
PhD thesis

The evolution of genetic representations

and modular adaptation

Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften in der
Fakultät für Physik und Astronomie der Ruhr-Universität Bochum

Marc Toussaint

Institut für Neuroinformatik, Ruhr-Universität Bochum, ND 04, 44780 Bochum—Germany

mt@neuroinformatik.rub.de

March 31, 2003



Gutachter: Prof. Dr.-Ing. Werner von Seelen, Prof. Dr. Klaus Goeke



Contents

Introduction 7

1 Evolutionary adaptation 13

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 A theory on the evolution of phenotypic variability . . . . . . . . . . . . . . . . . . 16

1.2.1 A prior in understanding evolution: There is No Free Lunch without assum-
ing a constrained problem structure . . . . . . . . . . . . . . . . . . . . . . 16

If you do not presume that the problem has a structure, then any search strategy for good

solutions is as good as random search.

1.2.2 How to assume and learn about a problem structure: A generic heuristic to
adapt the search distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 17

The structure of a problem is described by the structure of the distribution of good

solutions—learning the structure of a problem means to adapt the search distribution

toward the distribution of good solutions.

1.2.3 Evolutionary processes: A population, mutations, and recombination to rep-
resent the search distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Evolution can be described as a stochastic dynamic process on the genotype space, com-

parable to generic heuristic search, where the search distribution is parameterized by a

finite parent population via mutation and recombination.

1.2.4 The genotype and phenotype: Reparameterizing the search space . . . . . . 23
The mapping from genotype to phenotype is the key to understand complex phenotypic

variability and evolution’s capability to adapt the search distribution on the phenotype

space.

1.2.5 The topology of search: Genotype versus phenotype variability . . . . . . . 24
A simple, by mutation induced genotypic variability may, via a non-injective genotype-

phenotype mapping, lead to arbitrarily complex phenotypic variability.

1.2.6 Commutativity and neutrality: When does phenotype evolution depend on
neutral traits? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Neutral traits (of which strategy parameters are a special case) have an impact on phe-

notype evolution if and only if they influence mutation probabilities and thus encode for

different exploration distributions.

1.2.7 Behind this formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
The abstract formalism developed so far relates to topics like evolving genetic represen-

tations, strategy parameters, and evolvability.

1.2.8 Embedding neutral sets in the variety of exploration distributions . . . . . 29
The embedding defines a unique way of understanding neutral traits and will allow to

derive an evolution equation for them.



4 CONTENTS

1.2.9 σ-evolution: A theorem on the evolution of phenotypic variability . . . . . . 30
Exploration distributions naturally evolve towards minimizing the KL-divergence between

exploration and the exponential fitness distribution, and minimizing the entropy of explo-

ration.

1.2.10 Appendix — n-th order equivalence and n-th order delay . . . . . . . . . . 32
How could evolution arrange to increase the probability for children to generate with high

probability children that generate with high probability ...etc... children with high fitness?

1.2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Recalling the steps toward this result.

1.3 Crossover, buildings blocks, and correlated exploration . . . . . . . . . . . . . . . . 34

1.3.1 Two notions of building blocks of evolution . . . . . . . . . . . . . . . . . . 34
The notion of building blocks as induced by crossover does not match the notion of func-

tional phenotypic building blocks as it is induced by investigating correlated phenotypic

variability.

1.3.2 The crossover GA: Explicit definitions of mutation and crossover . . . . . . 35
In order to define crossover and derive results we assume that a genotype is composed of

a finite number of genes and that crossover and mutation obey some constraints.

1.3.3 The structure of the mutation distribution . . . . . . . . . . . . . . . . . . . 37
Mutation increases entropy and decreases mutual information.

1.3.4 The structure of the crossover distribution . . . . . . . . . . . . . . . . . . . 39
Crossover destroys mutual information in the parent population by transforming it into

entropy in the crossed population.

1.3.5 Correlated exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A precise definition of correlated exploration allows to pinpoint the difference between

crossover exploration and correlated exploration in the case of EDAs.

1.3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Crossover is good to decorrelate exploration; is does not, as EDAs, induce complex ex-

ploration.

1.4 Rethinking natural and artificial evolutionary adaptation . . . . . . . . . . . . . . 45

1.4.1 From the DNA to protein folding: Genotype vs. phenotype variability in
nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Without referring to its phenotypical meaning, the DNA is of a rather simple structure and

variational topology. The codon translation is the first step in the GP-map that introduces

neutrality and non-trivial phenotypic variability. Considering protein functionality as a

phenotypic level, the GP-map from a protein’s primary to tertiary structure is complicated

enough that neutral sets percolate almost all the primary structure space.

1.4.2 The operon and gene regulation: Structuring phenotypic variability . . . . 50
Considering the expression of genes as a phenotypic level, the operon is a paradigm for

introducing correlations in phenotypic variability.

1.4.3 Flowers and Lindenmayer systems: An artificial model for a genotype-pheno-
type mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Grammar-like genotype-phenotype mappings realize complex, correlated variability in ar-

tificial evolutionary systems—similar to the operon—and induce highly non-trivial neu-

trality.

1.4.4 Altenberg’s evolvable genotype-phenotype map . . . . . . . . . . . . . . . . 54
Ultimately, discussing Lee Altenberg’s model of the evolution of the genotype-phenotype

mapping pinpoints our point of view on the subject.



CONTENTS 5

1.5 A computational model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.5.1 The genotype and genotype-phenotype mapping . . . . . . . . . . . . . . . 57
An abstract model of ontogenetic development mimics the basic operon-like mechanism

to induce complex phenotypic variability.

1.5.2 2nd-type mutations for the variability of exploration . . . . . . . . . . . . . 58
A new type of structural mutations allows for reorganizations of the genetic representa-

tions and exploration of the respective neutral sets.

1.5.3 First experiment: Neutral σ-evolution . . . . . . . . . . . . . . . . . . . . . 59
Genetic representations reorganize themselves in favor of short genome length and mod-

ular phenotypic variability.

1.5.4 Second experiment: σ-evolution for phenotypic innovation . . . . . . . . . . 64
Genetic representations develop in favor of highly correlated phenotypic variability allowing

for simultaneous phenotypic innovations.

1.5.5 Third experiment: Evolving artificial plants . . . . . . . . . . . . . . . . . . 66
Evolving artificial plants is an illustrative demonstration of the evolution of genetic rep-

resentations to encode large-scale, structured, self-similar phenotypes.

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2 Neural adaptation 79

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.2 Functional modularity in NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.2.1 Decomposed adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
The adaptation dynamics of a neural system can be described as a Markov process—the

structure of the transition distribution constitutes the notions of correlated adaptation

and functional modules of a neural system.

2.2.2 The geometry of adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
The relation between a neural system’s free parameters and its functional traits can be

described geometrically. The induced metric on the functional space determines the

correlatedness of adaptation.

Ordinary gradient online learning . . . . . . . . . . . . . . . . . . . . . . . . 85

Natural gradient online learning . . . . . . . . . . . . . . . . . . . . . . . . 88

2.2.3 An example: Comparing conventional NN with multi-expert models . . . . 89
An example demonstrates how the theory precisely describes the difference in adapta-

tion dynamics between a conventional NN and a multi-expert w.r.t. their coadaptation

behavior.

2.2.4 Generic properties of the class of conventional NN and multi-expert models 90
The statistics of coadaptational features in the space of all neural networks of a given

architecture and in the space of all multi-expert systems of a given architecture exhibits

a generic difference.

2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.3 A space of more modular neural systems . . . . . . . . . . . . . . . . . . . . . . . . 94

2.3.1 A neural model for multi-expert architectures . . . . . . . . . . . . . . . . . 94
A generalization of conventional artificial neural networks allows for a functional equiva-

lence to multi-expert systems.

Gradient learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

EM-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



6 CONTENTS

Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Oja-Q learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.3.2 Empirical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Some tests of the proposed architecture and the learning schemes on a task similar to

the what-and-where task demonstrate the functionality.

Conclusions 105

Appendix 107

Theorems, definitions and symbols in chapter 1 . . . . . . . . . . . . . . . . . . . . 108

Theorems, definitions and symbols in chapter 2 . . . . . . . . . . . . . . . . . . . . 110

References 111



Introduction

A matter of representation.

Facing the challenge to understand intelligent biological systems, a first step is typically de-
scriptive, i.e., aiming at a precise description of a system’s functionalities and mechanisms. This is
true for many branches of biology when describing the subtle mechanisms of natural life, for many
branches of Neuroscience describing in detail neural mechanisms, and eventually also for classical
approaches to Artificial Intelligence which try to capture intelligence on a formal descriptive basis.
However, a purely descriptive approach might neglect that all the intelligent systems we find in
nature are the outcome of adaptation processes, namely evolution and neural adaptation. This
puts a crucial constraint on what systems can possibly exist in nature, in particular how they must
be organized and structured to allow for adaptation. This calls for a theory on these adaptation
processes themselves as the basis to understand natural intelligent systems.

Why does the need for adaptation induce a structural constraint? The point is that nature does
not invent intelligent systems directly. All of a system’s functionality is represented indirectly by
genes or neurons and adaptation takes place on the level of these system parameters. The way
these parameters encode the system’s final features is highly non-trivial. For example, engineers
often profit from precise descriptions of nature and have adopted many techniques. However, when
they design systems they usually directly describe and design the system’s final functionality; they
hardly adopt nature’s strategy to use an indirect representation of functionalities by genes or some
equivalent. This leads to a problem that becomes particularly apparent when the goal is the design
of an Artificial Intelligence. Early approaches to Artificial Intelligence were largely descriptive, i.e.,
tried to first directly describe what intelligent behavior is in terms of behavioral rules. These rules
could then be implemented on a computer. But actually, a precise direct description of intelligence
in terms of rules is very difficult. One realizes that whenever one formulates a behavioral rule, one
needs to presume some vocabulary of situations and behaviors to formulate the rule (e.g., “when
in situation A execute behavior b” presumes that it is well-defined what situation A and behavior
b are). Nature developed a elaborate representation to encode intelligent behavior, namely highly
structured neural systems. This representation is the outcome of a long adaptive process.

The crucial question is how the adaptation processes succeeded in developing these indirect
representations that are so beneficial for functional adaptation.

Complex adaptation mechanisms on arbitrary representations—
or simple adaptation mechanisms on suitable representations?

Research in the field of Artificial Intelligence has developed more and more sophisticated adap-
tation mechanisms that mimic natural evolution and learning. For instance, a breakthrough was
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certainly the idea to use gradient learning for all kinds of neural models with real-valued pa-
rameters. This adaptation mechanism proved to be a generic tool and theories on the universal
approximation capabilities of multi-layer feed-forward neural networks show that artificial neural
networks can, in principle, represent (or approximate) any functionality. At first sight it seems
that the adaptation problem is solved and thus there is little motivation to reconsider the way
conventional artificial neural networks represent functionalities—instead one would praise gradient
learning to be in some sense independent of how functionalities are represented. A simple example
though shows how important it is to consider how functionalities are represented: When we learn
something we almost consciously know that it will affect only that very functionality that we intend
to learn. This can be possible only when the functionality is represented in such a way that we can
adapt it in one step and without worrying that other functionalities of our brain are affected. Arti-
ficial neural networks represent functionalities in a way such that, if one functionality is trained, it
is highly likely that many other functionalities are affected—presumably in a negative way (cf. the
credit assignment problem, catastrophic forgetting, cross-talk, etc.). As a consequence, supervised
stochastic online learning in artificial neural networks is a long process where every functionality
has to be learned effectively simultaneously by switching between the tasks all the time and adapt-
ing only in small steps. But instead of rethinking the way functionalities should be represented,
research focuses on further developing the adaptation mechanisms. Gradient learning is already
far more complex than local learning rules like the Hebb rule and its further developments (Rprop,
natural gradient, conjugate gradient, BFGS, etc.) become more and more complex.

Nature exhibits quite the opposite strategy to solve the dilemma. Compared to the adapta-
tion mechanisms developed in Artificial Intelligence research, the principles of natural adaptation
mechanisms seem rather elementary. Neuroscience tells us that the principles of neural plasticity
are not that far from the classical Hebb rule on the level of synaptic plasticity. And the basic
principle of evolutionary adaptation is the trial-and-error strategy on the level of gene mutations.
In view of the simplicity of principles of these adaptation mechanisms—on the level of synapses
and genes—the capability of complex adaptation on the functional level is astonishing. The rea-
son must be a suitable choice of how functionalities are represented. And here, nature found very
complex solutions. A gene mutation affects the functional traits of an organism via complex pro-
cesses of gene expression during ontogenetic development. Although the human genome project
succeeded in enumerating all the genes, we are far from knowing what these genes actually af-
fect; the networks of gene interaction are too complex, but obviously not random and have been
subject to evolutionary adaptation. In the brain, behavior is the result of complex processes of
recurrent activation dynamics. For higher-level brain areas we do not know how synapses store our
knowledge and how they affect the global activation dynamics when we read out this knowledge.

Nature developed these representations in the course of adaptive processes and it thus should
be a general project to develop theories on adaptation processes that account for the adaptation
of representations. In its main chapter, this thesis will offer an integrative perspective and theory
on the adaptation of genetic representations which turns out to be inherent in every ordinary
evolutionary process with non-trivial genotype-phenotype mapping. It will discuss what “suitable”
means and show that genetic representations indeed evolve as to optimize their suitability. In the
second chapter we also, more briefly, address the case of neural adaptation. Here, a major result is
the proof that representations in conventional artificial neural networks are indeed uncontrolled in
the sense we mentioned it. In such systems it is highly unlikely that representations are structured
and organized such that different functionalities can be learned without cross-affecting each other.

A formal framework for structured adaptation.
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The theoretical approach pursued in this thesis to treat the issue of suitable and adaptive
representations is based on the a specific aspect of general adaptational processes, namely the
aspect of correlational structure in adaptation steps. Let us make this concept more explicit which
both, the chapters on evolutionary and neural adaptation, share.

Consider a system which can acquire different states in a state space X; we enumerate these
states by i. We describe this system not by its current state but by the current probability field
ψ(t) ∈ ΛX over states. Here, ΛX is the space of all probability distributions over X, which is the
subspace of vectors with non-negative components ψi(t) that sum to 1. The system is subject to
some discrete time dynamics given by a stochastic operator H : ΛX → ΛX . We assume that the
dynamics are linear in the following respect:

ψ(t+ 1) = Hψ(t) such that ψi(t+ 1) =
∑
j

Hij ψj(t) , (1)

i.e., a Markov process. The matrix Hij is also a conditional probability distribution (which we will
write as H(i|j) later) that gives the probability of a state transition from state j to i.

This scenario is compatible with the model of evolutionary adaptation that will be discussed
in the next chapter but also generalizes the scenario of neural adaptation discussed in chapter 2.
It differs from typical dynamical laws in field theory in two respects: (1) the dynamics is discrete
in time, and (2) the field is a real-valued probability field instead of a particle field (which had
values in a complex vector space representation of some symmetry; a complex vector bundle).
Nonetheless, the following way of capturing the decomposition of dynamics is certainly inspired by
particle theory.

Assume the state space X can be decomposed, X = X1 ×X2. Say, the space X1 captures one
feature of the system and the space X2 another. The question is whether the evolution of those
two features is correlated or independent under the given dynamics. We capture this as follows:
If the two features are decorrelated in the initial condition of the system (i.e., in ψ(t = 0)) then,
if the dynamics is decomposed, those two features shall remain decorrelated all through time. In
terms of probability distributions, decorrelation means that the distribution is a product of the
two marginal distributions:

ψi = ψ1
k ψ

2
l for i = (k, l) .

Here, k ∈ X1 and l ∈ X2 enumerate the states in X1 and X2, respectively, and i = (k, l) ∈ X =
X1 ×X2 is the label of the state in X which corresponds to (k, l). In other words, the field ψ can
be represented as a tuple of two fields ψ1 and ψ2 (i.e., the direct sum ψ = ψ1 ⊕ ψ2). Now, under
which conditions is this decomposition preserved during evolution? As the first case, assume the
operator H is also a product Hij = H(k,l)(r,s) = H1

kr H2
ls. Then,

(Hψ)(k,l) =
∑
r,s

H(k,l)(r,s) ψ(r,s) =
[∑

k

H1
kr ψ

1
r

][∑
l

H2
ls ψ

2
s

]
.

Hence, the state remains decomposed. In the second case, when there exist specific k̄, l̄, r̄, s̄ such
that H(k̄,l̄)(r̄,s̄) 6= H1

k̄r̄
H2
l̄s̄

, it is easy find examples for ψ such that decomposition is not preserved
(e.g., ψ(r,s) = δrr̄ δss̄ with the so-called delta-distribution δ). Hence, the state remains decomposed
if and only if H(k,l)(r,s) = H1

kr H2
ls.

