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The No Free Lunch (NFL) theorems for com
binatorial optimization state, roughly speaking, th
all search algorithms have the same average pe
mance over all possible objective functionsf :X →
Y , where the search spaceX as well as the cost-valu
spaceY are finite sets [6]. However, it has been
gued that in practice one does not need an algori
that performs well on all possible functions, but on
on a subset that arises from the constraints of r
world problems. For example, it has been shown
for pseudo-Boolean functions restrictions of the co
plexity can lead to subsets of functions on which so
algorithms perform better than others (in [5] comple
ity is defined in terms of the number of local minim
and in [1,2] the complexity is defined based on
size of the smallest ordered binary decision diagr
OBDD, representing the function).

Recently, a sharpened version of the NFL theor
has been proven that states that NFL results hold
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[4]. Based on this important result, we can der
classes of functions where NFL does not hold sim
by showing that these classes are not c.u.p. This l
to the main result of this paper: It is proven that t
fraction of subsets that are c.u.p. is negligibly sm
Arguments are given why we think that classes
objective functions resulting from important classes
real-world problems are likely not to be c.u.p.

In the following section, we give some bas
definitions and concisely restate the sharpened N
theorem given in [4]. Then we derive the number
subsets c.u.p. Finally, we discuss some observat
regarding structured search spaces and closure u
permutation.

2. Preliminaries

We consider a finite search spaceX and a finite
set of totally ordered cost valuesY . Let F = YX be
the set of all objective functionsf :X → Y to be
optimized (also called fitness, energy, or cost fu
tions). NFL theorems are concerned with nonrep
ing black-box search algorithms (referred to simply
algorithms for brevity) that choose a new explorat
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point in the search space depending on the complete
history of prior explorations: Let the sequenceTm =
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Theorem 2. The number of nonempty subsets ofYX

that are c.u.p. is given by
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〈(x1, f (x1)), (x2, f (x2)), . . . , (xm,f (xm))〉 represent
m nonrepeating explorationsxi ∈ X , ∀i, j : xi �= xj
and their cost valuesf (xi) ∈ Y . An algorithmA ap-
pends a pair(xm+1, f (xm+1)) to this sequence b
mappingTm to a new pointxm+1, ∀i: xm+1 �= xi . Gen-
erally, the performance of an algorithmA afterm it-
erations with respect to a functionf depends on the
sequenceY (f,m,A) = 〈f (x1), f (x2), . . . , f (xm)〉 of
cost values the algorithm has produced. Let the fu
tion c denote a performance measure mapping
quences ofY to the real numbers (e.g., in the case
function minimization a performance measure that
turns the minimumY value in the sequence could be
reasonable choice).

Let π :X → X be a permutation ofX . The set
of all permutations ofX is denoted byΠ(X ). A set
F ⊆ F is said to be closed under permutation (c.u
if for any π ∈ Π(X ) and any functionf ∈ F the
functionf ◦ π is also inF .

Theorem 1 (Sharpened NFL).For any two algorithms
A andB, any k ∈ R, anym ∈ {1, . . . , |X |}, and any
performance measurec
∑
f∈F

δ
(
k, c

(
Y (f,m,A)

)) =
∑
f∈F

δ
(
k, c

(
Y (f,m,B)

))

iff F is c.u.p.

Herein,δ denotes the Kronecker function (δ(i, j)=
1 if i = j , δ(i, j) = 0 otherwise). A proof of Theo
rem 1 is given in [4]. Note that the summation mea
uniformly averaging over all functionsf ∈ F . This
theorem implies that for any two algorithmsA andB
and any functionfA ∈ F , whereF is c.u.p., there is
a functionfB ∈ F on whichB has the same perfo
mance asA onfA.

3. Fraction of subsets closed under permutation

Let F = YX be the set of all functions mappin
X → Y . There exist 2|Y ||X | − 1 nonempty subsets o
F . We want to calculate the fraction of subsets that
c.u.p.
2(
|X |+|Y|−1

|X | ) − 1

and therefore the fraction of nonempty subsets c.u.

(
2(

|X |+|Y|−1
|X | ) − 1

)/(
2|Y ||X | − 1

)
.

The proof is given in Appendix A. The fractio
decreases for increasing|X | as well as for increasin
|Y|. Already for small|X | and|Y| the fraction almos
vanishes, e.g., for Boolean functions{0,1}3 → {0,1}
the fraction is≈ 10−74.

Using the bounds
(
n
m

)
� nm/(m!) and

√
2π mm+1/2e−m · e(12m+1)−1

<m!<√
2π mm+1/2e−m · e(12m)−1

for n,m ∈ N [3, p. 54] we have

(
2(

|X |+|Y|−1
|X | ) − 1

)/(
2(|Y ||X |) − 1

)
< 2(e+e|Y |/|X |−e/|X |)|X |−|Y ||X |

.

For |Y|> e|X |/(|X | − e) and|X |> 2 this expression
is not larger than

2(e+e|Y |/|X |−e/|X |−|Y |)|X |
,

and converges to zero double exponentially fast w
increasing|X |.

