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1. Introduction any subsetF of the set of all possible functions if
and only if F is closed under permutation (c.u.p.)
The No Free Lunch (NFL) theorems for com- [4]. Based on this important result, we can derive
binatorial optimization state, roughly speaking, that classes of functions where NFL does not hold simply
all search algorithms have the same average perfor-by showing that these classes are not c.u.p. This leads
mance over all possible objective functiofis X’ — to the main result of this paper: It is proven that the
), where the search spageas well as the cost-value fraction of subsets that are c.u.p. is negligibly small.
space) are finite sets [6]. However, it has been ar- Arguments are given why we think that classes of
gued that in practice one does not need an algorithm objective functions resulting from important classes of
that performs well on all possible functions, but only real-world problems are likely not to be c.u.p.
on a subset that arises from the constraints of real- In the following section, we give some basic
world problems. For example, it has been shown that definitions and concisely restate the sharpened NFL
for pseudo-Boolean functions restrictions of the com- theorem given in [4]. Then we derive the number of
plexity can lead to subsets of functions on which some subsets c.u.p. Finally, we discuss some observations
algorithms perform better than others (in [5] complex- regarding structured search spaces and closure under
ity is defined in terms of the number of local minima Permutation.
and in [1,2] the complexity is defined based on the
size of the smallest ordered binary decision diagram,
OBDD, representing the function). 2. Preliminaries
Recently, a sharpened version of the NFL theorem
has been proven that states that NFL results hold for ~We consider a finite search spageand a finite
set of totally ordered cost valu@s Let F = Y% be
the set of all objective functiong: X — Y to be
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point in the search space depending on the completeTheorem 2. The number of nonempty subsetg)of
history of prior explorations: Let the sequentg = that are c.u.p. is given by

(01, £ (1)), (2, f(x2)),. .., G, f (o)) TEPIESENL sy g

m nonrepeating explorations € X, Vi, j: x; # x; 28 X =1
and their cost valueg (x;) € . An algorithm A ap-
pends a pair(x,;+1, f(x;+1)) to this sequence by
mappingT}, to a new point,, 41, Vi: xm41 # xi. Gen- (2(‘X‘T;‘3f‘"1) —1)/ (@Y™ ).

erally, the performance of an algorithm after m it-

erations with respect to a functigh depends on the The proof is given in Appendix A. The fraction
sequence’ (f,m, A) = (f(x1), f(x2), ..., f (xm)) of decreases for increasing’| as well as for increasing
cost values the algorithm has produced. Let the func- 1| Already for small X'| and|Y| the fraction almost

tion ¢ denote a performance measure mapping se-yanishes, e.g., for Boolean functiof 1}3 — {0, 1}
guences of) to the real numbers (e.g., in the case of ne fraction is~ 1074,

function minimization a performance measure thatre-  ysing the bound§”) < n™ /(m!) and
turns the minimund’ value in the sequence could be a "

and therefore the fraction of nonempty subsets c.u.p. is

reasonable choice). o mMT12g=m . g(12m+Dt
Let 7: X — X be a permutation oft. The set <l < B Y2 | 12m)t

of all permutations oft" is denoted byi7(X). A set
F C F is said to be closed under permutation (c.u.p.) for n, m € N [3, p. 54] we have
if for any = € I1(X) and any functionf € F the JUT—
function f o 7 is also inF. (2( ) 1)/(2(|y|‘X‘) —1)
< p(etelVI/|X|—e/| X IF - yI*]
Theorem 1 (Sharpened NFLYor any two algorithms
A and B, anyk € R, anym € {1, ..., |X|}, and any For|Y| > elX|/(|X| — e) and|X| > 2 this expression

performance measure is not larger than
Z 8(k,C(Y(f,m, A))) _ ZS(k,C(Y(f,m, B))) 2(e+e|y|/|X|—e/IXI—D)I)\X\’
feF feF

and converges to zero double exponentially fast with
iff Fis c.u.p. increasing X|.

Herein,§ denotes the Kronecker functiod((, j) =
1ifi=j, 8@, ) =0 otherwise). A proof of Theo-
rem 1 is given in [4]. Note that the summation means
uniformly averaging over all functiong € F. This
theorem implies that for any two algorithrisand B
and any functionf4 € F, whereF is c.u.p., there is
a function fg € F on which B has the same perfor-
mance asi on f4.