There is a more group theoretical way to express this. The evolution equation (1) may be
regarded as a group representation, where H is a group operator that applies linearly on the vector
ψ. If H preserves decomposition and the initial state is decomposed, we may write the vectors ψ
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as 2-tuples of vectors, ψ =
(
ψ1

ψ2

)
and the linear group action becomes decomposed in the sense

Hψ =

(
H1 0

0 H2

) (
ψ1

ψ2

)
. (2)

In this representation, the operator H becomes a block matrix which, in group theory, one would
write H = H1 ⊕ H2 and call it a reducible representation of the group action. In elementary
particle physics, the reducibility (or rather irreducibility) of representations defines the concept
of elementary particles. In a rather analogous way such reducibility of the adaptation operator
allows for a general definition of the notion of functional modules in the context of evolutionary
and neural adaptation.

Structured adaptation by structured representations.

The scenario we just formalized has an important implication for adaptational dynamics. An
adaptation step (represented by H) may be triggered by some stochastic event (like for stochastic
online learning) or may inherently be stochastic (like for stochastic search and evolution). The
decomposability of the operator H decides whether two features of the system are adapted in
correlation or whether they are adapted independently. For example, consider two features of a
human, e.g., how s/he rides a bike and how s/he plays the piano. Is it advantageous that both
features are adapted in correlation? If a progress in playing the piano entails a corresponding (i.e.,
correlated) change of how s/he rides the bike, will that be advantageous? Obviously it is important
to analyze which neural structures induce an adaptation dynamics H that can principally be
decomposed.

The same fundamental principles of correlated vs. decorrelated adaptation are particularly im-
portant in understanding evolutionary adaptation. We will find that for typical computational
models of evolutionary adaptation (evolutionary algorithms) the “explorative part” of adaptation
dynamics is decomposed (selection is generally not). But if we look at nature we find incredibly
regular, self-similar structures like tissues, vessels, plants, etc. If every cell of an organism was
adapted in decorrelation from other cells it seems impossible that stochastic search would ever find
such correlated results. Thus, the key in understanding evolutionary adaptation is to analyze the
mechanisms that account for correlations in evolutionary adaptation.

The general approach followed in this thesis to analyze and understand the correlational struc-
ture of adaptation dynamics is to investigate the way systems represent their features. This
approach considers a non-trivial relation between the ultimate units of adaptation—genes for evo-
lution and synaptic weights for neural systems—and the features of the system. Say, this relation
is a mapping Φ : G→ X, where G is the space of genomes (in the simplest case the space of strings
over some alphabet) or the space of weight configurations (namely Rm if weights are considered
real-valued). This mapping is an abstraction of any kinds of mechanisms (in nature or in the
computer) that determine the relation between the genes and the fitness relevant features of an
organism; or between the weights and the functional features of a neural system.

If this mapping is non-trivial, which it certainly is in nature, then it becomes crucial to analyze
the correlational structure of adaptation dynamics on both levels, on G and on X. The typical
case in evolutionary dynamics is that adaptation is decorrelated on the G-level; genes mutate
independently from each other. But the non-trivial relation between G and X may induce highly
structured adaptation on the X-level. The reason is that a single gene is responsible for many
features of the final organism. If this gene mutates, all these features vary in correlation.

This preliminary discussion, which will be continued in depth throughout the following chap-



CONTENTS 11

ters, shows the importance of how features of a system are represented by the underlying adaptive
substrate. In the case of neural systems, the connectional structure together with the operational
properties of single neurons functioning determine this relation. In the case of evolutionary adap-
tation, the genotype-phenotype mapping Φ becomes the central topic and is thoroughly discussed
in this thesis.
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Chapter 1

Evolutionary adaptation

1.1 Introduction

Evolution can be understood as a search through the space of possible organisms. A computer
scientist would also call it the space of possible solution candidates, where to each solution a quality
measure is associated. In natural evolution, the notion of fitness is not that simple to define; we
will briefly address this issue in section 1.2.3.

Mutation and recombination play a crucial role in this search process. They determine which
organisms are possible offspring candidates in the next generation before they are subject to se-
lection; they determine which innovation steps are possible from the parent to the offspring. At
first sight it seems that, given the features of a parental organism, the set of possible offspring
(we also call it the neighborhood of the parent) is prefixed by the laws of nature or the rules of a
genetic algorithm. From a certain point of view, this is not necessarily true. This point of view
explicitly distinguishes between the phenotype, i.e., all the functional (selection-relevant) features
of an organism, and the genotype, which is the genetic encoding of the phenotype and eventually
the underlying substrate subject to evolution. In that language, we can more precisely state the
central issue of this chapter:

Given a phenotype, the set of phenotypic neighbors (the set of possible offspring) is not
necessarily prefixed; instead, the neighborhood of a phenotype depends on its genotype,
i.e., the genetic representation of this phenotype.

For instance, we might have two organisms that look exactly the same (in section 1.2.4 we
define precisely our use of the word phenotype) but if they are encoded by different genotypes,
the probability distribution of their offspring may differ. How might evolution exploit this fact?
Suppose evolution found an organism which is functionally quite well adapted but suffers from a lack
of innovatability, i.e., all its children are no better than the parent. Now, evolution can change the
genetic representation of this organism without changing its functional phenotype. This change of
genetic representation, called neutral mutation, also changes the organism’s offspring neighborhood
and in occasion will lead to more innovatability.

On the level of molecular evolution, Schuster (1996) and Fontana & Schuster (1998) analyzed
an impressive example for non-fixed phenotypic neighborhoods that depend on the genetic rep-
resentation. In their studies, the “organisms” are proteins whose functionality is determined by
their 3-dimensional molecular shape. This shape is the outcome of a complex folding process and
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eventually depends on the protein’s amino acid sequence—the genotype. The authors showed that
the same phenotype (3D shape) can be realized by a large number of different genotypes. Depend-
ing on the genotype, the phenotypic neighborhoods change so severely that almost any phenotype
becomes possible as an offspring when only a suitable genetic representation is given.

Since the choice of the genetic representation of a phenotype decisively determines the possibil-
ities of phenotypic mutations and innovations, it has been argued that the genetic representations
in todays natural organisms are not a mere incident. Instead, they should be the outcome of an
adaptive process that optimized these representations with respect to the phenotypic variability
and “innovatability” they induce (Wagner & Altenberg 1996). In natural organisms, the way genes
represent the functional traits (phenes) of an organism is very complex since the effects of gene
expressions highly interact (what is called networks of gene interactions). In fact, the meaning and
advantages of this complex relation between genes and phenes are currently widely discussed (Wag-
ner, Booth, & Bagheri-Chaichian 1997; Wagner, Laubichler, & Bagheri-Chaichian 1998; Hansen
& Wagner 2001a, 2001b). In trying to understand gene interactions, they are often character-
ized as advantageous for evolvability (i.e., the chance of exploring new, functionally advantageous
phenotypes, Wagner & Altenberg 1996) or as stabilizing mechanisms (e.g., of canalization).

To go beyond arguing for the plausibility of specific genetic representations one should propose a
theory on how they evolve and what selectional mechanisms guide their evolution. Existing models
concentrate on the evolution of gene interactions, e.g., on smooth landscapes (Rice 1998, 2000) or
on NK-landscapes that are themselves subject to evolution (Altenberg 1994, 1995). Wagner (1996)
also discusses the evolution of directly encoded networks of interacting genes and Wagner & Mezey
(2000) propose a multi-linear model of gene interaction.

In the following section, we first formalize the idea of genetic representations and their influence
on phenotypic variability. The goal of this formalization is to clarify central issues like the principle
meaning of so-called neutral traits for phenotypic evolution while at the same time establishing a
relation to mathematical theories on evolutionary algorithms.

The major result is derived on the basis of this formalism. A theorem describes exactly that
adaptive process that explains why genetic representations evolve in nature (and should evolve in
artificial systems) to encode highly structured and adapted distributions of phenotypic variability.
The cornerstones of this theory are the following:

• Neutrality forms the basis of the evolution of gene interactions because it allows that phe-
notypic variability (formalized by the distribution of phenotypic mutants, the phenotypic
exploration distribution) is itself variable and adaptable (Riedl 1977; Kimura 1986; Wag-
ner 1996; Rice 1998). Gene interactions are the origin of structure in phenotypic variability,
where structure means correlations or mutual information between different phenotypic traits
within this distribution.

• The evolution of the genetic representations does not imply an evolution of the genotype-
phenotype mapping itself. With fixed genotype-phenotype mapping, phenotypically neutral
variations may rearrange the genetic system so severely that different gene interactions occur,
a different phenotypic variability is induced, and one might even speak of a different genetic
encoding. The phenotype is unaffected, but the phenotypic exploration distribution changes.

• The driving force for such rearrangements of the genetic system is the indirect effect of se-
lection on the evolution of exploration distributions. We develop a theoretical model that
formulates an evolution equation for exploration distributions and allows to identify the ef-
fective fitness of exploration distributions guiding their evolution: Exploration distributions
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are selected with higher probability the better they match the fitness distribution over pheno-
type space; in particular they are selected more likely if they exhibit a correlational structure
similar to the correlations between phenotypic traits in selection. Hence, exploration distri-
butions evolve such that dependencies and correlations between phenotypic traits in selection
are naturally adopted by the way evolution explores phenotype space.

• Eventually, this allows an information theoretic interpretation of evolutionary dynamics:
The information that is given by the selection or non-selection of solutions is implicitly
accumulated by evolutionary dynamics and exploited for further search. This information is
stored in the way phenotypes are represented. In that way evolution implicitly learns about
the problem by adapting its genetic representations accordingly.

The work is related to several current topics of evolutionary computation. First, algorithms
have recently been proposed that directly realize an adaptation of exploration distributions by
using explicit statistical models for the description of exploration distributions (Estimation-Of-
Distributions Algorithms, EDAs, Pelikan, Goldberg, & Lobo 1999; Pelikan, Goldberg, & Cantú-
Paz 2000; Baluja & Davies 1997; Mühlenbein, Mahnig, & Rodriguez 1999; Hansen & Ostermeier
2001). More implicitly, also several models of self-adaptation are well-established in evolutionary
optimization (Rechenberg 1994; Schwefel 1995). We will discuss the relation of such models to our
formalism and eventually claim that all these approaches share a basic concept: the incorporation
of information, given by the statistics of selection, in future explorations.

Second, the relation between EDAs and crossover in Genetic Algorithms (GAs) is currently
discussed in the Evolutionary Computation community (see, e.g., Shapiro 2003, Introduction).
Our approach will allow to discuss the implication of crossover in terms of correlated variability in
section 1.3. An interesting aspect here is to compare Holland’s traditional notion of building blocks
of evolution (Holland 1975; Holland 2000) to the notion of functional phenotypic building blocks
of an organism that can be motivated in terms of correlated variability (Wagner & Altenberg
1996). Since we will rule out crossover when developing the theory on the evolution of genetic
representations in the following section, section 1.3 will also make up for this.

Section 1.4 will discuss some phenomena of natural evolution in terms of the developed theory.
The goal is to clarify how the abstract theorems developed relate to nature and increase intuition
about them.

Finally, new approaches to evolve complex structures by means of generative (grammar-like)
systems (L-systems) or so-called symbiotic composition have recently proposed (Hornby & Pollack
2001a; Hornby & Pollack 2001b; Watson & Pollack 2002). In the last section of this chapter we
present a computational model that will use a similar approach to demonstrate the evolution of
genetic representations. The crucial novelty in our model is the introduction of 2nd-type mutations
which we claim is a lack of any other model and allows for neutral rearrangements of the genome
and thereby for an evolvability of exploration distributions.

Core parts of this work were first published in (Toussaint 2001; Toussaint 2003b; Toussaint
2003c; Toussaint 2003d; Toussaint 2003a). See also (Toussaint & Igel 2002; Igel & Toussaint
2003a) for general discussions on neutrality and self-adaptation, and (Igel & Toussaint 2003c; Igel
& Toussaint 2003b) for discussions and extensions of the No Free Lunch theorem.
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1.2 A theory on the evolution of phenotypic variability

1.2.1 A prior in understanding evolution: There is No Free Lunch with-

out assuming a constrained problem structure

If you do not presume that the problem has a structure, then any search strategy for good
solutions is as good as random search.

Consider a box filled with balls of arbitrary color. Your task is to draw balls, one by one,
without replacement from the box and find a red ball as quickly as possible. The point is that, if
there is no constraint on how the balls (respectively colors) are distributed in the box (e.g., black
ones to the left and red ones to the right, etc.), then there exists no strategy for picking balls
that is superior to another. Here, no constraint on the distribution of balls means not even the
constraint that there exists a detectable kind of structure in the distribution of balls. Otherwise
there might be a strategy to learn about this structure and thereafter exploit this knowledge.

This fact is often discussed in the context of evolutionary algorithms because they have been
said to be “general purpose search algorithms”. The example above though illustrates that this
cannot be true without making any assumption about the problem, i.e., about the distribution of
solutions. The theorem is known as “No Free Lunch” and was introduced by Wolpert & Macready
(1995, 1997). Stated more rigorously, though still in words, it says

Theorem 1.2.1 (No Free Lunch (Wolpert & Macready 1995)). Consider the problem of
drawing search points from a finite set. A quality measure is associated with each point. Further, the
distribution of quality measures over the points is completely unconstrained and unknown: Every
permutation of quality measures is equally likely. A search strategy (algorithm) may be evaluated
after drawing n points by looking at its history of quality measures it drew.

Now, on average, that is when averaged over all possible problems (which essentially corresponds
to averaging over all permutations of quality measures), the average history of quality measures is
the same for any two search strategies. Thus, any evaluation of two search strategies must be equal
for any n.

The theorem was formalized and generalized in many ways. Schuhmacher, Vose, & Whitley
(2001) generalized it to be valid for any subsets of problems that are closed under permutation.
Igel & Toussaint (2003c, 2003b) derived sufficient and necessary conditions for No Free Lunch when
the probability of permutations is not equally but arbitrarily distributed. In that paper we also
argued that generally the necessary conditions for No Free Lunch are hardly ever fulfilled.

We do not want to present the details of that research at this place. The reason the No Free
Lunch theorem is mentioned at the beginning of a chapter on evolution is that it clearly states
what it means to make assumptions about the problem, namely, to make assumptions about the
distribution or the existence of a structured distribution of quality measures over all search points.
Only when making this assumption, evolutionary search has a chance to learn about and exploit
this structure of the distribution of good solutions and efficiently explore the space of solutions.

Evolutionary search explores the search space by means of mutation and recombination, which
defines a variational topology on the search space. Intuitively, this kind of search will be efficient
if the fitness function is not completely random but more or less continuous with respect to this
variational topology such that continuous evolutionary progress becomes possible. The continu-
ity of fitness on the variational topology has been captured by the definition of strong causality
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(Rechenberg 1994; Sendhoff, Kreutz, & von Seelen 1997), a concept which in turn may be used for
the design of mutation operators that allow for more continuous progress.

However, in natural evolution mutation operators are not designed by some intelligence. A
central question arises: What does it mean to “learn” about the problem structure and exploit it?
How in principle can evolution realize this? The answer we will give is that the implicit process
of the evolution of genetic representations allows for the self-adaptation of the “search strategy”
(i.e., the phenotypic variability induced by mutation and recombination). To some degree, this
process has been overlooked in the context of evolutionary algorithms because complex, non-trivial
(to be rigorously defined later) genetic representations (genotype-phenotype mappings) have been
neglected by theoreticians. This chapter tries to fill this gap and propose a theoretical framework
for evolution in the case of complex genotype-phenotype mappings focusing at the evolution of
phenotypic variability. The next section lays the first cornerstone by clarifying what it means to
learn about a problem structure.

1.2.2 How to assume and learn about a problem structure: A generic

heuristic to adapt the search distribution

The structure of a problem is described by the structure of the distribution of good solutions—
learning the structure of a problem means to adapt the search distribution toward the distri-
bution of good solutions.

If we assume that there exists an identifiable structure in the distribution of good solutions to
a problem, then there is a chance to learn about this structure and to make search directed and
more efficient. The framework of such an approach is formalized, e.g., by Zhigljavsky (1991): Let
P be the search space and f : P → R+ the quality measure defined for each search point. By
ΛP we denote the space of distributions1 over P , i.e., the space of all functions P → [0, 1] that
integrate to 1. In an algorithmic fashion, global random search is described by:

(1) Choose a probability distribution q(t) ∈ ΛP on P .
(2) Sample λ points x(t)

1 , . . . , x
(t)
λ from the distribution q(t) and evaluate the quality f

(perhaps with random noise) at these points.
(3) According to a fixed heuristic rule (which depends on the algorithm) construct a new

probability distribution q(t+1) depending on the evaluations.
(4) Check for some appropriate stopping condition; if the algorithm has not terminated,

substitute t := t+ 1 and return to Step 2.

Let us rewrite this definition in a way that is more consistent with the conventions we use through-
out this chapter, leading to a discrete-time stochastic dynamic equation of some parameters y(t)

of the search distribution q(t) = Φy(t) . So we assume that Φ : Y → ΛP is a parameterization of
distributions, i.e., introduces coordinates on the space of distributions, where Y is the parameter
space.