4. Search spaces with neighborhood relations

In the previous section, we have shown that
fraction of subsets c.u.p. is close to zero already
small search and cost-value spaces. Still, the abso
number of subsets c.u.p. grows rapidly with increas
|X | and |Y|. What if these classes of functions a
the “important” ones, i.e., those we are dealing w
in practice? In this section, we define some qu
general constraints on functions important in prac
that induce classes of functions that are not c.u.p.

We believe that two assumptions can be made
most of the functions we are dealing with in real-wo
optimization: First, the search space has some topo
ical structure. Second, the set of objective functio
we are interested in fulfills some constraints based
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this structure. More formally, there exists a nontriv-
ial neighborhood relation onX based on which con-
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First, we show how a constraint on steepness
(closely related to the concept ofstrong causality)
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straints on the set of functions under consideration
formulated. For example, with respect to a neighb
hood relation we can define concepts like ruggedn
or local optimality and constraints like upper boun
on the ruggedness or on the maximum number of
cal minima. Intuitively, it is likely that in a function
class c.u.p. there exists a function that violates s
constraints.

We define a simple neighborhood relation onX as a
symmetric functionn :X ×X → {0,1}. Two elements
xi, xj ∈ X are called neighbors iffn(xi, xj ) = 1.
We call a neighborhood nontrivial iff∃xi, xj ∈ X :
xi �= xj ∧ n(xi, xj ) = 1 and∃xk, xl ∈ X : xk �= xl ∧
n(xk, xl) = 0. It holds:

Theorem 3. A nontrivial neighborhood onX is not
invariant under permutations ofX .

Proof. It holds ∃xi, xj , xk, xl ∈ X : xi �= xj ∧ xk �=
xl ∧ n(xi, xj ) = 0 ∧ n(xk, xl) = 1. For any permuta
tion π that mapsxi and xj onto xk and xl , respec-
tively, the invariance property,∀a, b ∈ X : n(xa, xb)=
n(π(xa),π(xb)), is violated. ✷
Remark 1. Assume the search spaceX can be
decomposed asX = X1 × · · · × Xl , l > 1, and let
on one componentXi exist a nontrivial neighborhoo
ni :Xi × Xi → {0,1}. This neighborhood induces
nontrivial neighborhood onX , where two points are
neighbors iff theirith components are neighbors wi
respect toni . Thus, the constraints discussed bel
need only refer to a single component.

Remark 2. The neighborhood relation need not be
canonical one (e.g., Hamming distance for Boole
search spaces). Instead, it can be based on “phen
ic” (i.e., functional) properties (e.g., if integers are e
coded by bit-strings, then the bit-strings can be defi
as neighbors iff the corresponding integers are).

Now we describe some constraints that are defi
with respect to a neighborhood relation and are—
our minds—relevant in practice. For this purpose,
assume a metricdY :Y × Y → R on Y , e.g., in the
typical case of real-valued fitness functionY ⊂ R the
Euclidean distance.
-

leads to a set of functions that is not c.u.p. Based
a neighborhood relation on the search space, we
define a simple measure of maximum steepness
functionf ∈ F by

smax(f )= max
xi ,xj∈X∧n(xi ,xj )=1

dY
(
f (xi), f (xj )

)
.

Further, for a functionf ∈ F , we define the diamete
of its range as

dmax(f )= max
xi ,xj∈X

dY
(
f (xi), f (xj )

)
.

Corollary 1. If the maximum steepnesssmax(f ) of
every functionf in a nonempty subsetF ⊂ F is
constrained to be smaller than the maximal poss
maxf∈F dmax(f ), thenF is not c.u.p.

Proof. Let g = argmaxf∈F dmax(f ) be a function
with maximal range and letxi andxj be two points
with property d(g(xi), g(xj )) = dmax(g). Since the
neighborhood onX is nontrivial there exist two neigh
boring pointsxk and xl . There exists a permuta
tion π that mapsxi and xj on xk and xl . If F is
c.u.p., the functiong ◦ π is in F . This function has
steepnesssmax(g ◦ π) = dmax(g) = maxf∈F dmax(f ),
which contradicts the steepness constraint.✷

As a second constraint, we consider the numbe
local minima, which is often regarded as a measur
complexity [5]. For a functionf ∈ F a pointx ∈X is
a local minimum ifff (x) < f (xi) for all neighborsxi
of x. Given a functionf and a neighborhood relatio
on X , we definelmax(f ) as the maximal number o
minima that functions with the sameY-histogram asf
can have (i.e., functions where the number ofX -val-
ues that are mapped to a certainY-value are the sam
as forf , see Appendix A).

As an example, consider pseudo-Boolean functi
{0,1}n → R ⊂ R and let two points be neighbors i
they have Hamming-distance one. Then the maxim
number of local minima is 2n−1 (e.g., the n-di-
mensional parity function, which is 1 if the numb
of ones in the input bitstring is even and 0 otherwi
has 2n−1 different global minima).