4. Search spaces with neighborhood relations

In the previous section, we have shown that the
fraction of subsets c.u.p. is close to zero already for
small search and cost-value spaces. Still, the absolute
number of subsets c.u.p. grows rapidly with increasing
|X| and |Y|. What if these classes of functions are
the “important” ones, i.e., those we are dealing with
in practice? In this section, we define some quite
general constraints on functions important in practice
that induce classes of functions that are not c.u.p.

We believe that two assumptions can be made for

Let F = Y* be the set of all functions mapping most of the functions we are dealing with in real-world
X — Y. There exist I g nonempty subsets of  optimization: First, the search space has some topolog-
F. We want to calculate the fraction of subsets that are ical structure. Second, the set of objective functions
c.u.p. we are interested in fulfills some constraints based on

3. Fraction of subsets closed under permutation
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this structure. More formally, there exists a nontriv- First, we show how a constraint on steepness
ial neighborhood relation o based on which con-  (closely related to the concept strong causality

straints on the set of functions under consideration are leads to a set of functions that is not c.u.p. Based on
formulated. For example, with respect to a neighbor- a neighborhood relation on the search space, we can
hood relation we can define concepts like ruggednessdefine a simple measure of maximum steepness of a

or local optimality and constraints like upper bounds function f € F by

on the ruggedness or on the maximum number of lo- s f) =

cal minima. Intuitively, it is likely that in a function

max
Xi, xj€X An(x;,xj)=1

dy(f (i), f(x))).

class c.u.p. there exists a function that violates such g, ther for a functionf € F, we define the diameter

constraints.

We define a simple neighborhood relationtras a
symmetric functiom : X x X — {0, 1}. Two elements
x;,xj € X are called neighbors iffi(x;, x;) = 1.
We call a neighborhood nontrivial iffix;, x; € X
xXi #xj An(x,x;)=1and3Ixg, x € X1 xp #x A
n(xg, x;) =0. It holds:

Theorem 3. A nontrivial neighborhood ot’ is not
invariant under permutations of.

Proof. It holds 3x;, x;, xk, x; € X1 x; # xj A x #
xi An(xi,x;) =0 A n(xg, x;) = 1. For any permuta-
tion 7 that mapsx; andx; onto x; andx;, respec-
tively, the invariance propertya, b € X: n(x,, xp) =
n(mw(x,), w(xp)), is violated. O

Remark 1. Assume the search spac¥ can be
decomposed ag = X1 x --- x A7, [ > 1, and let
on one component; exist a nontrivial neighborhood
n; . X; x Xy — {0, 1}. This neighborhood induces a
nontrivial neighborhood o', where two points are
neighbors iff theirith components are neighbors with
respect ton;. Thus, the constraints discussed below
need only refer to a single component.

Remark 2. The neighborhood relation need not be a

of its range as
()= max dy(f ), fx)-

Xi,Xj€

Corallary 1. If the maximum steepnes8@(f) of
every functionf in a nonempty subseF C F is
constrained to be smaller than the maximal possible
maxrer dM¥(f), thenF is not c.u.p.

Proof. Let ¢ = argmaxcrd"®(f) be a function
with maximal range and let; andx; be two points
with property d(g(x;), g(x;)) = d™®(g). Since the
neighborhood ot is nontrivial there exist two neigh-
boring pointsx; and x;. There exists a permuta-
tion 7 that mapsx; andx; on x; andx;. If F is
c.u.p., the functiorg o 7 is in F. This function has
steepness"®(g o w) = d"(g) = maxrer d"(f),
which contradicts the steepness constraimi.

As a second constraint, we consider the number of
local minima, which is often regarded as a measure of
complexity [5]. For a functiory € F a pointx € X' is
a local minimum iff f (x) < f(x;) for all neighbors;
of x. Given a functionf and a neighborhood relation
on X, we definel/™®( f) as the maximal number of
minima that functions with the sanj&-histogram ag
can have (i.e., functions where the numbettal-

canonical one (e.g., Hamming distance for Boolean ues that are mapped to a certjdrvalue are the same
search spaces). Instead, it can be based on “phenotypas for £, see Appendix A).

ic” (i.e., functional) properties (e.qg., if integers are en-

As an example, consider pseudo-Boolean functions

coded by bit-strings, then the bit-strings can be defined {0, 1} — R Cc R and let two points be neighbors iff

as neighbors iff the corresponding integers are).

they have Hamming-distance one. Then the maximum
number of local minima is 21 (e.g., the n-di-

Now we describe some constraints that are defined mensional parity function, which is 1 if the number
with respect to a neighborhood relation and are—to of ones in the input bitstring is even and 0 otherwise,
our minds—relevant in practice. For this purpose, we has 21 different global minima).

assume a metridy,:Y x Y — R on Y, e.g., in the
typical case of real-valued fitness functipnc R the
Euclidean distance.