Next, we write the sampling of λ points in the second step as a stochastic operator Sλ : ΛP → ΛP

1Throughout this work, we will use the word “distribution” for both, probability densities over continuous spaces

as well as probability distributions over finite spaces. We do not need to make an assumption on whether the search

space P is discrete or continuous. In the continuous case, when writing a summation over P it should be understood

as an integration.
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mapping any distribution q to the finite distribution

Sλ q :=
1
λ

λ∑
i=1

δxi
, xi are λ independently drawn samples of q ,

where δxi
∈ ΛP is the delta-distribution at the sampling point xi. Note that limλ→∞ Sλ = id,

i.e., the identity. We represent also finite populations as a distribution p ∈ ΛP , namely, if the
population is given as a finite multiset A = {x1, .., xµ} we (isomorphically) represent it as the
finite distribution given by p = 1

µ

∑µ
i=1 δxi , i.e., p(x) = |A∩{x}|

|A| = multiplicity of x in A
|A| .

The evaluations of the quality f mentioned in the second step of global random search are written
as an operator F : ΛP → ΛP that maps any distribution q to the linearly rescaled distribution

(F q)(x) =
f(x)
f̄

q(x) , with f̄ :=
∑
x∈P

f(x) q(x) . (1.1)

Putting this together, the above algorithm may be defined as follows.

Definition 1.2.1 (Heuristic search). Given a search space P and a quality measure f : P → R+

defined for each search point, global random search may be described by the stochastic iteration
equation

y(t+1) = H(F q̃(t), q̃(t), y(t)) , where q̃(t) = Sλ q(t) , q(t) = Φy(t) . (1.2)

Herein, H represents the heuristic rule that determines the new distribution parameters y(t+1)

depending on: (1) the old distribution parameters y(t), (2) the set of λ sample points given uniquely
by the sampled finite distribution q̃(t), and (3) by the evaluations F q̃(t) which encodes all the
information on the qualities of the samples. (This definition is identical to the algorithmic definition
above under two constraints: The heuristic rule must be scale invariant (i.e., independent of
rescaling evaluations by 1/f̄) and evaluation need to be non-negative (if negative, F would not be
a distribution operator).

One might complain that this notation did not simplify anything. This is true for the general
heuristic search. We will though find below that, when written in this formalism, there exist a
generic choice for the heuristic rule H which simplifies equation (1.2) severely.

The core ingredient of this search scheme is the search distribution q(t) = Φy(t), that we also call
exploration distribution, on the search space. This distribution is used to represent the knowledge
or assumptions made about the true distribution of good solution. The heuristic rule is supposed
to adapt these assumptions according to the experienced evaluations.

Many search algorithms, essentially also evolutionary algorithms (Toussaint & Igel 2002), belong
to the class of global random search algorithms but differ in their specific heuristic rules and in
the way they parameterize the search distribution, i.e., they differ in Φ. In the following we want
to define a generic heuristic rule that captures a very general point of how the adaptation of the
search distribution can in principle exploit the information given by the evaluations. The central
question is, how can “the information given by the evaluations” be captured formally and how can
this information be accumulated and exploited in the search strategy q(t)?

We capture the “information given by the evaluations” as the difference between the search
distribution q(t) and the distribution F Sλ q(t) after sampling and evaluation. The difference can
by quantified by an information theoretic measure, the relative entropy or Kullback-Leibler diver-
gence (Kullback & Leibler 1951; Cover & Thomas 1991) which is defined as follows: Given two
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distributions q ∈ ΛP and p ∈ ΛP the Kullback-Leibler divergence D
(
p
∣∣∣∣ q) reads

D
(
p
∣∣∣∣ q) :=

∑
x

p(x) ln
p(x)
q(x)

. (1.3)

It is a measure for the loss of information (or gain of entropy) when a true distribution p is
represented (approximated) by a model distributions q. For example, when p(x, y) is approximated
by p(x) p(y) one looses information on the mutual dependence between x and y. Accordingly,
the relative entropy D

(
p(x, y)

∣∣∣∣ p(x) p(y)) is equal to the mutual information between x and y.
Generally, when knowing the real distribution p one needs on average Hp (entropy of p) bits
to describe a random sample. If, however, we know only an approximate model q we would
need Hp +D

(
p
∣∣∣∣ q) bits to describe a random sample of p. The loss of knowledge about the true

distribution induces an increase of entropy and thereby an increase of description length for random
samples.

The Kullback-Leibler divergence between the evaluated distribution F Sλ q(t) and another distri-
bution q′ thus measures whether solutions with high quality are also likely in q′, but also whether
correlations between solution features or other kinds of structure in the evaluated distribution are
also present in q′. Concerning the adaptation of the search distribution q(t), information can be
accumulated and exploited by adapting q(t) such that solutions with high evaluation become more
probable than others. For instance, correlations between solution features found in F Sλ q(t) can
be incorporated in new explorations q(t+1). This may be realized by adapting q(t) such that the
difference between the just experienced evaluation distribution F Sλ q(t) and the forthcoming search
distribution q(t+1) becomes small. This is what we call the generic heuristic rule:

Definition 1.2.2 (Generic heuristic search (GHS, Toussaint 2003b)). Given a search space
P , a parameterization Φ : Y → ΛP of search distributions over P , and an evaluation operator
F : ΛP → ΛP , then generic heuristic search is given by

y(t+1) = argmin
y∈Y

D
(
F Sλq(t)

∣∣∣∣Φy) . (1.4)

In case Y is continuous, we also define a continuous generic adaptation by:

y(t+1) = (1− α) y(t) + α argmin
y∈Y

D
(
F Sλq(t)

∣∣∣∣Φy) , (1.5)

with adaptation rate α ∈ [0, 1].

The role of the parameterization Φ will be discussed in more detail in the following sections. If
the parameterization is such that all distributions are representable (Φ is surjective), then equation
(1.4) reduces to q(t+1) = F Sλ q(t). This will though never be the case in the remainder of this
work.

One can grasp equation (1.4) intuitively is as follows. The new state q(t+1) tries to approximate
the evaluated old state F Sλ q(t) (the donkey alike, chasing the carrot on a stick, where F Sλ is the
stick). The driving force of this recursion is the Kullback-Leibler divergence between F Sλ q(t) and
q(t) (the distance between carrot and donkey), which is the new information. If this divergence is
minimal, dynamics reach a fixed point q(t+1) = q(t). The fixed point may be considered a “pseudo-
goal” of search—actually a quasi-species (Eigen, McCaskill, & Schuster 1989). In the context of
evolution we will deal with search distributions of non-vanishing entropy (excluding the δ-peak as
trivial fixed point) and focus on the discussion of their structure, i.e., the mutual correlations and
dependencies between solution features within the distributions, which are also captured by the
Kullback-Leibler divergence and, according to (1.4), subject to adaptation.
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Given a problem at hand, generic heuristic search is uniquely defined by the choice of Φ. There
exists at least one algorithm in the literature that exactly realizes GHS: the Bayesian Optimization
Algorithm (BOA, Pelikan, Goldberg, & Cantú-Paz 2000), which uses general Bayes networks to
parameterize the search distribution. There are many algorithms that realize GHS almost exactly:
Population-Based Incremental Learning (PBIL, Baluja 1994) uses a simple product distribution
as the search distribution, Baluja & Davies (1997) use a dependency tree to parameterize the
search distribution, and Mühlenbein, Mahnig, & Rodriguez (1999) use a factorized distribution
model. The difference between these algorithms and GHS are subtleties in the update rule (typ-
ically a mixture between continuous generic adaptation for some parameters and discrete generic
adaptation for others; or other, model specific or approximate distance measures rather than the
exact Kullback-Leibler divergence are used). In the next section we will also show how standard
evolutionary algorithms can be understood as an approximation of GHS.

Hence, our definition of GHS gives an abstract way of understanding a whole class of adaptation
processes. But above that, the reason we defined GHS is that it pinpoints what exactly we mean by
“learning about a problem structure”: namely incorporating the information given by evaluations
(in particular correlations) in forthcoming search. GHS will become the underlying metaphor in
the following discussions of the evolution of phenotypic variability.

1.2.3 Evolutionary processes: A population, mutations, and recombina-

tion to represent the search distribution

Evolution can be described as a stochastic dynamic process on the genotype space, comparable
to generic heuristic search, where the search distribution is parameterized by a finite parent
population via mutation and recombination.

Let us turn from heuristic search specifically to evolutionary systems. How is the search distri-
bution parameterized and adapted in evolutionary systems? We introduce evolution as a stochastic
dynamic process that can be embedded in the heuristic search scheme:

Definition 1.2.3 (Evolutionary processes). The free variables of the process (which we denoted
by y(t) above) are a distribution p(t) ∈ ΛG of parents. In the finite population case, p(t) is a finite
distribution. The space G is called genotype space and we write the general stochastic process
that describes evolution as

p(t+1) = Sµ F Sλ M p(t) . (1.6)

We will discuss the concepts “genotype” and “phenotype” in more detail in the next section.
Roughly, what this equation describes is a parent population p(t) that, via mutation and recombi-
nation, defines a probability distribution M p(t) of offspring. From this distribution a population
of λ offspring is sampled via Sλ and evaluated by the fitness operator F. Proportional to the
fitness, a population of µ parents is selected by sampling the fitness distribution over the offspring
population. We discuss each step of the process in more detail in the following.

Mutation and recombination as the parameterization Φ of the search distribution.

The search or exploration on the genotype space is governed by the operator M : ΛG → ΛG

(called mixing) which accounts for mutation and recombination. Namely, the offspring distribution
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q(t) = M p(t) describes the probability of an offspring given the parent population p(t) and corre-
sponds to the search distribution in the heuristic search scheme. In summary, the free variable of
evolutionary dynamics is the parent population p(t) ∈ ΛP such that the search distribution is the
mixing of the parent distribution, q(t) = Φ y(t) = M p(t). This points out that, the mixing operator
is the parameterization Φ of the search distribution for evolutionary processes.

This also implies that the space Φ(Y ) = M(ΛG) of representable search distributions is limited
to those distributions that are an outcome of the mixing operator,

{M p | p ∈ ΛG} .

E.g., when neglecting crossover, each individual in p(t) basically contributes an additive component
to the search distribution, which is given by the mutation distribution of this individual. This is
very similar to how continuous distributions are often encoded for numeric approximations: as a
finite sum of kernels, typically Gaussian kernels. Special about this way of parameterizing the
search distribution is that it naturally allows to represent multi-modal distributions—in contrast
to other search schemes like the Evolution Strategies (Rechenberg 1994; Schwefel 1995). Multi-
modality means that search can be performed parallel in different regions.

Offspring sampling.

As for heuristic search, only a finite number of offspring are actually realized: The stochastic
sample operator Sλ maps the offspring probability distribution q(t) to a finite population q̃(t) =
Sλq(t) of λ individuals.

Fitness.

The operator F : ΛG → ΛG was defined in equation (1.1, page 18) and associates a selection
probability f (t)(g)/f̄ (t) to each member g of the offspring population. We call this operator the
fitness operator and define

Definition 1.2.4 (Fitness). Given an evolutionary process in form of equation (1.6), we call the
function f (t), as given in the definition (1.1) of the operator F, the fitness function. In other words,
given an evolutionary process we define an individual’s fitness as its current selection probability.
Thus, fitness may generally depend on time and on the rest of the population (in the case of
so-called “tournament” or “ranking” selection schemes).
Since we derive the notion “fitness” from a presumed existing evolutionary process, our usage
of the word fitness is in agreement to how most biologists would use it—“survival of the fittest”
becomes a tautology. In contrast, in the context of evolutionary computation, the notion fitness is
usually not derived from an existing evolutionary process to describe the process, but an ad hoc
fitness function is assumed and enters the definition of the algorithm by the design of the selection
scheme.

Applying F on the offspring population q̃(t) one gets a distribution over the offspring population
that we call fitness distribution.

Selection as (an approximate generic) heuristic rule H.

Finally, the sample operator Sµ performs selection by mapping the fitness distribution F q̃(t)

to the new parent population p(t+1). In evolution, selection Sµ plays the role of the heuristic
rule H: Instead of a general adaptation scheme that exploits the information given in the fitness
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distribution, this distribution is directly sampled to generate the new parent population. Sampling
the fitness distribution may be interpreted as finite approximation of the fitness distribution,
and, as we discussed above, this finite approximation (the parent population) is in turn similar
to a finite approximate encoding of the new search distribution. Thus, the evolution process
can be regarded as realizing an approximate generic heuristic search, i.e., the generic way of
accumulating information during search by adapting the search distribution toward the experienced
fitness distribution.

Let us analyze this more precisely. In the original notation, the generic heuristic rule reads
y(t+1) = argminy∈Y D

(
F Sλ Φy(t)

∣∣∣∣Φy). This translates to the case of evolutionary dynamics if we
replace the search parameters y(t) by the population p(t), the parameter space Y by the space of
µ-finite populations Λµ,G ⊂ ΛG, and the distribution model Φ by M. Hence the question is, under
which conditions it is true that

arg min
p′∈Λµ,G

D
(
F Sλ Mp(t)

∣∣∣∣Mp′
)

= Sµ F Sλ Mp(t) .

If the equation is fulfilled, then evolutionary dynamics and generic heuristic search coincide. If
we impose no conditions on the population p(t) and the selection operator F this simplifies to the
question, for which operators M it is true that

∀ s ∈ Λλ,G : arg min
p′∈Λµ,G

D
(
s
∣∣∣∣Mp′

)
= Sµ s .

We cannot solve this problem in all generality here. Intuition tells that, if M is a “reasonable”
mutation operator that corresponds to small mutations of individuals and only smoothes the pop-
ulation distribution, this equation is approximately true. But we can make this more explicit for a
widely assumed component-wise mutation operator (which we will investigate in depth in section
1.3). Let the probability of non-mutation be constant, M(x|x) = α, and let M(x|y)|x6=y = ε. Then
we find

Mp(x) =
∑
y

M(x|y) p(y) =
∑
y 6=x

ε p(y) + αp(x) = ε(1− p(x)) + αp(x)

D
(
s
∣∣∣∣Mp

)
=
∑
x

s(x) ln
s(x)

Mp(x)
=
∑
x

s(x) ln
s(x)

ε(1− p(x)) + αp(x)

≤
∑
x

s(x) ln
s(x)
αp(x)

= D
(
s
∣∣∣∣ p)+ ln

1
α

The smaller epsilon is, the tighter this upper bound. In this sense we may conclude that minimizing
D
(
s
∣∣∣∣Mp

)
approximately equals the problem of minimizing D

(
s
∣∣∣∣ p). But since p needs to be finite,

D
(
s
∣∣∣∣ p) is minimized by a finite approximation of s, i.e., it is minimized by Sµ s (where Sµ should

minimize the sampling error as it is the case, e.g., for the stochastic universal sampling). Hence,
for this special mutation operator we may assume that

∀ s ∈ Λλ,G : arg min
p′∈Λµ,G

D
(
s
∣∣∣∣Mp′

)
≈ Sµ s

and ordinary selection is indeed an approximation of the generic heuristic.

The genotype space G.

Finally, we defined evolution as a process on a genotype space G instead of some search space
P . The relation between these two spaces will be the topic of the next section.



1.2. A THEORY ON THE EVOLUTION OF PHENOTYPIC VARIABILITY 23

1.2.4 The genotype and phenotype: Reparameterizing the search space

The mapping from genotype to phenotype is the key to understand complex phenotypic vari-
ability and evolution’s capability to adapt the search distribution on the phenotype space.

We defined evolution as a process on a genotype space G. We argue now, that not G but
the so-called phenotype space P should be considered as the actual search space of evolution. A
genotype-phenotype mapping φ : G → P with the defining property that fitness depends only
on the phenotype, f (t)(g) = f̃ (t)(φ(g)), connects both spaces. The implication of this “reparam-
eterization” of the search space will be a topic in the remainder of this chapter. To clarify these
concepts, we review the general definitions of phenotype and genotype:

Definition 1.2.5 (Complete and partial phenotype, phenotype space).
(1) In nature, where we presume to know the definition of an individual, the complete phenotype
of an individual is the collection (tuple) of all (measurable) characters of this individual. Hence,
an individual’s selection-relevant features as well as the DNA are part of the complete phenotype.
(2) A partial phenotype is a lower dimensional projection of the complete phenotype. In natural
evolution one refers to all kinds of partial phenotypes (phenotypic traits; phenes); in evolutionary
computation one typically refers to exactly that partial phenotype on which the ad hoc given fitness
function is defined.
(3) We will use the word phenotype for the minimal partial phenotype that comprises all selection-
relevant phenotypic traits, such that fitness depends only on this phenotype. The phenotype space
P is the space of these phenotypes. In the language of heuristic search algorithms, P comprises
all feasible “candidate solution to a problem” such that it is identical to the search space as we
defined it for heuristic search.

The genotype has been implicitly defined as the free variables of the evolutionary process. In
biology, the genotype is analogously defined as all inherited traits:

Definition 1.2.6 (Genotype). An individual’s genotype is the collection (tuple) of those char-
acters that are inherited, i.e., formally, the variables that specify the offspring distribution and are
subject to the evolution equation (1.6, page 20). Interesting is that in natural evolution, according
to this definition, one should, for instance, also regard the ovum also as part of the genotype—which
is hardly ever done, but as we will do in the computational model in section 1.5.

