option
1 as a possibility to vary the exploration distribution in
a way that is itself subject to evolution in the sense of
section III-A. However, if the genotype-phenotype map-
ping is injective, every variation of genotypes alters phe-
notypes and bears the risk of a fitness loss. Hence, we
conclude:

In the absence of external control, only neutral genetic
variations can allow a self-adaptation of the exploration
distribution without changing the phenotype, i.e., without
the risk of loosing fitness.

A neutral genetic variation means that parent and off-
spring have the same phenotype. For instance, con-
sider two genotypes g̃1, g̃2 in a neutral set. Neglect
crossover and assume that the probability for an off-
spring g of a single parent g̃i is given by PG(g | g̃i; θ).
The two genotypes may induce two arbitrarily different
exploration distributions “around” the same phenotype
p = φ(g̃1) = φ(g̃2), see Fig. 1. Transitions between these
genotypes allow for switching the exploration strategy.
In general, the variety of exploration densities that can
be explored in a neutral set φ−1(p) is given by

{

PP(p | g̃i; θ)
∣

∣ g̃i ∈ φ−1(p)
}

. (3)

2Counter-examples that go far beyond the scope of our formal-
ism are, for instance, the embryonic environment (uterus) and the
inherited ovum, or individuals whose behavior have an influence
on mutations (e.g., sexual behavior influencing crossover) or on the
embryonic development (e.g., a mother taking drugs). All of these
influences might be considered as subject to evolution. In partic-
ular the interpretation of an ovum is a critical issue. Should one
regard it as part of the genotype or as an inherited “parameter” of
the genotype-phenotype mapping?

G Pφ−→

g̃
1

g̃
2

PG(g|g̃
2
; θ)

PG(g|g̃
1
; θ)

φ(g̃
1
) = φ(g̃

2
)

PP (p|g̃
1
; θ)

PP (p|g̃
2
; θ)

Fig. 1. Two different points ˜� 1, ˜� 2 in G are mapped onto the same
point in P . The elliptic ranges around the points illustrate the
exploration distributions by suggesting the range of probable
mutants. Thus, the two points ˜� 1, ˜� 2 belong to one neutral set
but represent two different exploration strategies on the search
space P .

C. Discussion

It is widely accepted that changing the genotypes with-
out significantly changing the phenotypes in the pop-
ulation is a key search strategy in natural evolution
[12, 14, 24]. We emphasize that under the stated assump-
tions, neutrality is even a necessity for self-adaptation
of the search strategy. Thus, we propose to define self-
adaptation as the use of neutrality in order to vary the
exploration strategy.

Existing approaches to self-adaptation developed in
the realm of evolutionary computation can be embed-
ded in this point of view; only the style in which the
notion of self-adaptation was originally introduced is dif-
ferent. Usually one refers to “strategy parameters” that
typically control the mutation operators (i.e., the map-
ping g̃i 7→ PG(g | g̃i; θ)), in contrast to “object param-
eters” describing fitness relevant traits. In the case of
self -adaptation these strategy parameters are considered
as parts of the genotype. In this view, strategy parame-
ters are neutral, i.e., altering them does not change the
phenotype. In turn, we regard neutral genotypic vari-
ables as potential strategy parameters. There still is a
slight difference: In case of standard self-adaptation, al-
tering a strategy parameter is phenotypically neutral and
has no other implication than a change of the exploration
strategy. In contrast, two or more genetic variables may
be phenotypically non-neutral but a specific simultaneous
mutation of them might be neutral and induce a change
of the exploration density. Hence, a neutral set is a gen-
eral concept for self-adaptation, which is not bound to the
idea of single loci being responsible for the search strat-
egy. A good example is that also topological properties of
the search space (i.e., neighborhood relations/the set of
most probable mutations of a phenotype) may vary along
such a neutral set if the genotype-phenotype mapping is
chosen similar to grammars [31]—which seems hard to
realize by explicit strategy parameters.

We believe that allowing for a self-adaptive exploration
strategy is the main benefit of neutral encodings, as
stated in [27]: “For redundancy to be of use it must allow
for mutations that do not change the current phenotype,
thus maintaining fitness, and which allow for moves to



areas where new phenotypes are accessible”. Changing
the exploration distribution corresponds to the ability of
reaching new phenotypes.3

In this view, neutrality is not necessarily redundant :
Different points in a neutral set can encode different
exploration strategies and thus different information; a
genotype encodes not only the information on the phe-
notype but also information on further explorations.
One might state it like this: Although a non-injective
genotype-phenotype mapping can be called redundant,
the corresponding mapping from genotype to exploration
distribution may in general be non-redundant.