In Appendix A we prove that for any two functions
f, g with the same)-histogram there exists a permu-
tations € IT(X) with f o = g. Thus, it follows:
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Corallary 2. If the number of local minima of every mappingh:) — Ng such thatzyeyh(y) =|X|. The

function f in a nonempty subseF c F is con- set of all histograms is denoted. With any func-
strained to be smaller than the maximal possible tion f:X — ) we associate the histogran(y) =
maxser [M¥(f), thenF is not c.u.p. | £ ~1(y)| that counts the number of elementstirthat

are mapped to the same valye= Y by f. Herein,
f~(y), y € Y returns the preimagéx | f(x) = y}
of y under f. Further, we call two functionsf, g

) h-equivaleniff they have the same histogram. We call
Based on the results in [4], we have shown that the the corresponding-equivalence class; € F con-

statement “I'm only interested in a subgeof all pos- taining all function with histogrant a basis class
sible functions, so the precondition of the NFL theo- Before we prove Theorem 2, we consider the follow-

rems is not fulfilled” is true with a probability close to ing lemma that gives some basic properties of basis
one (if F is chosen uniformly angy and X’ have rea- classes.

sonable cardinalities). Further, the statements “In my

application domain, functions with maximum number | emma 1.

of local minima are not realistic” and “For some com-

ponents, the objective functions under consideration (a) There exist

will not have the maximal possible steepness” lead to

scenarios where the precondition of the NFL theorem <|X| + Y= 1)

5. Conclusion

is not fulfilled. |X]

The fact that the precondition of the NFL theorem pairwise disjoint basis classes and
is violated does not say much about the performance
of a particular algorithm averaged over the considered U B, =F.

set of functions for a given performance measure. In heH

particular, our results do not quantify any differences. (b) Two functionsf, g € F are h-equivalent iff there
That a problem class is not c.u.p. does not lead exists a permutation of X such thatf o = g.
to a “free lunch”, but ensures the possibility of a (c) B, is equal to the permutation orbit of any
“free appetizer”, e.g., we know that there exists a function f with histogranv, i.e.,

performance measure where algorithms have different

performance when averaged over all the considered By = U {fom}.

objective functions. 7ell(X)

(d) Any subseF' C F thatis c.u.p. is uniquely defined
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my(x), wherey = f(x), defines a permutation such
For the proof, we use the concept9ahistograms: that f o m = g. Thus,kh-equivalence implies existence
We define ay-histogram(histogramfor short) as a  of a permutation. On the other hand, the histogram of
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a function is invariant under permutation since for any

y e Y andr € [1(X) it holds
[(Fom) | = Y 8(y. f(r ()

xeX

D 8(y, f0)

xeX

|1,

becauser is bijective and the addends can be reor-

dered. Thus, existence of a permutation imphes-
quivalence.

(c) For a functionf with histogramh, let Oy =
Usremx)tf om} be the orbit off under permutations
7. By (b), all functions inO s have the same histogram
and thus Oy € Bj,. On the other hand, for any
functionsg € By, there exists by (b) a permutation
such thatf o 7 = g and thusB;, C Oy.

(d) For a c.u.p. subse € F, let F, =B, NF
(i.e., F, contains all functions inF with the same
histogramh). By (a), all F;, are pairwise disjoint and
F = Upe Frn- SupposeF;, # . Since F is c.u.p.
there exists a functiof € Fj, that spans the orbis),.
Thus B, € F and thereforeF;, = B),. Because basis
F:Iassgs are disjoint, the unidn= . e r, 20 Bn
is unique. O

Proof of Theorem 2. By Lemma 1(a), the number

321

all basis classes minus one for the empty set) is given

by 203

+YI-1

) 1. By Lemma 1(d), this is the number

of nonempty subsets ¢f that are c.u.p. O
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