The genotype-phenotype mapping (GP-map) φ : G → P is actually a simplification of the
concepts of ontogenesis and innateness because it describes how the genotype determines the
phenotype. This mapping may be understood as a transformation or reparameterization of the
search space. However, the implications of a GP-map, in particular if it is non-injective, are severe
and will be the main subject of this chapter. The non-injectiveness of φ may be described in terms
of an equivalence relation:

Definition 1.2.7 (Phenotype equivalence, neutral sets). We define two genotypes g1 and g2
equivalent iff they have the same phenotype,

g1 ≡ g2 ⇐⇒ φ(g1) = φ(g2) .

The set of equivalence classes G/≡ is one-to-one with the set P = φ(G) = {φ(g)|g ∈ G} of
phenotypes. Thus, we use the phenotype x ∈ P to indicate the equivalence class

[x] := φ−1(x) = {g ∈ G |φ(g) = x} ,
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which we also call neutral set of x ∈ P or phenotypic class.

The GP-map φ : G→ P also induces a lift of a genotype distribution onto the phenotype space:

Definition 1.2.8 (Phenotype projection, distribution equivalence). Given a genotype dis-
tribution p ∈ ΛG we define the projection Ξ to a phenotype distribution Ξp ∈ ΛP by

Ξp(x) =
∑
g∈[x]

p(g) .

By this projection, the equivalence relation carries over to distributions in ΛG: Two distributions
p1, p2 are called equivalent iff they induce the same distributions over the phenotype space,

p1≡̂ p2 ⇐⇒ Ξp1 = Ξp2 .

Again, the quotient space ΛG/≡̂ of equivalence classes in ΛG is one-to-one with the space ΛP of
distributions over the phenotype space.

For example, the neutral degree may be defined by this projection:

Definition 1.2.9 (Neutral degree). The neutral degree n(g) of a genotype g ∈ G is the proba-
bility that mutations do not change the phenotype, i.e.,

n(g) = [ΞM(·|g)] (φ(g)) =
∑

g′∈[φ(g)]

M(g′|g) .

1.2.5 The topology of search: Genotype versus phenotype variability

A simple, by mutation induced genotypic variability may, via a non-injective genotype-
phenotype mapping, lead to arbitrarily complex phenotypic variability.

The sampling, fitness, and selection operators in the evolution equation (1.6, page 20) are non-
explorative: If p(g) = 0 for some genotype g, it follows that (Sλ q)(g) = (F Sλ q)(g) = 0. This means
that if a genotype has zero probability in a genotype population (e.g., in a finite population), it has
still has zero probability after sampling, evaluation, or selection; these operators do not generate
new genotypes. Search without an explorative component would be trapped in a small region of
the search space.

In the evolution equation it is the mutation operator M that represents exploration. Let us
neglect crossover here and postpone the discussion of the special features of exploration with
crossover until section 1.3. We may formalize mutations as a conditional probability distribution
M(g′|g), giving the probability of a mutation from one genotype g ∈ G to another g′ ∈ G. Then,
the genotypic offspring distribution is given by (M p(t))(g′) =

∑
g M(g′|g) p(t)(g). The conditional

probability M(g′|g) describes how the genotype space G can be explored and actually there exists
no (mathematical) structure on G other than the conditional probability, i.e., G is but a set of
possible genotypes without any a priori metric or topological structure. The mutation probability
M though induces a variational structure on G which is often associated to a variational topology:

Definition 1.2.10 (Genotypic variational topology). Given the conditional mutation prob-
ability M(·|·) on the genotype space, we may define g′ a neighbor of g if M(g′|g) is greater than
some limit ε. We call such a topology on the genotype space a genotypic variational topology, see
(Stadler, Stadler, Wagner, & Fontana 2001).



1.2. A THEORY ON THE EVOLUTION OF PHENOTYPIC VARIABILITY 25

It is intuitive to discuss fundamental features of evolutionary transitions in terms of this varia-
tional topology (Schuster 1996; Fontana & Schuster 1998; Reidys & Stadler 2002). What is most
interesting for us is the particular role of the GP-map in this context because it induces a vari-
ational topology on the phenotype space depending on the topology of the genotype space. The
role of the projection Ξ becomes more evident: While M(·|g) describes the variational structure
on G, its projection ΞM(·|g) describes the variational structure on P . The projection Ξ may be
interpreted as a lift of variational structure from the genotype space onto the phenotype space.
This is in analogy to the introduction of local coordinates on a manifold (cp. phenotype space)
by a local map from a base space of variables (cp. genes). While on the base space usually a
Cartesian metric (cp. non-correlating gene variability) is assumed, the induced metric on the local
coordinates is arbitrary (cp. correlations between phenotypic traits in phenotypic variability, cf.
also to the epistasis matrix of Rice 1998).

There is, however, a crucial difference: The map φ need not be one-to-one. If φ is non-injective,
there exist different genotypes gi that map to the same phenotype. And thus there exist differ-
ent neighborhoods Ugi that map to different neighborhoods of the same phenotype. Hence, the
variational topology on phenotype space is generally not fixed but variable and depends on the
genotypic representation gi that induces the topology!

1.2.6 Commutativity and neutrality: When does phenotype evolution

depend on neutral traits?

Neutral traits (of which strategy parameters are a special case) have an impact on phenotype
evolution if and only if they influence mutation probabilities and thus encode for different
exploration distributions.

Based on this formalism we investigate the following question: When G describes the evolution-
ary process on the genotype level and if we observe only the projected process on the phenotype
level, can we model the phenotypic evolution process without reference to the genotype level?
This means, is the genotype level irrelevant for understanding the phenotypic process? Formally,
this amounts to whether G is compatible with the equivalence relation ≡ or not: An operator
G : ΛG → ΛG is compatible with an equivalence relation ≡ iff

p1≡̂ p2 =⇒ G(p1)≡̂G(p2) , (1.7)

which is true iff there exists an operator G̃ such that the diagram

ΛG G−→ ΛG

Ξ
y yΞ

ΛP G̃−→ ΛP
(1.8)

commutes, i.e., Ξ ◦ G = G̃ ◦ Ξ. This means that, in the case of compatibility, one can define a
process G̃ : ΛP → ΛP solely on the phenotypic level that equals the projected original process
G. In this case, G̃ represents the phenotypic version of evolutionary dynamics and the population
Ξp of phenotypes evolves independent of the neutral traits within the genotype population p.
Accordingly, we make the following definition:
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Definition 1.2.11 (Trivial neutrality, trivial genotype-phenotype mapping (Toussaint
2003c)). Given a genotype space G, an evolutionary process G : ΛG → ΛG, and a genotype-
phenotype mapping φ : G → P , we define the GP-map trivial iff phenotype equivalence ≡ com-
mutes with the evolutionary process G. In that case we also speak of trivial neutrality.

The meaning of this definition should become clear from the definition of compatibility: In the
case of trivial neutrality, the evolution of phenotypes can be completely understood (i.e., modeled)
without referring at all to genotypes, in particular, neutral traits are completely irrelevant for the
evolution of phenotypes. We can derive exact conditions for the case of trivial neutrality:

Theorem 1.2.2 ((Toussaint 2003c)). Let the evolution operator G = F M be composed of
selection and mutation only (no crossover), and let M be given by the conditional probability M(g′|g)
of mutating a genotype g into g′. Then, neutrality is trivial iff

∀x ∈ P : g1, g2 ∈ [x]⇒ ΞM(·|g1) = ΞM(·|g2) .

In other words, neutrality is non-trivial if and only if there exists at least one neutral set [x] such
that the projected exploration distribution ΞM(·|g) ∈ ΛP is non-constant over this neutral set (i.e.,
differs for different g ∈ [x]).2

Proof. Since selection depends only on phenotypes it is obvious that the selection operator F com-
mutes with phenotype projection. The composition of two compatible operators is also compatible
(Vose 1999, Theorem 17.4). Hence, we need to focus only on the mutation operator M:

Let us consider the mutational process given by

p(t+1)(g′) =
∑
g

M(g′|g) p(t)(g)

Following definition (1.7) of compatibility we investigate what happens under projection Ξ:

Ξp(t+1)(x′) =
∑
g′∈[x′]

∑
g

M(g′|g) p(t)(g) =
∑
g

∑
g′∈[x′]

M(g′|g) p(t)(g)

=
∑
g

ΞM(x′|g) p(t)(g) .

We distinguish two cases:

First case: For all neutral sets [x], let ΞM(·|g) be constant over the neutral set, i.e., independent
of g ∈ [x], and we can write ΞM(·|g) = ΞM(·|x). It follows:

Ξp(t+1)(x′) =
∑
x

∑
g∈[x]

ΞM(x′|g) p(t)(g) =
∑
x

ΞM(x′|x)
∑
g∈[x]

p(t)(g)

=
∑
x

ΞM(x′|x) Ξp(t)(x) .

Hence, M is compatible with phenotype equivalence; the diagram (1.8) commutes with the “coarse-
grained” mutation operator M̃ given by ΞM(x′|x).

Second case: Let there exist at least one neutral set [x] with different genotypes g1, g2 ∈ [x] such
that the corresponding projected exploration distributions are not equal, ΞM(·|g1) 6= ΞM(·|g1).

2We use the “·” notation as a “wild card” for a function argument. E.g., given a function f : R2 → R : (x, y) 7→
f(x, y), if we want to fix y and consider the function on that hyperplane, we write f(·, y) : R → R : x 7→ f(x, y).

Accordingly, for a conditional probability we write M : G → ΛG : g 7→ M(·|g) ∈ ΛG.
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Further, consider the two single genotype populations p(t)
1 (g) = δg,g1 and p

(t)
2 (g) = δg,g2 , which

are phenotypically equivalent, Ξp(t)
1 = Ξp(t)

2 . Their projected offspring populations though are
different: Ξp(t+1)

1 = ΞM(·|g1) 6= Ξp(t+1)
2 = ΞM(·|g2). Hence, in the second case M is not compatible

with phenotype equivalence.

Consider the following examples:

Example 1.2.1 (Trivial GP-maps). Assume that we encode (phenotypic) strings of length n by
(genotypic) strings of length n + 1, such that the GP-map simply ignores the genotype’s last
symbol. Obviously, this encoding is non-injective. But what is more important is that neutrality
is trivial in that case, i.e., G commutes with Ξ. Hence, the encoding really is redundant—the
additional bit has no effect whatsoever on phenotype evolution.

Many investigations that aim to argue against neutral encodings actually only investigate such
trivial neutrality; they forget that neutrality (in their terms “redundancy”) can have an absolute
crucial impact on phenotypic variability in the case of a non-trivial GP-map.

In contrast, non-trivial neutrality is implicit in many models of evolutionary computation.
Evolution strategies that make use of strategy parameters are the most basic paradigm, which
we have already mentioned. But non-trivial neutrality occurs also in many other models. An
excellent example are grammar-like genotype-phenotype mappings. Here, the same final phenotype
can be represented by different sets of “developmental” rules. Depending on this representation,
exploration in the space of phenotypes is very different. The following basic example anticipates
the scenario in the computational model of section 1.5 and nicely demonstrates the variability of
variational topology on the phenotype space.

Example 1.2.2 (Non-trivial GP-maps). Let the string abab be represented in the first case by the
grammar {start-symbol→x, x→ab}, and in the second case by the grammar {start-symbol→abab}.
If mutations are only rhs symbol flips, then the phenotypic variational neighbors of abab are, in
the first case, {*, *b*b, a*a*} and in the second case {*bab, a*ab, ab*b, aba*}, where * means a
symbol flip. These are quite different topologies!

1.2.7 Behind this formalism

The abstract formalism developed so far relates to topics like evolving genetic representations,
strategy parameters, and evolvability.

There are no “fitness landscapes” over phenotype space.

In the literature, the notion of fitness landscapes is very often used as a metaphor to discuss
and think about the fitness functions. If one refers to the fitness function over the genotype space,
the idea is that the topology on the genotype space, given by the mutational variability M(·|g),
allows to think of smooth and non-smooth function w.r.t. this topology, define local minima, and
illustrate the function as a virtual landscape over G. However, the notion of fitness landscapes is
sometimes also used to describe a fitness function over the phenotype space in the case of a non-
trivial genotype-phenotype mapping. This is misleading because there exists no fixed topology on
the phenotype space and thus no unique definition of local minima or smoothness; the phenotypic
search points cannot be arranged w.r.t. to some meaningful neighborhood such the fitness function
can be illustrated as a global landscape. In particular it seems counter-instructive to discuss
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the very effects of non-trivial genotype-phenotype mappings in terms of fitness landscapes over
phenotype space, as it is though typically done: The non-fixed topology on P is then explained in
terms of “shortcuts” or “bypasses” in the landscape that appear or disappear depending on the
current position in a neutral set (Conrad 1990; Schuster 1996).

On evolving genetic representations.

The GP-map is commonly been thought of “the choice of representation”. When applying
evolutionary algorithms for problem solving, this choice of representation is usually crucial for the
algorithm’s efficiency. Even if one has two isomorphic representations, their effects on evolution
may be very different since the algorithm’s designer will usually define the mutation operators
according to a seemingly natural topology on that representation (like the hypercube topology on
bit strings). A common but misleading conclusion is that adaptability of exploration strategies
requires an adaptability of the GP-map (Altenberg 1995; Wagner & Altenberg 1996). However,
as our formalism clarifies, adaptability of exploration can be achieved for a fixed, but non-trivial
genotype-phenotype mapping. In this case, a variation of exploration strategy does not occur by
varying the GP-map but by neutral variations in the genotype space. For example, the genotype
space may be considered very large, comprising all thinkable genetic representations of phenotypes
(strings and trees and grammars, etc.). In that case, different neutral traits literally correspond to
different genetic representations—such that a neutral variation allows for a change of representation
although the genotype-phenotype map as a whole remains fixed. Of course, this presumes that
there exist neutral mutations between these representations—in the case of the artificial evolution
of strings, trees, and grammars, this is straightforward to realize and we will do so in section
1.5. In the case of natural evolution, the neutral transition from RNA to DNA genomes in early
evolution is a corresponding paradigm (or think of the reverse transcription of an RNA sequence
into a DNA sequence that allows the HI virus to insert its code in the human genome). In
contrast, a self-adaptation of the whole genotype-phenotype mapping hardly makes sense since it
is generally inconsistent to speak of a mapping from genotype to phenotype being parameterized
by the genotype. We will reconsider this issue in section 1.4.4.

Strategy parameters as a special case.

In (Toussaint & Igel 2002) we already discussed some implications of an exploration distribution
M(·|g) that depends on neutral traits (i.e., genotypic representations g ∈ [x] in a given neutral
set): It allows the exploration strategy (e.g., the variational topology) to self-adapt. In traditional
approaches, in particular evolution strategies, so-called strategy parameters play the part of neu-
tral traits—strategy parameters are a direct parameterization of mutation operators which are
themselves part of the genotype (Angeline 1995; Smith & Fogarty 1997; Bäck 1998b). In these
approaches, the genotype space is a Cartesian product G = G̃×Z of the phenotype space and the
space Z of neutral strategy parameters. In some sense, our formalism generalizes the concept of
strategy parameters to the case where the genotype space can not be decomposed into a product
of phenotype and strategy parameter spaces but consists of arbitrarily interweaved neutral sets.

Evolvability.

All of this is strongly related to the discussion of evolvability in the biology literature. Many
discussions are based on some relation between neutrality and evolvability (Schuster 1996; Kimura
1983) but to my knowledge there hardly exists a generic theoretical formalism to investigate such
issues. (Analytical approaches to describe canalization, i.e., the evolution of mutational robustness
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of certain characters, based on neutral variations have been proposed by Rice (1998) and Wagner,
Booth, & Bagheri-Chaichian (1997).) Following Wagner & Altenberg (1996), evolvability denotes
the capability to explore further and further good individuals during evolution, which seems possible
only when the exploration strategy itself is adapted in favor of evolvability during evolution. In
our formalism this raises the question of how neutral traits, and thereby exploration distributions,
do actually evolve. We will propose an answer to this question in section 1.2.9, which requires the
formalism introduced in the next section.

1.2.8 Embedding neutral sets in the variety of exploration distributions

The embedding defines a unique way of understanding neutral traits and will allow to derive
an evolution equation for them.

Our goal is to describe the evolution of neutral traits and thereby the evolution of exploration
distributions M(·|g). In simple cases where the genotype space decomposes, G = X×Z, there seems
no conceptual difficulty to do this: The evolutionary process as described on the genotype space
may be projected on the hyperplane Z. This is the case for conventional strategy parameters and
enabled Beyer (2001) to even derive analytical solutions for this process. However, since in general
neutral traits live in arbitrarily interweaved neutral sets it seems tedious to find a description
of their evolution. We are missing some embedding space to formulate equations—this actually
reflects that we are missing a uniform way of interpreting and modeling neutral traits.