IV. Examples

A. Codon Bias in natural evolution

An intriguing study of the interrelationship between
neutrality and self-adaptation in nature is the one by
Stephens and Waelbroeck [30]. They empirically analyze
the codon bias and its effect in RNA sequences of the HI
virus. In biology, several nucleotide triplets eventually
encode the same amino acid. For example, there are 9
triplets that are mapped to the amino acid Arginine. If
Arginine is encoded by the triplet CGA, then the chance
that a single point mutation within the triplet is neutral
(does not chance the encoded amino acid) is 4/9. In con-
trast, if it is encoded by AGA, then this neutral degree is
2/9. Now, codon bias means that, although there exist
several codons that code for the same amino acid (which
form a neutral set), HIV sequences exhibit a preference
on which codon is used to code for a specific amino acid.
More precisely, at some places of the sequence codons
are preferred that are “in the center of this neutral set”
(with high neutral degree) and at other places codons
are biased to be “on the edge of this neutral set” (with
low neutral degree). It is clear that these two cases in-
duce different exploration densities; the prior case means
low mutability whereas the latter means high mutabil-
ity. Stephens and Waelbroeck go further by giving an
explanation for these two (marginal) exploration strate-
gies: Loci with low mutability cause “more resistance to
the potentially destructive effect of mutation”, whereas
loci with high mutability might induce a “change in a
neutralization epitope which has come to be recognized
by the [host’s] immune system” [30].

B. Self-adaptation in evolution strategies

In this section, we describe a rather simple example
of self-adaptation in evolution strategies.4 The candi-
date solutions for the problem at hand are represented by

3However, we think that there might be at least one additional
case where neutrality can be useful, namely when it introduces—by
chance—a bias in the search space, such that desired phenotypes
are (in global average) represented more often than other ones [13].

4More sophisticated and efficient algorithms exist for dealing with
real-world optimization tasks, e.g., the derandomized adaptation as
proposed in [11, 18].

real-valued vectors x ∈ P = G ⊆ �
n. These real-valued

object parameters are mutated by adding a realization
of a normally distributed random vector with zero mean
[21, 26]. The symmetric n × n covariance matrix of this
random vector is subject to self-adaptation. To describe
any possible covariance matrix, n(n + 1)/2 strategy pa-
rameters are needed. However, often a reduced number
of parameters is used. In the following, let the covariance
matrix be given by (σI)2, where I = diag(1, . . . , 1) is the
identity matrix and σ ∈ �

n corresponds to n strategy
parameters that describe the standard deviations along
the coordinate axes.

Let µ denote the size of the parent population. Each

generation, λ offspring g
(t)
i , i = 1, . . . , λ are generated.

(µ, λ)-selection is used, i.e., the µ best individuals of
the offspring form the new parent population. An in-

dividual g
(t)
i ∈ � 2n can be divided into two parts,

g
(t)
i = (x

(t)
i , σ

(t)
i ), the object variables x

(t)
i ∈ �

n and

the strategy parameters σ
(t)
i ∈ �

n.

For each offspring g
(t)
i , two indices a, b ∈ {1, . . . , µ}

are selected randomly, where a determines the parent
and b its mating partner. For each component k =
1, . . . , n of the offspring, the new standard deviation

σ
(t)
i = (σ

(t)
i,1 , . . . , σ

(t)
i,n) is computed as

σ
(t)
i,k =

1

2

[

σ̃
(t)
a,k + σ̃

(t)
b,k

]

· exp
(

τ ′ · ξ
(t)
i + τ · ξ

(t)
i,k

)

. (4)

Here, ξ
(t)
i,k ∼ N (0, 1) is a realization of a normally dis-

tributed random variable with zero mean and variance
one that is sampled anew for each component i for each

individual, whereas ξ
(t)
i ∼ N (0, 1) is sampled once per

individual and is the same for each component. The log-
normal distribution ensures that the standard deviations
stay positive. For the mutation strengths τ ∝ 1/

√

2
√

n
and τ ′ ∝ 1/

√
2n are recommended [26, 4]. It has been

shown that recombination of the strategy parameters is
beneficial (e.g., [15]). Equation (4) realizes an interme-
diate recombination of the strategy parameters.