In Appendix A we prove that for any two function
f,g with the sameY-histogram there exists a perm
tationπ ∈ Π(X ) with f ◦ π = g. Thus, it follows:
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Corollary 2. If the number of local minima of every
function f in a nonempty subsetF ⊂ F is con-
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mappingh :Y → N0 such that
∑

y∈Y h(y)= |X |. The
set of all histograms is denotedH. With any func-
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strained to be smaller than the maximal possi
maxf∈F lmax(f ), thenF is not c.u.p.

5. Conclusion

Based on the results in [4], we have shown that
statement “I’m only interested in a subsetF of all pos-
sible functions, so the precondition of the NFL the
rems is not fulfilled” is true with a probability close t
one (ifF is chosen uniformly andY andX have rea-
sonable cardinalities). Further, the statements “In
application domain, functions with maximum numb
of local minima are not realistic” and “For some com
ponents, the objective functions under considera
will not have the maximal possible steepness” lead
scenarios where the precondition of the NFL theor
is not fulfilled.

The fact that the precondition of the NFL theore
is violated does not say much about the performa
of a particular algorithm averaged over the conside
set of functions for a given performance measure
particular, our results do not quantify any differenc
That a problem class is not c.u.p. does not le
to a “free lunch”, but ensures the possibility of
“free appetizer”, e.g., we know that there exists
performance measure where algorithms have diffe
performance when averaged over all the conside
objective functions.
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Appendix A. Proof of Theorem 2

For the proof, we use the concepts ofY-histograms:
We define aY-histogram(histogramfor short) as a
tion f :X → Y we associate the histogramh(y) =
|f−1(y)| that counts the number of elements inX that
are mapped to the same valuey ∈ Y by f . Herein,
f−1(y), y ∈ Y returns the preimage{x | f (x) = y}
of y under f . Further, we call two functionsf,g
h-equivalentiff they have the same histogram. We c
the correspondingh-equivalence classBh ⊆ F con-
taining all function with histogramh a basis class.
Before we prove Theorem 2, we consider the follo
ing lemma that gives some basic properties of b
classes.

Lemma 1.

(a) There exist(|X | + |Y| − 1

|X |
)

pairwise disjoint basis classes and⋃
h∈H

Bh =F .

(b) Two functionsf,g ∈ F are h-equivalent iff there
exists a permutationπ of X such thatf ◦ π = g.

(c) Bh is equal to the permutation orbit of an
functionf with histogramh, i.e.,

Bh =
⋃

π∈Π(X )

{f ◦ π}.

(d) Any subsetF ⊆F that is c.u.p. is uniquely define
by a union of pairwise disjoint basis classes.

Proof. (a) The number|H| of different histograms is
given by

(|X |+|Y |−1
|X |

)
, i.e., the number ofdistinguish-

able distributions(e.g., [3, p. 38]). Two basis class
Bh1 andBh2, h1 �= h2, are disjoint because functions
different basis classes have different histograms.
union

⋃
h∈HBh =F because every function inF has

a histogram.
(b) Let f,g ∈ X be two functions with the sam

histogramh. Then, for anyy ∈ Y , f−1(y) andg−1(y)

are equal in size and there exists a bijective functionπy

between these two subsets. Then the bijectionπ(x)=
πy(x), wherey = f (x), defines a permutation suc
thatf ◦ π = g. Thus,h-equivalence implies existenc
of a permutation. On the other hand, the histogram
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a function is invariant under permutation since for any
y ∈ Y andπ ∈ Π(X ) it holds

or-
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all basis classes minus one for the empty set) is given
(|X |+|Y|−1

|X | ) r
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∣∣(f ◦ π)−1(y)
∣∣ =

∑
x∈X

δ
(
y,f

(
π(x)

))

=
∑
x∈X

δ
(
y,f (x)

)

= ∣∣f−1(y)
∣∣,

becauseπ is bijective and the addends can be re
dered. Thus, existence of a permutation impliesh-e-
quivalence.

(c) For a functionf with histogramh, let Of =⋃
π∈Π(X ){f ◦π} be the orbit off under permutation

π . By (b), all functions inOf have the same histogra
and thusOf ⊆ Bh. On the other hand, for an
functionsg ∈ Bh there exists by (b) a permutationπ
such thatf ◦ π = g and thusBh ⊆Of .

(d) For a c.u.p. subsetF ⊆ F , let Fh = Bh ∩ F

(i.e., Fh contains all functions inF with the same
histogramh). By (a), allFh are pairwise disjoint and
F = ⋃

h∈HFh. SupposeFh �= ∅: SinceF is c.u.p.
there exists a functionf ∈ Fh that spans the orbitBh.
ThusBh ⊆ F and thereforeFh = Bh. Because basi
classes are disjoint, the unionF = ⋃

h: h∈H∧Fh �=∅ Bh

is unique. ✷
Proof of Theorem 2. By Lemma 1(a), the numbe
of different basis classes is given by

(|X |+|Y |−1
|X |

)
. The

number of different, nonempty unions of basis clas
(equal to the cardinality of the power set of the se
by 2 − 1. By Lemma 1(d), this is the numbe
of nonempty subsets ofF that are c.u.p. ✷
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