We now propose such an embedding. To simplify the notation let us “not distinguish” between
two genotypes g1, g2 ∈ [x] which induce the same exploration distribution M(·|g1) = M(·|g2) ∈ ΛG.
Formally, this means that we define another equivalence relation. Not distinguishing equivalent g’s
means considering only the evolution equation on the respective quotient space. It is clear the M

commutes with this equivalence and of course also selection does. Since these circumstances are
rather obvious we skip introducing formal symbols and, from now on, just assume that all g’s in
[x] induce different distributions M(·|g).

Thus, there exists an bijection between [x] and the set

[x] = {M(·|g) | g ∈ [x]} ⊂ ΛG (1.9)

of exploration distributions. It is this bijection that we want to emphasize because it defines
an embedding of neutral sets in the space of exploration distributions. Specifically, it defines
an embedding of the non-decomposable genotype space G in a product space of “Phenotype ×
Distribution”:

Definition 1.2.12 (σ-embedding (Toussaint 2003c)). Given a genotype space G, a genotype-
phenotype mapping φ : G→ P , and a mutation operator M : G→ ΛG, we define the σ-embedding
as:

G→ P × ΛG : g 7→ (x, σ) =
(
φ(g),M(·|g)

)
. (1.10)

The embedding space is Ḡ = P × ΛG. Note that this mapping is injective (but of course not
surjective) and thus there exists a one-to-one relation between the genotype space G and the subset
{(x, σ) |x ∈ P, σ ∈ [x]} ⊂ Ḡ. The injectiveness allows to directly associate a genotype distribution
p ∈ ΛG with a distribution over Ḡ by

p(x, σ) =

{
0 if σ 6∈ [x]

p(g) if σ ∈ [x], x = φ(g), and σ = M(·|g) .
(1.11)
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The product structure of the embedding space is the key to formulate the evolution equation of
exploration distributions in the next section. The embedding also offers a new formal way of
modeling neutral traits as specifying an exploration distribution σ ∈ [x]; the neutral set [x] being
nothing but an isomorphic copy of the space [x] ⊂ ΛG of exploration distributions.

1.2.9 σ-evolution: A theorem on the evolution of phenotypic variability

Exploration distributions naturally evolve towards minimizing the KL-divergence between ex-
ploration and the exponential fitness distribution, and minimizing the entropy of exploration.

To derive the theorem we neglect the stochastic elements, i.e., adopt the infinite population
approach, and rewrite the general evolution equation (1.6, page 20) as

p(t+1)(g′) =
∑
g∈G

f (t)(g′)
f̄ (t)

M(g′|g) p(t)(g) . (1.12)

We embed the equation in Ḡ and, according to equations (1.10) and (1.11), identify the exploration
distribution M(x′, σ′|g) with σ(x′, σ′),

p(t+1)(x′, σ′) =
∑
x∈P

∑
σ∈ΛG

f̃ (t)(x′)
f̄ (t)

σ(x′, σ′) p(t)(x, σ) .

This allows to run the summation over all possible distributions σ ∈ ΛG; note that σ 6∈ [x] ⇒
p(t)(x, σ) = 0. We now benefit from Ḡ being a product space: The summations commute and
executing summation over x gives

p(t+1)(x′, σ′) =
∑
σ

f̃ (t)(x′)
f̄ (t)

σ(x′, σ′) p(t)(σ) .

Here, p(t)(σ) is the marginal distribution of p(t)(x, σ), well defined because Ḡ = P×ΛG is a product
space. Summing over x′ and decomposing the mutation probability σ(x′, σ′) = σ(x′|σ′)σ(σ′) we
finally get

p(t+1)(σ′) =
∑
σ

∑
x′ f̃ (t)(x′)σ(x′|σ′)

f̄ (t)
σ(σ′) p(t)(σ) .

We summarize this in

Theorem 1.2.3 (σ-evolution (Toussaint 2003c)). Given the evolutionary process (1.12) on
the genotype space G, the evolution of exploration distributions is described by the projection of the
process on ΛG given by the σ-evolution equation

p(t+1)(σ′) =
∑
σ

〈
f̃ (t) , σ(·|σ′)

〉
f̄ (t)

σ(σ′) p(t)(σ) , (1.13)

where
〈
f , g

〉
:=
∑
x′∈P f(x′) g(x′) denotes the scalar product in the function space L2 over P .

σ-evolution describes the transition of a parent population p(t)(σ) of exploration distributions
to the offspring population p(t+1)(σ′) of exploration distributions. Therein, the term σ(σ′) cor-
responds to the mutation operator on ΛG (recall that σ(x′, σ′) corresponds to a mutation dis-
tribution M(x′, σ′|g)), and the equation matches the standard evolution equation in the form
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“p(t+1) = F M p(t)”. In the following we discuss three aspects of the most interesting part of this
equation, the fitness term

〈
f̃ (t) , σ(·|σ′)

〉
.

The scalar product as quality measure.

A term
〈
f̃ (t) , σ

〉
is a measure for σ that we call σ-quality. In the first place, it is the scalar

product of f̃ (t) with σ in the space of functions over P . The scalar product is a measure of
the similarity and thus, σ-quality measures the similarity between the exploration distribution and
fitness. σ-quality is very similar to the concept of effective fitness (Nordin & Banzhaf 1995; Stephens
& Vargas 2000).

A delay effect.

However, equation (1.13) exhibits that the term
〈
f̃ (t) , σ(·|σ′)

〉/
f̄ (t) is actually the fitness term

for the offspring σ′. Thus, the fitness one has to associate with an offspring is the σ-quality
of its parent under the condition that σ has in fact generated the offspring σ′ (σ(·|σ′) is the
parent’s phenotypic exploration distribution). Roughly speaking, the offspring is selected according
to the quality of its parent. This circumstance can be coined a first order delay of evaluation.
The quality of an individual’s exploration distribution is not rewarded immediately by higher
selection probability of this individual itself. It is rewarded when its offspring are selected with
higher probability. This delay effect is well-known in the context of evolution strategies.3 It is
straightforward to generalize it to arbitrary degrees of equivalence leading to n-th order delay, see
below.

The information theoretic interpretation.

Since σ is actually a probability distribution we can also give an information theoretic interpre-
tation. Let us introduce the exponential fitness distribution as

F (t) =
exp f̃ (t)

C(t)
, C(t) =

∑
x′

exp f̃ (t)(x′) .

One would also call F (t) the soft-max or Boltzmann distribution of f̃ (t). The σ-quality can now
be rewritten as〈

f̃ (t) , σ
〉

+ lnC(t) =
∑
x′

σ(x′) lnF (t)(x′) = −D
(
σ
∣∣∣∣F (t)

)
−H(σ) .

Hence, σ-quality is proportional to the negative of the divergence (see definition (1.3, page 19))
between the exploration distribution σ and the exponential fitness distribution F (t) minus the
entropy of exploration. We summarize this in

Corollary 1.2.4 (σ-evolution (Toussaint 2003c)). The evolution of exploration distributions
(σ-evolution) naturally has a selection pressure towards

– minimizing the KL-divergence between exploration and the exponential fitness distribution,
and

3For evolution strategies it is a common approach to first mutate the strategy parameters z before mutating

the objective variables x according to the new strategy parameters (Schwefel 1995; Bäck 1998a). In our formalism

this means that in equation (1.13) the evaluated distribution σ(·|σ′) = ΞM(·|x, z′) is “similar” (with same strategy

parameters z′) to the offspring’s distribution Ξσ′(·) = ΞM(·|x′, z′). However, the evaluated and the offspring’s

exploration distributions still differ significantly because they depend on the objective variables x and x′, respectively.

The real σ-quality of strategy parameters z′ becomes evident only in the next generation in combination with the

offspring’s objective parameters x′.
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– minimizing the entropy of exploration.

This also means that, assuming fixed entropy of σ, the exponential fitness distribution is a fixed
point of σ-evolution that corresponds to the quasispecies (Eigen, McCaskill, & Schuster 1989).
This sheds new light on what Eigen & Schuster (1977) found:

“The single (molecular) species, however, is not the true target of selection. Eq. (10)
tells us that it is rather the quasi-species, i.e., an organized combination which emerges
via selection. As such it is selected against all other distributions.” (Eigen & Schuster
1977)

.

We aimed at this interpretation of σ-evolution because it establishes a bridge to numerous ap-
proaches and discussions already present in the literature. First of all we understand the relation
between self-adaptive σ-evolution and the deterministic adaptation schemes of the exploration dis-
tribution in Estimation-of-Distribution Algorithms which we captured in terms of Generic Heuristic
Search (definition 1.2.2, page 19). Actually, σ-evolution realizes a similar kind of adaptation—
minimization of the Kullback-Leibler divergence between exploration and fitness—but in a self-
adaptive way.

Further, the question of how variational properties evolve has also been raised in numerous
variations (pleiotropy, canalization, epistasis, etc.) in the biology literature. These discussions
aim at understanding how evolution can handle to introduce correlations between phenotypic
traits or mutational robustness or functional modularity in phenotypic exploration. Our answer
is that variational properties evolve as to approximate the selection distribution. If, for example,
certain phenotypic traits are correlated in the selection distribution F , then the Kullback-Leibler
divergence decreases if these correlations are also present in the exploration distribution σ.

1.2.10 Appendix — n-th order equivalence and n-th order delay

How could evolution arrange to increase the probability for children to generate with high
probability children that generate with high probability ...etc... children with high fitness?

How could we consider also higher order delays? Eventually, how could evolution arrange to
increase the probability for children to generate with high probability children that generate with
high probability ...etc... children with high fitness. We propose the following. What we considered
up to now was the case when two genotypes g1, g2 are equivalent, g1 ≡ g2, because they share the
same phenotype. As a result we found a first order delay of selection of neutral characters. Now
consider the case when two genotypes are 2nd order equivalent because their phenotypes are the
same, g1 ≡ g2, and their phenotypic explorations are the same, Ξσ1 = Ξσ2, i.e. σ1≡̂σ2. Then,
these two exploration distributions have, in fact, the same σ-quality and there is no immediate
difference in selection between them. However, when writing equation (1.13) for two time steps we
find

p(t+2)(σ′′) =
∑
σ′,σ

〈
f̃ (t+1) , σ′(·|σ′′)

〉
f̄ (t+1)

〈
f̃ (t) , σ(·|σ′)

〉
f̄ (t)

σ′(σ′′)σ(σ′) p(t)(σ) .

Which means that there exists a longer term difference in selection between σ1 and σ2 iff the



1.2. A THEORY ON THE EVOLUTION OF PHENOTYPIC VARIABILITY 33

expected exploration distributions σ′ of their offspring are not equivalent in the sense∑
σ′

σ1(σ′) (Ξσ′) 6=
∑
σ′

σ2(σ′) (Ξσ′) .

This difference in selection after two generations may be coined a second order delay effect. Gen-
erally, let us define two genotypes, (x1, σ1) and (x2, σ2), n-th order equivalent iff their phenotype
and all their expected phenotypic exploration distributions after 0..n−2 mutations are the same,

(x1, σ1) ≡n (x2, σ2) ⇐⇒ x1 = x2 , n ≥ 2⇒ Ξσ1 = Ξσ2 ,

∀1≤k≤n−2 :
∑
σ1,..,σk σ1(σ1)σ1(σ2) .. σk−1(σk) (Ξσk)

=
∑
σ1,..,σk σ2(σ1)σ1(σ2) .. σk−1(σk) (Ξσk)

It follows that, if two genotypes are n-th order equivalent, then there exists no difference between
the phenotypic dynamics of their evolution for the next n−1 generations. Thereafter though, with
a delay of n generations, their evolution differs because the expected exploration distributions of
the n-th order offspring of these two genotypes are not phenotypically equivalent.

1.2.11 Summary

Recalling the steps toward this result.

Why have we introduced Generic Heuristic Search? Our definition of Generic Heuristic Search
makes explicit what we mean by “learning about a problem structure” on an abstract mathematical
level: namely incorporating the information given by evaluations (in particular correlations between
different solution features) in forthcoming search. GHS pinpoints that the crucial ingredient needed
to realize this principle is the choice of the parameterization Φ of the exploration distribution.

Why have we applied Vose’s formalism of compatibility? The literature is full of discussions on
the purpose or relevance of neutrality or redundancy in genetic representations. There is a lack
of a formal basis on which to ground these discussions. The approach to formalize neutrality by
means of equivalence classes is not new—but the strict application of simple and fundamental argu-
ments concerning the compatibility of G with phenotype equivalence allows to derive under which
conditions neutrality influences phenotype evolution: Non-dependence of (projected) mutation on
neutral traits is equivalent to compatibility of the evolution equation with phenotype equivalence,
which we termed trivial neutrality.

Why have we introduced the σ-embedding of neutral traits? For a description of the evolution of
neutral traits it is helpful to have an embedding space in which to formulate the evolution equation.
In simple cases where the genotype space decomposes (strategy parameters) an embedding space
of neutral sets is obvious. To generalize to arbitrary neutral sets and arbitrary genotype-phenotype
mappings we introduced the σ-embedding, i.e., we embedded neutral sets in the space of probability
distributions over the genotype space (exploration distributions).

Finally, what have we learned about σ-evolution? We derived an evolution equation for explo-
ration distributions. The selection term can be interpreted as a fitness of exploration distributions
that measures the (scalar product) similarity to the fitness function. In terms of information the-
ory, σ-evolution minimizes the Kullback-Leibler divergence between the exploration distribution
and the exponential (Boltzmann) fitness distribution, and minimizes the entropy of exploration.
It describes the accumulation of information given by the fitness distribution into genetic repre-
sentations.
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1.3 Crossover, buildings blocks, and correlated exploration

In the previous section we ruled out the possibility of crossover although the discussion of crossover
has a very strong tradition in the field of genetic algorithms. We now make up for this and discuss
crossover w.r.t. correlated variability by comparing it to mutational variability and Estimation-Of-
Distribution Algorithms (EDAs), i.e., Generic Heuristic Search.

1.3.1 Two notions of building blocks of evolution

The notion of building blocks as induced by crossover does not match the notion of functional
phenotypic building blocks as it is induced by investigating correlated phenotypic variability.

In the realm of evolutionary computation the notion of building blocks has been developed in
Holland’s original works (Holland 1975; Holland 2000) to describe the effect of crossover. In that
respect, building blocks are composed of genes with more or less linkage between them. This is one
to one with the notion of schemata and eventually lead to the schema theories (also first developed
in these papers) which describe the evolution of these building blocks.

Since crossover is a biologically inspired concept, Holland’s notion of building blocks is also
relevant in understanding natural evolution. In the biology literature though, there exists a second
notion of building blocks which has quite a different connotation. As a paradigm we choose the
following phenomenon.

Example 1.3.1 (Drosophila’s eyeless gene). In their experiments, Halder, Callaerts, & Gehring
(1995) forced the mutation of a single gene, called eyeless gene, in early ontogenesis of a Drosophila
Melanogaster. This rather subtle genotypic variation results in a severe phenotypic variation: An
additional functionally complete eye grows at some place it was not supposed to. Here, the notion
of a building block refers to the eye as a functional module which can be grown phenotypically by
triggering a single gene. In other words, a single mutation of a gene leads to a highly complex,
in terms of physiological cell variables highly correlated phenotypic variation. Such properties of
the genotype-phenotype mapping are considered as the basis of complex adaptation (Wagner &
Altenberg 1996).

Besides the discussion of crossover in GAs and that of functional modularity in natural evolution,
there is a third field of research that relates to the discussion of building blocks, namely Estimation-
of-Distribution Algorithms that we discussed as examples for Generic Heuristic Search. The key
of these algorithms is that they are capable to induce this second notion of building blocks. For
instance, consider a dependency tree y(t) as parameterization of the search distribution Φy(t) ∈ ΛP

where the leaves encode the phenotypic variables. The offspring are generated by sampling this
probabilistic model, i.e., by first sampling the root variable of the tree, then, according to the
dependencies encoded on the links, sampling the root’s successor nodes, etc. Now, if we assume
that the dependencies are very strong, say, deterministic, it follows that a single variation at the
root leads to a completely correlated variation of all leaves. Hence, we may define a set of leaves
which, due to their dependencies, always vary in high correlation as a functional phenotypic module
in the same sense as for the eyeless paradigm.

In the Evolutionary Computation community there are some discussions on the relation between
EDAs and crossover GAs. Some argue that the essence of EDAs is that they can model the
evolution of crossover building blocks (schemata) by explicitly encoding the linkage correlations
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that are implicit in the offspring distribution of crossover GAs (Shapiro 2003, Introduction). In that
sense, EDAs are faster versions of crossover GAs; faster because EDAs actively analyze correlations
in the selection distribution.

In this section we basically want to analyze the relation between crossover and correlated vari-
ability. Hence, this also means a discussion of the relation between Holland’s notion of building
blocks and this second notion we mentioned; and eventually also a discussion of the relation be-
tween EDAs and crossover GAs.