Thereafter the objective parameters are altered using
the new strategy parameters:

x
(t)
i,k = x̃

(t)
a,k + σ

(t)
i,k z

(t)
i,k, (5)

where z
(t)
i,k ∼ N (0, 1). For simplicity, we do not employ

recombination of the objective parameters. An exam-
ple of this strategy compared to algorithms without self-
adaptation is shown in Fig. 3. The adaptive strategy
performs considerably better than the other methods, as
known from many theoretical results and empirical stud-
ies. However, we would like to underline that the self-
adaptive EA uses a highly redundant encoding instead
of a one-to-one genotype-phenotype mapping—the geno-
type space has twice the dimensionality of the phenotype
space. The neutrality does not alter the distribution of
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Fig. 2. An example for parameterizing the exploration distribution
in evolution strategies: Consider the search space P = � , µ = 3
parent individuals, and no recombination. The parents repre-
sent the object parameters −2, −0.25, and 3.5. The offspring is
generated in the following manner: First, one randomly chosen
parent is reproduced. Second, the reproduced individual is mu-
tated by adding a realization of a normally distributed random
number with variance one and expectation zero. Hence, the
resulting search distribution (the joint generating distribution
[22]) is a multimodal mixture of Gaussians.

the fitness values, it just allows the search strategy to
adapt.

V. Conclusion

Neutrality is a necessity for self-adaptation. Actually,
the design of neutral encodings to improve the efficiency
of evolutionary algorithms is a well-established approach:
strategy parameters are an example of neutrality. Hence,
there already exists clear evidence for the benefit of neu-
trality.

The notion of neutrality provides a unifying formalism
for embedding approaches to self-adaptation in evolution-
ary computation. But it also inspires new approaches
that are not bound to the idea of only single genes being
responsible for the exploration strategy. Generally, any
local properties of the phenotypic search space—metric
or topological—may vary along a neutral set. An exam-
ple are grammar-based genotype-phenotype mappings,
for which different points in a neutral set represent com-
pletely different topologies (and thus exploration strate-
gies) on the phenotype space.

On the other hand, the benefits of neutrality in natural
evolution can be better understood when the simple—
but concrete and well-established—paradigms of self-
adaptation and neutrality in evolutionary computation
are taken into account. As we exemplified with the sec-
ond example, these computational approaches may serve
as a model to investigate the relation between evolution-
ary progress, neutrality, and self-adaptation.

Finally, let us recall that neutrality is not necessarily
equivalent to redundancy: in general, a genotype encodes
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Fig. 3. As an example, we compare evolution strategies as de-
scribed in Sec. IV-B with and without self-adaptation on a
simple test problem: a 100-dimensional sphere model, Φ( � ) =
|| � ||. First, the EA is run without self-adaptation, each σi is
set to one. After that, we employ self-adaptation as described,
where the σi are also initialized to one. Based on these results,
we determine the average standard deviation σ† (averaged over
all parents, all generations, and all trials). Then we repeat the
experiments without self-adaptation but fix each σi = σ†. The
fitness trajectories of the best individual averaged over 50 tri-
als are shown in the upper plot (σ† = 0.0125). In case of the
self-adaptive EA the fitness curves show steps. The lower plot
shows a typical single trial and the corresponding average of the

standard deviations || 〈 � 〉(t)µ || =
(

∑n
j=1

(

1
µ

∑µ
i=1 σi,j

)2 )1/2
.

It becomes obvious that each step in the fitness trajectory cor-
responds to a change in the search strategy. In general, the
mutation strength decreases, but sometimes a larger step size
takes over the population and leads to a high fitness gain. In
the continuum, the probability that an offspring has exactly the
same phenotype, i.e., represents the same object parameters,
is not measurable. Further, even small changes in the geno-
type are relevant for selection due to the use of a rank-based
selection scheme. Hence, drifting along a neutral network, i.e.,
traversing the search space by a sequence of (neutral) muta-
tions that do not alter the phenotype, does not occur.



not only the information on the phenotype but also in-
formation on further explorations.
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