For instance, we will point out that crossover induces a correlation in the search distribution
that can certainly be modeled by graphical models. However, the structure of these correlations
is limited to the correlations that have already been present in the parent population. Crossover
can only preserve certain (by the crossover mask determined) linkage correlations and never ex-
plore new correlated constellations; in total, it decreases the correlations in the search distribution.
In contrast, EDAs can account for correlated variability by amplifying the correlations that are
present in the parent population after selection. Here, amplifying means, for instance, to increase
the mutual information in a distribution proportionally to the increase of entropy (which corre-
sponds to mutative exploration)—similar to increasing the covariance of a Gaussian proportional
to the standard deviation in order to preserve the structural correlations. In the case of the de-
pendency tree, the scenario could be that the root variable induces the main entropy and changes
its value such that directly depending variables change their values in high dependence of this
change. The constellation of this set of variables might be new (has not been present in the parent
population) and thus entropy is increased, but the dependencies and correlations between variables
are preserved.

After we setup our formalism in the next section, section 1.3.3 and 1.3.4 will present some
theorems on the structure of the search distribution after mutation and crossover. With structure
we mean the correlational structure that we measure by means of mutual information. Many of
our arguments will be based on the increase and decrease of mutual information in relation to
increase or decrease of entropy in the search distribution. Section 1.3.5 finally defines the notion of
correlated exploration and thereby pinpoints the difference between linkage correlations in crossover
GAs and correlated variability in EDAs.

1.3.2 The crossover GA: Explicit definitions of mutation and crossover

In order to define crossover and derive results we assume that a genotype is composed of a
finite number of genes and that crossover and mutation obey some constraints.

To investigate crossover we will make some additional assumptions about the evolutionary
process that we generally introduced in equation (1.6, page 20). First, we will make crossover
more explicit by notating it with its own operator C : ΛG → ΛG that enters the evolution equation
of a crossover GA via

p(t+1) = Sµ F(t) Sλ M C p(t) ,

As we implicitly handled it already in the previous section, M accounts only for mutation instead
of both, mutation and crossover.

Defining crossover requires that the genotype space G is composed of a fixed number of gene-
spaces, G = G1 × · · · ×GN . The space Gi of alleles of the i-th gene may be arbitrary. Given this
structure of the genotype space we define:
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Definition 1.3.1 (Crossover). We define crossover as an operator ΛG → ΛG parameterized by
a crossover mask distribution c ∈ Λ{0,1}N

over the space {0, 1}N of bit-masks, where N is the
number of loci (or genes) of a genome in G:

C : ΛG → ΛG , (Cp)(x) =
∑

x0,x1∈G
C(x|x0, x1) p(x0) p(x1) ,

C(x|x0, x1) =
∑

m∈{0,1}N

c(m) [x = x0 ⊗m x1] ,

where the i-th allele of the m-crossover-product x0 ⊗m x1 is the i-th allele of the parent xmi
, i.e.,

(x0⊗m x1)i = (xmi
)i. A bracket expression [A = B] equals 1 for A = B and 0 for A 6= B. We only

consider symmetric crossover, where c(m) = c(m̄) when m̄ is the conjugate of the {0, 1}-string m.

We also make additional assumptions on the mutation operator as given in the following defi-
nition:

Definition 1.3.2 (Simple Mutation). As before, general mutation is an operator M : ΛG → ΛG

defined by the conditional probability M(y|x) of mutating from x ∈ G to y ∈ G, with Mp =∑
x M(·|x) p(x). A typical mutation operator fulfills the constraints of symmetry and component-

wise independence:

a) M(y|x) = M(x|y)

b) G = G1 × · · · ×GN ⇒ M(x|y) =
N∏
i=1

Mi(xi|yi)

In the following we will refer to the simple mutation operator for which all component-wise muta-
tion operators Mi are such that the probability of mutating from x to y is constant for x 6= y:

∀i : Mi = M∗ , ∀x 6= y ∈ G∗ : M∗(x|y) =
α

n
, ∀x ∈ G∗ : M∗(x|x) = 1− α (n− 1)

n
,

where n = |G∗| and 0 ≤ α ≤ 1 denotes the mutation rate parameter.

It is important to realize that, in our formalism, crossover and mutation are deterministic operators
over the space of distributions. The stochasticity is solely captured by the offspring sampling
operator Sλ. Hence, when we will derive statements about M and C in the following, they will not
account for the stochasticity of offspring sampling.

Finally, we use some further standard notations:

• We denote the marginals of a distribution p ∈ ΛG, G = G1 × · · · ×GN , by pi ∈ ΛG
i

.

• Accordingly, Hi(p) denotes the entropy of the i-th marginal H(pi).

• And the mutual information is given by I(p) =
∑
iH

i(p) −H(p) and the pair-wise mutual
information by Iij =

∑
a,b p

ij(a, b) ln pij(a,b)
pi(a) pj(b) .

• Given some operator U : ΛG → ΛG we will use the notation ∆UB = B(Up)−B(p) to denote
the difference of a quantity B : ΛG → R under transition, e.g., the quantity may be the
entropy H(p).
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1.3.3 The structure of the mutation distribution

Mutation increases entropy and decreases mutual information.

This section derives a theorem that simply states that mutation increases entropy and decreases
mutual information. It is surprising how non-trivial it is to prove this intuitively trivial statement.

Lemma 1.3.1 (Entropy of component-wise mutation (Toussaint 2003d)). Consider the
component-wise simple mutation operator M∗ as given in definition 1.3.2. It follows that

a)

M∗p(x) = (1− α) p(x) + α
1
n
,

which is a linear mixture between p and the uniform distribution (“ 1
n”) with mixture parameter

α.

b) For every non-uniform population distribution p, the entropy of M∗p is greater than the
entropy of p,

H(M∗p) > H(p) .

Proof. a)

M∗p(x) =
∑
y

M∗(x|y) p(y)

=
[∑

y

α

n
p(y)

]
− α

n
p(x) +

(
1− α (n− 1)

n

)
p(x) =

α

n
+ (1− α) p(x) .

b) We generally show that the entropy increases if you mix a distribution with the uniform
distribution. We prove this by considering the first two derivatives of the entropy functional with
respect to the mixture parameter α. Let

q(x) = (1− α) p(x) +
α

n
,

and recall H(q) = −
∑
x q(x) ln q(x) and (X lnX)′ = X ′((lnX) + 1). It follows

∂

∂α
H(q) = −

∑
x

[
− p(x) +

1
n

]
(ln q(x) + 1) =

∑
x

[
p(x)− 1

n

]
ln q(x) ,

∂

∂α
H(q)

∣∣
α=1

=
∑
x

[
p(x)− 1

n

]
ln

1
n

= 0 ,

∂2

∂α2
H(q) = −

∑
x

(p(x)− 1
n )2

q(x)
< 0 if p is non-uniform.

What we found is that (i) the entropy is maximal for the extreme case α = 1 since its derivative
w.r.t. α at this point vanishes (of course, this corresponds to the case where q becomes the uniform
distribution) and (ii) the second derivative is always negative if p is non-uniform. Hence, the plot
of H versus α is comparable to an upside-down parabola with maximum at α = 1. It follows
that for all α < 1 (to the left of the maximum) the derivative ∂

∂αH(q) is positive. Entropy
continuously increases with α. And hence, for every 0 < α ≤ 1 and every non-uniform population
p, H(M∗p) > H(p).
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Theorem 1.3.2 (Entropy and mutual information of mutation (Toussaint 2003d)). Con-
sider the simple mutation operator M(x|y) =

∏
i M

∗(xi|yi) as given in definition 1.3.2. If p ∈ ΛG is
non-uniform it follows that entropy increases, H(Mp) > H(p), and mutual information decreases,
I(Mp) < I(p).

Proof. We first prove that the cross entropy decreases. Assuming only two genes, the compound
mutation distributions reads

Mp(x, y) = (1− α)2 p(x, y) + (1− α)αp(x)
1
n

+ (1− α)α
1
n
p(y) + α2 1

n

1
n

= (1− α)
[
(1− α) p(x, y) + α

1
n
p(x)

]
+ α

1
n

[
(1− α) p(y) + α

1
n

]
= (1− α) q(x, y) + α

1
n
q(y) ,

where q(x, y) = (1− α) p(x, y) + αp(x)
1
n
, q(x) = p(x) , q(y) = (1− α) p(y) +

α

n

We call q a one-component α-mixture since only in one component the uniform distribution was
mixed to p. This shows that the compound distribution Mp for two genes is a one-component α-
mixture of a distribution q, which is itself a one-component α-mixture. For compound distributions
with more than two genes this will be recursively the case and generally the mutation operator
can be expresses as concatenation of one-component α-mixtures. Hence, it suffices when we prove
that the mutual information decreases for one such step of one-component α-mixing.

We use the same technique of calculating derivatives with respect to the mixture parameter to
proof decreasing cross entropy. To simplify the notation we use the abbreviations:

A=q(x, y) , A
∣∣
α=1

=
αp(x)
n

, A′=
∂

∂α
A=−p(x, y) +

p(x)
n

, A′′=0 ,

B=q(x) q(y)=p(x)
[
(1− α) p(y) +

α

n

]
, B

∣∣
α=1

=A
∣∣
α=1

, B′=p(x) (−p(y) +
1
n

) , B′′=0 .

With these abbreviations (keeping the dependencies on x, y, and α in mind) we can write:

I(q) =
∑
x,y

A ln
A

B

∂

∂α
I(q) =

∑
x,y

[
A′ ln

A

B
+A′ − AB′

B

]
∂

∂α
I(q)

∣∣
α=1

=
∑
x,y

[
A′
∣∣
α=1

ln
A
∣∣
α=1

A
∣∣
α=1

+
[
− p(x, y) +

p(x)
n

]
−
A
∣∣
α=1

A
∣∣
α=1

p(x) (−p(y) +
1
n

)
]

= 0

∂2

∂α2
I(q) =

∑
x,y

[
A′

B

A

[A′
B
− AB′

B2

]
+ 0− A′B′

B
+
A (B′)2

B2

]

=
∑
x,y

[ (A′)2
A
− 2

A′B′

B
+
A (B′)2

B2

]
=
∑
x,y

[ (BA′ −AB′)2

AB2

]
≥ 0

So, what we found is that (i) for α = 1 the cross entropy is minimal since its derivative w.r.t. α at
this point vanishes (of course, this corresponds to the case where q(x, y) = p(x) 1

n ) and (ii) for all
other points the second derivative is positive. The plot of I versus α is comparable to an upwards
parabola with minimum at α = 1. It follows that for α < 1 (to the left of the minimum) the
derivative ∂

∂αI(q) is negative and thus the cross entropy continuously decreases with increasing α.
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Concerning increasing entropy, it is obvious that the marginals of the mutation distribution Mp

are simply

(Mp)i = M∗pi .

For the component-wise mutation operators we proved that entropy increases (for non-zero α and
non-uniform p) and thus ∆MH

i > 0. Consequently,

∆MH =
∑
i

∆MH
i −∆MI > 0 .

1.3.4 The structure of the crossover distribution

Crossover destroys mutual information in the parent population by transforming it into en-
tropy in the crossed population.

What is the structure of the crossover search distribution Cp, given the population p ∈ ΛG and
the crossover mask distribution c ∈ Λ{0,1}N

? The first theorem can directly be derived from our
definition of the crossover operator. It captures the most basic properties of the crossover operator
with respect to the correlations it destroys in the search distribution:

Theorem 1.3.3 (Entropy and mutual information of crossover (Toussaint 2003d)). Let
H(p), pi, Hi(p) = H(pi), and I(p) =

∑
iH

i(p) − H(p) denote the entropy, the i-th marginal
distribution, the marginal entropies, and the mutual information of a distribution p. For any
crossover operator C and any population p it holds

a) ∀i : (Cp)i = pi, ∆CH
i = 0, i.e., the marginals and hence their entropies do not change,

b) ∆CI = −∆CH ≤ 0, i.e., the increase of entropy is equal to the decrease of mutual informa-
tion.

Proof. Let us first calculate the marginals after crossover. Let a be an allele of the i-th gene.

(Cp)i(a) =
∑
x0,x1

∑
m

c(m) [a = (xmi
)i] p(x0) p(x1) ,

=
∑
x0,x1

[ ∑
m:mi=0

c(m) [a = (x0)i] +
∑

m:mi=1

c(m) [a = (x1)i]
]
p(x0) p(x1) ,

= pi(a)
[ ∑
m:mi=0

c(m)
]

+ pi(a)
[ ∑
m:mi=1

c(m)
]

= pi(a) .

Since the marginals are not changed by crossover, the marginal entropies do not change either.
Statement b) follows from the definition of the mutual information:

∆CH + ∆CI = H(Cp)−H(p) + I(Cp)− I(p)

= H(Cp)−H(p) +
∑
i

Hi(Cp)−H(Cp)−
[∑

i

Hi(p)−H(p)
]

=
∑
i

Hi(Cp)−
∑
i

Hi(p) = 0 .
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The following theorem makes this more concrete when focusing on two specific genes of a genome
of arbitrary length. We calculate the mutual information between these two genes in the search
distribution Cp—which is a measure for the linkage between them. Let it be the i-th and j-th gene.
We use a and b as alleles; pij(a, b) =

∑
x∈G[xi = a] [xj = b] p(x) denotes the probability that the

i-th gene has allele a and the j-th gene allele b. Analogously, let cij be the marginal of the crossover
mask distribution with respect to the two genes, i.e., cij(01) =

∑
m∈{0,1}N [mi = 0] [mj = 1] c(m).

Theorem 1.3.4 (Two-gene entropy and mutual information of crossover (Toussaint
2003d)). For any crossover operator C and any population p it holds:

a) The compound distribution of two genes after crossover is given by

(Cp)ij(a, b) = 2 cij(00) pij(a, b) + 2 cij(01) pi(a) pj(b) ,

i.e., a linear combination of the original compound distribution pij(a, b) and the decorrelated
product distribution pi(a) pj(b).

b) The mutual information I(Cp)ij in the compound distribution of two specific genes is

I(Cp)ij =
∑
a,b

(Cp)ij(a, b) ln
(
2cij(00)

pij(a, b)
pi(a)pj(b)

+ 2cij(01)
)
,

c) and we have

0 ≤ 2cij(00)
(
I(p)ij + ln(2cij(00))

)
≤ I(Cp)ij ≤ I(p)ij .

The two left ≤ are exact for complete crossover, cij(00) = 0, cij(01) = 1
2 , the right ≤ is exact

for no crossover, cij(00) = 1
2 , cij(01) = 0.

Proof. a)

Cpij(a, b) =
∑
x0,x1

∑
m

c(m) [(xm0)
0 =a] [(xm1)

1 =b] p(x0) p(x1)

=
∑
x0,x1

(
cij(00) [(x0)0 =a][(x0)1 =b] + cij(01) [(x0)0 =a][(x1)1 =b]+

cij(10) [(x1)0 =a][(x0)1 =b] + cij(11) [(x1)0 =a][(x1)1 =b]
)
p(x0) p(x1)

= 2
∑
x0

cij(00) [(x0)0 =a][(x0)1 =b] p(x0)

+ 2
∑
x0,x1

cij(01) [(x0)0 =a][(x1)1 =b] p(x0) p(x1)

= 2 cij(00) pij(a, b) + 2 cij(01) pi(a) pj(b) .

b&c)

I(Cp)ij = H(Cpi) +H(Cpj)−H(Cp) = H(pi) +H(pj)−H(Cp)

≤ H(pi) +H(pj)−H(p) = I(p)ij

H(Cp) = −
∑
a,b

(Cp)ij(a, b) ln
(
2 cij(00) pij(a, b) + 2 cij(01) pi(a) pj(b)

)
= −

∑
a,b

(Cp)ij(a, b)
[
ln
(
2cij(00)

pij(a, b)
pi(a)pj(b)

+ 2cij(01)
)
− ln pi(a)− ln pj(b)

]
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= −
∑
a,b

(Cp)ij(a, b)
[
ln
(
2cij(00)

pij(a, b)
pi(a)pj(b)

+ 2cij(01)
)]

+H(pi) +H(pj)

I(Cp)ij =
∑
a,b

(
2 cij(00) pij(a, b) + 2 cij(01) pi(a) pj(b)

)
ln
(
2cij(00)

pij(a, b)
pi(a)pj(b)

+ 2cij(01)
)

≥
∑
a,b

(
2 cij(00) pij(a, b)

)
ln
(
2cij(00)

pij(a, b)
pi(a)pj(b)

)
= 2cij(00)

(
I(p)ij + ln(2cij(00))

)

Let us summarize what we actually found in the above theorems:

• The marginal distributions do not change at all. There is no exploration w.r.t. the alleles of
single genes.

• The more entropy crossover introduces in a population, the more the mutual dependencies
between genes are destroyed. Actually, crossover destroys mutual information in the parent
population by transforming it into entropy in the crossed population. In particular, if there
is no mutual information in the parent population, crossover will not generate any more
entropy. That’s linkage equilibrium.

• The last theorem shows how the crossover mask distribution c determines which correlations
are destroyed and transformed into entropy.

The purpose of these theorems is to propose a probably non-standard point of view on what
crossover actually does: Actually, a non-crossover GA comprises the strongest and most natural
building blocks; individuals as such are the building blocks that carry the mutual information
between their genes. Crossover is a means to break these maximal building blocks apart into
smaller pieces by converting mutual dependencies into entropy. As a result it induces smaller,
more fine-grained building blocks with, in total, less mutual information in the crossed population.
Hence, the correlational structure in the crossed population is not more complex—it is simpler
since it carries less information. In the limit of linkage equilibrium (or uniform c), all correlations
have been destroyed and the crossed population becomes a product distribution.

1.3.5 Correlated exploration

A precise definition of correlated exploration allows to pinpoint the difference between crossover
exploration and correlated exploration in the case of EDAs.

Both, crossover and EDAs have a non-trivial influence on the correlational structure in the search
distribution. The crucial difference is that Estimation-of-Distribution Algorithms try to “carry
over” the correlations in the population of selected to the search distribution (cf. the estimation
in equation (1.4, page 19)) whereas crossover destroys correlations. Carrying over correlations is
non-trivial if the search distribution is to be explorative, i.e., of more entropy: Typical mutation
operators add entropy to the distribution by adding independent noise to each marginal, but this
reduces the mutual information between genes (see Lemma 1.3.2).

Consider illustration 1.1. In a finite population of 3 individuals, marked by crosses, the values
at the two loci are correlated, here illustrated by plotting them on the bisecting line. The crossed



42 CHAPTER 1. EVOLUTIONARY ADAPTATION
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Figure 1.1: Illustration of the type of correlations in GAs with and without crossover in comparison
to correlated exploration in EDAs (cf. definition 1.2.2, page 19). The gray shades indicate the
exploration distributions, say, regions of probability greater than some constant. The degree to
which the gray shading is aligned with the bisecting line indicates correlatedness. The crossover
GA in the middle destroys correlations whereas EDAs may induce high correlations. We assumed
that the loci can have several different values—in the case of bit-strings these loci could refer to
several bits and c(01) denoted the probability for 1-point crossover between these groups of bits.

population Cp comprises at most 9 different individuals; in the special cases cij(01) = 0 and
cij(01) = 1

2 the population is even finite and comprises 3 respectively 9 equally weighted individuals
marked by circles. Mutation adds independent noise, illustrated by the gray shading, to the
alleles of each individual. The two illustrations for the GA demonstrate that crossover destroys
correlations between the alleles in the initial population instead of carrying it over to the search
distribution: The gray shading is not focused on the bisecting line. Instead, an EDA would first
estimate the distribution of the individuals in p. Depending on what probabilistic model is used,
this model can capture the correlations between the alleles; in the illustration the model could
be a Gaussian parameterized by the mean and covariance matrix (just as for the CMA evolution
strategy (Hansen & Ostermeier 2001)) and the estimation of the correlations in p leads to the
highly structured search distribution in which the entropy of each marginal is increased without
destroying the correlations between them. We capture this difference in the following definition:

Definition 1.3.3 (Correlated exploration (Toussaint 2003d)). Let U : ΛG → ΛG be an
operator. The following conditions need to hold for almost all p ∈ G which means for all the space
G except for a subspace of measure zero. We define

• U is explorative ⇐⇒ ∆UH > 0 for almost all p ∈ G,

• U is marginally explorative ⇐⇒ U is explorative and ∃i : ∆UH
i > 0 for almost all p ∈ G,

• U is correlated explorative ⇐⇒ U is explorative and ∆UI > 0, or equivalently 0 < ∆UH <∑
i ∆UH

i, for almost all p ∈ G.

Corollary 1.3.5 (Correlated exploration, mutation, and crossover (Toussaint 2003d)).
From this definition it follows that

a) If and only if there exist two loci i and j such that the marginal crossover mask distribu-
tion cij(01) for these two loci is non-vanishing, cij(01) = cij(10) > 0, then crossover C is
explorative. For every mask distribution c ∈ Λ{0,1}N

, crossover C is neither marginally nor
correlated explorative.
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b) Mutation M is marginally but not correlated explorative.

c) Mutation and crossover M ◦ C are marginally but not correlated explorative.

d) In the case of a non-trivial genotype-phenotype mapping mutation as well as crossover can
be phenotypically correlated explorative.

Proof. a) That C is neither marginally nor correlated explorative follows directly from Theorem
1.3.3a, which says that for every c ∈ Λ{0,1}N

and any population p ∈ ΛG the marginals of the
population do not change under crossover, ∆CH

i = 0. But under which conditions is C explorative?

If, for two loci i and j, cij(01) is non-vanishing, it follows that C reduces the mutual information
between these two loci (Theorem 1.3.4c). The subspace of populations p that do not have any
mutual information Iij between these two loci is of measure zero. Hence, for almost all p, ∆CI

ij < 0
and, following Theorem 1.3.3b this automatically leads to an increase of entropy ∆CH

ij > 0 in the
compound distribution of the two loci and, since ∆CH ≥ ∆CH

ij , also of the total entropy.

The other way around, if, for every two loci i and j, cij(01) vanishes it follows that there is no
crossover, i.e., only the all-0s and all-1s crossover masks have non-vanishing probability. Hence,
C = id and is not explorative.

b) In lemma 1.3.2 we prove that for every non-uniform population p ∆MH > 0, ∆MH
i > 0,

and ∆MI < 0.

c) Since both, mutation and crossover are not correlated explorative, it follows that their com-
position is also not correlated explorative:

∆CI ≤ 0 , ∆MI ≤ 0 ⇒ ∆MCI ≤ 0 .

d) What is different in the case of a non-trivial genotype-phenotype mapping? The assumptions
we made about the mutation operator (component-wise independence) refer to the genotype space,
not to the phenotype space: On genotype space mutation kernels are product distributions and mu-
tative exploration is marginally explorative but not correlated; projected on phenotype space, the
mutation kernels are in general not anymore product distributions and hence phenotypic mutative
exploration can be correlated. The same arguments hold for crossover.

1.3.6 Conclusions

Crossover is good to decorrelate exploration; is does not, as EDAs, induce complex explo-
ration.

The evolutionary process, as given in equation (1.6, page 20) is a succession of increase and
decrease of entropy in the population. The fitness operator adds information to the process by
decreasing the entropy (it typically maps a uniform finite distribution on a non-uniform with same
support). And crossover and mutation add entropy in order to allow for further exploration. In this
section we analyzed the structure of this explorative entropy, namely the mutual information (cross
entropy) inherent in the offspring distribution induced by mutation and crossover. We showed that
both, mutation and crossover are explorative but thereby destroy mutual information, i.e., they de-
stroy structural information given by selection. In contrast, EDAs try to preserve or even amplify
this structural information. Such amplification occurs, e.g., if one adds entropy to the distribution
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while trying to preserve the relative dependencies between variables (preserving correlations ampli-
fies covariances in a Gaussian). This is what we defined correlated exploration. Crossover does the
inverse of correlated exploration. It destroys mutual information in the exploration distribution
by transforming it into entropy.

Of course, the crossover exploration distribution can be modeled by graphical models. In that
respect, one could certainly design search algorithms based on probabilistic models of the search
distribution that model crossover GAs—PBIL (Baluja 1994) is a candidate. However, one should
not call such an algorithm an Estimation-of-Distribution Algorithm because its objective is not to
really estimate the distribution of selected and in particular the correlations within this distribution.
(The PBIL is an exception since its objective is to only estimate the marginals which coincides
with modeling crossover). In general, EDAs go beyond modeling crossover since they introduce a
quality which is not a quality of crossover: correlated exploration.

Finally, there is a crucial difference between EDAs and (crossover) GAs with respect to the
self-adaptation of the exploration distribution. EDAs always adapt their search distribution (in-
cluding correlations) according to the distribution of previously selected solutions. In contrast, the
crossover mask distribution, that determines where correlations are destroyed or not destroyed, is
usually not self-adaptive.
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1.4 Rethinking natural and artificial evolutionary adapta-

tion

The idea of this section is to review some basic phenomena of natural evolution and a few interesting
artificial models in the language we developed in the previous section. The discussion will emphasize
the abstract principles that seem relevant from the perspective of our theory while neglecting
molecular details. One goal is to shed new light on these natural phenomena; the other is to clarify
how the abstract theorems we developed relate to nature and increase intuition about them.

1.4.1 From the DNA to protein folding: Genotype vs. phenotype vari-

ability in nature

Without referring to its phenotypical meaning, the DNA is of a rather simple structure and
variational topology. The codon translation is the first step in the GP-map that introduces
neutrality and non-trivial phenotypic variability. Considering protein functionality as a phe-
notypic level, the GP-map from a protein’s primary to tertiary structure is complicated enough
that neutral sets percolate almost all the primary structure space.

Genotypic variability on the DNA.

A mathematician should appreciate the way nature organizes complex variability on the pheno-
type level: A comparatively simple variational topology on the genotype space induces, by virtue of
a complex genotype-phenotype mapping, a complex variational topology on the phenotype space.
One may compare this to a homomorphism that maps from a simple structured base space (like the
topological Rn or the Euclidean Rn) to another space where it induces a more complex structure
(like a topological manifold or a Riemannian manifold). In this section we briefly describe what
we call “comparatively simple variational topology on the genotype space” before we discuss some
aspects of this “complex genotype-phenotype mapping”.

From an abstract point of view, the DNA (deoxyribonucleic acid) itself is of a rather simple
abstract structure, organized as one or several sequences (Chromosomes) of nucleic acids (base
pairs)—essentially a sequence over a 4-ary alphabet {A,T,G,C} (Adenine, Thymine, Guanine,
Cytosine). The major part of genotype variability is induced by base pair replacements, see table
1.1. Such mutations correspond to a variational topology similar to a hypercube, where in each
dimension the four points A,T,G,C are fully connected. In particular, there are no correlations, no
complex structure present in such kind of variability (think of a Euclidean metric in the base space
of a manifold). Insertion and deletion of base pairs resemble a similarly kind of topology in the
union space

⋃∞
n=1{A,T,G,C}n of all DNA sequences of any length. We call base pair replacement,

insertion, and deletion 1st-type mutations and they constitute our basic picture of variational
topology on the DNA space. Of course, one needs to point out that this topological interpretation
of variability simplifies quantitative aspects of mutation probabilities.4

4In fact, nature has invented several mechanisms to modulate variation probabilities at specific loci, e.g.: Con-

cerning 1st-type mutations, there exist so-called hot spots of spontaneous mutations. For instance, at position 104

of the lac I gene of the Escherichia coli bacterium (E. coli) there is the sequence CCAGG. The second Cytosine

element is, due to its nucleotide neighbors, chemically modified to 5-Methylcytosine. It is a likely reaction from

5-Methylcytosine to Thymine, which is not repaired by DNA repair mechanisms because Thymine is a regular

nucleotide. Thus, the mutation C → T occurs frequently at this particular position.
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nucleic acid replacement 70.8%

deletion 17.2 %

insertion 7.7 %

frame shift mutation 4.3 %

genome type mutability α selective
advantage f

max stable
length lmax

RNA without enzyme reproduc-
tion

5·10−2 2/20/200 14/60/106

RNA with enzyme reproduction 5·10−4 2/20/200 1386/5991/10597

DNA with enzyme reproduction 1·10−6 2/20/200 0.7·106/3·106/5.3·106

Prokaryotes, E. coli (l=4·106) 1·10−7 2/20/200 0.7·107/3·107/5.3·107

Eukaryotes, human (l=3·109) 1·10−9 2/20/200 0.7·109/3·109/5.3·109

Table 1.1: The cube in top left illustrates the topology of single base pair replacement mutations for
three base pairs (e.g. a codon). The table to the top right gives an idea of the relative frequencies
of different kinds of mutations; it presents the statistics of spontaneous mutations in the lac I gene
of E. coli (from Knippers 1997, page 242). The bottom table relates mutation rates to different
genome types that occurred during natural evolution. The selective advantage is related to a quasi-
species’ reproduction rate relative to that of competitors; lmax gives the maximal genome length
that allows for a stable quasi-species with given mutability and selective advantage, lmax = ln f

α ;
see (Eigen & Schuster 1977) and (Schuster & Sigmund 1982) for details.

There are also more complex types of mutations that we call 2nd-type mutations. Errors during
replication or recombination of Chromosomes may lead to translocations, deletions, or inversions
of whole subsequences of DNA. For these types of mutation, the topological interpretation hardly
increases intuition. We will not further discuss the meaning of 2nd-type mutations until, in section
1.5, a new model will naturally lead to the necessity of similar “structural” mutations. 5

What we conclude is the following: If in nature the source of entropy, i.e., the source of variability
and exploration, are largely simple non-structured (non-correlated) mutations of the genotype, then
the only way nature could realize complex adaptation (a structured exploration distribution) is via
a complex genotype-phenotype mapping.

Transcription and translation.

5Concerning 2nd-type mutations there exist several mechanisms that influence the probability of where such

mutations occur: Transposons are mobile parts of the genome, sometimes also called jumping genes, that are

embraced by inverted repeats, i.e., identical sequences reading in opposite. An enzyme that is encoded on the

transposon itself (the transposase) cuts the DNA strand at the inverted repeats and reinserts the transposon at

another place of the DNA (depending on where the transposase can bind to the DNA). Sometimes the transposon

is not cut out but replicated before it is reinserted (retrotransposons). A good example is the speckled corn: A

mutation in some cells during early development is caused by a typical transposon translation and leads to a change

of color; the corn becomes black. This mutation is passed on to all the descendant cells and the corn becomes

speckled. Actually also the HI virus is similar to a retrotransposon: Its RNA encodes the necessary enzymes to

translate a RNA strand into a DNA sequence and insert it in the human DNA just like a transposon is reinserted.



1.4. RETHINKING NATURAL AND ARTIFICIAL EVOLUTIONARY ADAPTATION 47

· U · · C · · A · · G ·
U · · UU U

C

Phe

UU A

G

Leu

UC U

C

A

G

Ser UA U

C

Tyr

UAA ochre stop

UAG amber stop

UG U

C

Cys

UGA opal stop

UGG Trp

C · · CU U

C

A

G

Leu CC U

C

A

G

Pro CA U

C

His

CA A

G

Gln

CG U

C

A

G

Arg

A · · AU U

C

A
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A
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C
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G
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C

A

G
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Table 1.2: The codon translation table (from Knippers, 1997, page 76):
Most codons that code for the same amino acids have the first two nucleotides fixed and the third
arbitrary (with multiplicity 4) or varying over U,C or A,G (multiplicity 2). The only exceptions
are the codons for Leucine, Arginine, and Serine for which the first two nucleotides are not fixed
(each with multiplicity 6); Ile, for which the third varies over U,C,A (multiplicity 3); and Met and
Trp, for which the third is fixed to G (multiplicity 1). Note that these neutral sets are typically a
neighborhood w.r.t. base pair replacement.
An exception is the 21st amino acid Selenocysteine, present in some enzymes of bacteria and
mammals, which is encoded by the opal stop codon UGA iff the sequence neighborhood fulfills
certain conditions.

If the DNA itself is a mere point in the space {A,T,G,C}n of simply structured, hypercube-
like variational topology, we now need to discuss how complex DNA becomes if referring to its
phenotypical meaning. In particular, the simple variational topology on DNA space translates to
an incredibly complex structured variability on phenotype space.

The DNA might be compared to an operator Π in a dynamic system ẋ = Π(x); it specifies
how molecular concentrations change in a closed, cellular environment. In this view, a gene (i.e.,
a DNA-subsequence 〈promoter, start codon, coding sequence, stop codon〉 that codes for exactly
one molecule) is one additive component of this operator. If Π were linear, the promoter would
specify the column and the coding sequence the row of the matrix element that corresponds to the
gene.

But the way how the coding sequence, written in letters {A,T,G,C}, represents the molecule
is highly non-trivial. After the gene is expressed, transcribed to the messenger RNA, and this
mRNA is further processed and spliced, triplets of this alphabet (so-called codons) are mapped
to amino acids.6 Besides the fascinating biological implementation of this mechanism, important

6Depending on existing molecule concentrations (transcription factors) and corresponding gene promoters, en-

zymes (RNA polymerase) bind to the genes and start transcription: The coding sequence is copied onto a messenger

RNA (mRNA, a sequence of nucleotides similar to the DNA but with Uracil instead of Thymine). In Eukaryotes,

when escaping the nucleus, the mRNA is further processed and spliced (e.g., so-called introns are cut out). The fol-

lowing translation into a sequence of amino acids (poly-peptide chain) is probably the most fascinating mechanism:

There exist exactly 60 different transfer RNA (tRNA) molecules, each of which has two parts. The “front” part is

a matching key to a triplet of base pairs, so-called codons, of which there exist |{A,U,G,C}3| = 64 in number (4
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from a theoretical point of view is that this mapping from a 4-ary DNA-subsequence to a 20-ary
amino acid sequence is non-trivial in the strict sense of definition 1.2.11 (page 25). This mapping
is defined by the tRNA molecules and reads, in natural organisms, as given in table 1.2. It turns
out that, in nature, the corresponding neutral sets are typically a neighborhood with respect to
genotypic variational topology. Hence, some genotypic mutations are neutral, have no effect on the
phenotype, but change the genetic representation of that phenotype. The following is an intriguing
study of how nature exploits this phenomenon:

Example 1.4.1 (Codon bias in HI viruses (Stephens & Waelbroeck 1999)). Stephens & Waelbroeck
(1999) empirically analyze the codon bias and its effect in RNA sequences of the HI virus. Several
nucleotide triplets may encode the same amino acid. For example, there are 9 triplets that are
mapped to the amino acid Arginine. If Arginine is encoded by the triplet CGA, then the chance
that a single point mutation within the triplet is neutral (does not chance the encoded amino
acid) is 4/9. In contrast, if it is encoded by AGA, then this neutral degree (definition 1.2.9, page
24) is 2/9. Now, codon bias means that, although there exist several codons that code for the
same amino acid (which form a neutral set), HIV sequences exhibit a preference on which codon is
used to code for a specific amino acid. More precisely, at some places of the sequence codons are
preferred that are “in the center of this neutral set” (with high neutral degree) and at other places
codons are biased to be “on the edge of this neutral set” (with low neutral degree). It is clear that
these two cases induce different exploration densities; the prior case means low mutability whereas
the latter means high mutability. Stephens and Waelbroeck go further by giving an explanation
for these two (marginal) exploration strategies: Loci with low mutability cause “more resistance
to the potentially destructive effect of mutation”, whereas loci with high mutability might induce
a “change in a neutralization epitope which has come to be recognized by the [host’s] immune
system” (Stephens & Waelbroeck 1999).

We should mention another interesting implication of the triplet encoding concerning phenotypic
variability: The insertion and deletion of a single nucleotide destroys the triplet rhythm and
eventually changes the values of all succeeding codons. These kinds of mutations are called frame
shifts and occur more frequently at certain repetitive sequences of the DNA. The interesting point
is, again, that a single (non-correlated) mutation can lead to a highly correlated variation of all
amino acids of the poly-peptide that gene codes for.

Another point concerning the mapping from DNA codons to amino acids is that the map-
defining tRNA molecules are themselves encoded in the genome. Consider a mutation of a tRNA
coding gene such that one of the tRNA molecules will induce another translation than usual.
This would lead to a huge and highly correlated phenotypic variation since all DNA-codons of a
given type will now be mapped to another amino acid. In today’s organisms, such a mutation
would definitely be lethal. At some time in early evolution though, the tRNA itself must have
been evolved, i.e., there must have been mutations that have lead to the tRNA molecules that
define the translation table 1.2. This phenomenon is often cited as an example for the “evolution
of the genotype-phenotype mapping”. We don’t agree with such interpretations since the tRNA

of the 64 codons are start or stop codons and need no translation). Depending on this codon key, the “back” part

of the tRNA is a matching key to one of 20 different amino acids. In this way, there is a precise but non-injective

match of a specific codon with a specific amino acid defined. (The usual notation for all the tRNA with different

front key but same back key is, e.g., tRNALeu
1 , tRNALeu

2 for the first and second tRNA molecule that binds to the

amino acid Leucine.) The translation process is as follows: The tRNA molecules are charged with matching amino

acids at their back part while the mRNA binds to the huge ribosome molecule (build itself out of ribosomal RNA,

rRNA). At the ribosome, matching tRNA molecules attach with their front at base pair triplets of the mRNA and,

since neighboring tRNA get so close (i.e., due to awfully complicated mechanisms), the amino acids at their back

parts join to the poly-peptide chain.
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Table 1.3: Protein folding (from Knippers, 1997, chapter 1):
The peptide binding itself is a ridged surface (i.e., Cα-CO-N are in one (gray-shaded) plane).
The N-Cαand Cα-C axes though are rotationally free. The interactions between the side chains
determine the spatial structure of the protein.
Two rather regular structures are common, the α-helix and the β-sheet: α-helices arise from
hydrogen bonds between the CO group of one amino acid and the NH group of the fourth next
amino acid. Only parts of a protein are organized in such a helix (e.g., the amino acid Proline
cannot have this hydrogen bond). β-sheets arise from hydrogen bonds between the CO and NH
groups of distant (parallel or anti-parallel) subsequences of 5-10 amino acids. These sequences join
together to form a sheet. Describing where a protein is organized as an α-helix or β-sheet means
describing the secondary structure of the protein.

molecules are only one step in the whole mapping from genotype to phenotype and we think of the
mapping as a whole as determined by natural laws. (We mentioned this issue before, in section
1.2.7 (page 27) “On evolving genetic representations”, and will give a final point of view in section
1.4.4 when discussing so-called models of evolvable genotype-phenotype mappings.)

Protein folding.

The mapping from genotype to phenotype becomes more complex when considering the func-
tionality of proteins instead of only their poly-peptide sequence. The functionality of a protein
mainly depends on its physical 3-dimensional shape which determines whether the protein can
bind to other molecules or not—many biological mechanisms really remind of keys matching to
keyholes. Hence, much research is done on the question how a mere sequence of amino acids folds
up to a complex tangled protein. Eventually, the law of this protein folding are governed by chem-
ical forces, mainly hydrogen bonds, between amino acids that become neighbored after folding.
The whole problem though is too complex and high-dimensional to be simulated by computers for
proteins of typical length (100-800 amino acids).

However, some regularities in the way proteins fold simplify the analysis: The α-helix and the
β-sheet are a natural outcome of folding parts of the poly-peptide chain and thus common building
blocks of proteins, see table 1.3. Hence, analyzing the structure of a protein may be decomposed
as in the following definition: A protein’s primary structure is its amino acid sequence. Knowing
about a protein’s secondary structure means knowing which parts of the amino acid sequence fold
to α-helices or β-sheets. Finally, the tertiary structure describes how these α-helix and β-sheet
building blocks are combined and wounded to form the protein’s 3D shape.
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Protein folding represents another part of the genotype-phenotype mapping, here mapping from
the amino acid sequence to a rough description of the proteins functionality. Again, this mapping is
highly neutral (non-injective) with extraordinary effects on phenotypic variability. Schuster (1996)
and Fontana & Schuster (1998) show that the neutral set [x] with respect to a given protein shape x
(i.e., the set of all sequences that fold to the same shape) is dense in G. Here, dense means that for
any sequence g in G, there exists at least one sequence gx in the neutral set which is mutationally
close to g. Mutational closeness can be measured by the number of possible mutations (given
by the mutational topology on G) that are necessary to mutate from gx to g. This shows how
extended these neutral set are in G, that they figuratively percolate all through G. In our language
this means that the space [x] of exploration distributions for a fixed phenotype x is very large and
comprises are great variety of different exploration distributions σ ∈ [x].

In conclusion, the genotype-phenotype mapping in nature is highly non-trivial in the strict sense
of definition 1.2.11 (page 25) and nature exploits the corresponding neutral sets as, e.g., shown
in example 1.4.1. The way how gene sequences represent protein functionalities is essentially
determined by (i) the laws of nature and (ii) the tRNA molecules. While the laws of nature were
not subject to evolutionary adaptation, the tRNA molecules certainly were.

1.4.2 The operon and gene regulation: Structuring phenotypic variabil-

ity

Considering the expression of genes as a phenotypic level, the operon is a paradigm for
introducing correlations in phenotypic variability.

The previous section gave a first example of how a non-trivial phenotypic variability is induced
by the mapping from DNA-codons to protein structures by virtue of the tRNA molecules and
protein folding. Another remarkable mechanism to introduce structure in phenotypic variability is
the operon, first described by Francois Jacob and Jacques Monod (Jacob & Monod 1961) for the
lac operon of E. coli. Operon-like mechanisms will also be the basis of the computational model
we will investigate in section 1.5.

The operon is a mechanism that correlates the expression of several genes in Prokaryotes.
Typically, the operon consists of a DNA-subsequence in the fashion 〈promoter, operator region,
several structural genes〉 where each structural gene is of the style 〈start-codon, coding sequence,
stop-codon〉, i.e., it codes for exactly one poly-peptide but lacks an own promoter. All these
structural genes are expressed at once if a polymerase binds to the operon’s promoter and if no other
molecules prohibit the polymerase to proceed by attaching to the operator region. Molecules that
inhibit the expression of structural genes by binding to the operator region are called repressors,
and such mechanisms are generally called gene regulation. Typically, a repressor indicates whether
the expression of the genes is necessary, e.g. for the metabolism, or not. But gene regulation may
become arbitrarily complex, reminding at complex logic dependencies: Some repressors bind to
the operator region only in conjunction with an another molecule, the corepressor (an “not A or

not B” conjunction: if either the repressor or the corepressor is missing, the genes are expressed).
In other cases, another molecule, the inducer, may bind to the repressor and prohibit its binding
to the operator region (an “not A or B” conjunction: if either the repressor is missing or an
inducer is present, the genes are expressed).

Example 1.4.2 (The lac operon in E. coli). The lac operon in E. coli bacterium comprises three
structural genes which code for enzymes that are necessary to metabolize lactose in the cell’s
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Figure 1.2: The arrows point a functionally complete eye modules that grew at various places due
to a single gene mutation of Drosophila Melanogaster; see example 1.3.1 (page 34). Reprinted from
(Halder, Callaerts, & Gehring 1995) with permission of the authors.

environment. If there is no lactose in the cellular environment, a repressor protein (which is
constantly expressed by the I gene) binds the the operon’s operator region and prevents the
expression of the three genes. If lactose is present, the lactose binds to the repressor protein such
that it looses its affinity to the operator region; the operator region is freed and the three genes
are expressed.

Eventually, any combination of logic kinds of gene regulation mechanisms becomes possible if
accounting that repressors, corepressors, and inducers may themselves be encoded on genes or even
on structural genes of other operons—mechanisms that are called gene interaction.

Again, what does that mean for our discussion of genotype and phenotype variability? The
point here is that gene regulation introduces high correlations between the expression of genes.
For example, as a partial genotype-phenotype mapping consider the relation between the DNA
and the production rates of proteins in a given cellular molecular environment. (In the previous
section, we captured these production rates by the operator Π.) If variability on the DNA is
rather simply structured, hypercube-like, without correlations between single 1st-type mutations,
there are high and complex structured correlations in the variability of the production rates: One
single mutation on the DNA may change the promoter of an operon such that all the structural
genes in the operon are not expressed; the production rates of the corresponding proteins decrease
in correlation. Similarly, one single mutation in a gene that codes for a repressor, corepressor,
or inducer may effect, via the recursive dependencies of gene regulation, the expression of many
genes; the production rates of the corresponding proteins all vary in a correlated way, where the
correlations are determined by the kind of gene interactions.

Again, it is important to note that these mechanisms of gene regulation, which determine the
correlatedness of protein production, are themselves encoded in the genome in terms of operator
and promoter regions. Hence, these interactions themselves evolved and again the interpretation is
tempting that the genotype-phenotype mapping (in this case the part of the GP-map the maps the
4-ary DNA sequence on the rates of protein production) is evolvable. As in the previous section
we regard this a misleading interpretation since the GP-map as a hole is fixed and determined
by the laws of nature (in this case the molecular laws that determine the binding of enzymes and
repressors, etc. to the DNA).

In section 1.3.1 (page 34) we already presented an intriguing example of complex phenotypic
variability due to gene regulation: the eyeless gene of Drosophila Melanogaster. See figure 1.2
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Figure 1.3: See example 1.4.3. Reprinted from (Chenn & Walsh 2002) with permission of the
authors.

for these phenotypic variations induced by a mutation of a single gene. Another example is the
following:

Example 1.4.3 (Mice’s brain). Chenn & Walsh (2002) demonstrated that the enforced expression
of a single protein (β-catenin) during brain development of a mouse enlarges the brain hugely.
Figure 1.3 shows this enlargement and the human-like folding of the tissue. Again, there exists a
single control mechanisms to produce this highly correlated phenotypic variation.

1.4.3 Flowers and Lindenmayer systems: An artificial model for a geno-

type-phenotype mapping

Grammar-like genotype-phenotype mappings realize complex, correlated variability in artifi-
cial evolutionary systems—similar to the operon—and induce highly non-trivial neutrality.

After discussing genotypic and phenotypic variability in natural systems we want to present
a more abstract example: Prusinkiewicz & Hanan (1989) proposed an encoding for plant-like
structures which they use to produce incredible realistic computer generated pictures of flowers and
trees (Prusinkiewicz & Lindenmayer 1990). The reason we refer to them is because their encoding is
an excellent example for recursive, grammar-like, highly non-trivial genotype-phenotype mappings.

The version of the encoding we describe here is based on sequences of the alphabet {F,+,-,&,^,
\,/,[,],.}. The meanings of these symbols are described in table 1.5. For example, the sequence
〈FF[+F][-F]〉 represents a plant for which the stem grows two units upward before it branches in
two arms, one to the right, the other to the left, each of which has one unit length and a leave
attached at the end.

The L-systems proposed by Lindenmayer are similar to grammars that produce such sequences.
For example, the L-system

start-symbol=X, X→F[+X]F[-X]+X, F→FF
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T = 7, δ = 20,
start-symbol=X,
X→F[+X]F[-X]+X,
F→FF

T = 7, δ = 20,
start-symbol=X,
X→F[++X]F[-X]+X,
F→FF

T = 7, δ = 20,
start-symbol=X,
X→F[+X]F[--X]+X,
F→FF

T = 7, δ = 20,
start-symbol=X,
X→.[+X]F[-X]+X,
F→FF

T = 4, δ = 20,
start-symbol=F,
F→FF-[-F+F+F]

+[+F-F-F]

T = 4, δ = 20,
start-symbol=F,
F→FF-[+F+F+F]

+[+F-F-F]

T = 4, δ = 20,
start-symbol=F,
F→FF-[-F-F+F]

+[+F-F-F]

T = 4, δ = 20,
start-symbol=F,
F→F.-[-F+F+F]

+[+F-F-F]

Table 1.4: Two examples for 2D plant structures and their phenotypic variability induced by
single symbol mutations. T denotes the number of iterations of the production rules to generate
the phenotype; δ is the rotation angle as described in table 1.5.
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F attach a unit length stem

+,-,&^,\,/ rotations of the “local coordinate system” (that apply on following attached units):
four rotation of δ degree in all four directions away from the stem (+,-,&,^) and
two rotations of ±δ degree around the axis of the stem (\,/).

[ a branching (instantiation of a new local coordinate system)

] the end of that branch: attaches a leave and proceeds with the previous branch
(return to the previous local coordinate system); also if the very last symbol of
the total sequence is not ], another leave is attached

. does nothing

Table 1.5: Description of the plant grammars symbols, cf. (Prusinkiewicz & Hanan 1989).

produces, after some recursions of the replacement rules, the sequences
〈X〉
〈FF[+X]FF[-X]+X〉
〈FFFF[+FF[+X]FF[-X]+X]FFFF[-FF[+X]FF[-X]+X]+FF[+X]FF[-X]+X〉
etc.
Table 1.4 demonstrates the implications of this encoding. The two plants on the left are examples

taken from (Prusinkiewicz & Lindenmayer 1990). To the right of these “originals” you find three
different variations of both plants. Each variation was produced by a single symbol mutation in
the genotype.

Think of the phenotype, i.e., the plant structure, as a long list of coordinates that describe the
position and orientation of each element of the plant (similar to how a computer would store a
2D vector graphics). If we now assume a single decorrelated mutation distribution on the geno-
type (where each symbol is mutated with probability α) what does the variation distribution on
phenotype space look like? What the pictures demonstrate is that there would be “large-scale”
correlations between the coordinates that describe the plant; in the examples, since there are
no decoupled subtrees, even all elements of the plant would be correlated w.r.t. this phenotypic
variation distribution.

The computational model in the next section will be based on a similar grammar-like genetic
encoding. One of the experiments will even consider the evolution of artificial plants. In principle,
the application of grammar-like genotype-phenotype mappings in evolutionary computation is not
new. However, there exists no approach in the literature that exploits σ-evolution, i.e., allows for
neutral mutations that enable transitions between different phenotypic variation distributions. We
will do so in our computational model.

1.4.4 Altenberg’s evolvable genotype-phenotype map

Ultimately, discussing Lee Altenberg’s model of the evolution of the genotype-phenotype map-
ping pinpoints our point of view on the subject.

Altenberg (1995) proposed a model of the evolution of the genotype-phenotype map which com-
prises three main elements:

• bit strings x ∈ {0, 1}n of length n,



1.4. RETHINKING NATURAL AND ARTIFICIAL EVOLUTIONARY ADAPTATION 55

• a n×f -matrix M ∈ {0, 1}n×f of 0s and 1s,

• and a fixed but randomly chosen function Φ : {0, 1}n × {1, .., f} × {0, 1}n → [0, 1].

He calls the strings x “genotypes” and M and Φ allow to calculate a fitness for each x as follows:
For each x we calculate f different fitness components φj , j = 1..f , by first calculating the bit-
wise and between the x and the j-th column of M , x̄j = x and (M·j), and then defining φj(x) =
Φ(x̄j , j, (M·j)). The total fitness of x is simply the average 1

f

∑
j φj(x) of these fitness components.

This means that the j-th column of M determines on which bits the j-th fitness component
generally depends, whereas Φ determines how it depends on these bits. This model is thus a
generalization of the NK-landscape models (Kauffman 1989) where N fitness components always
depend on K (randomly chosen) bits for string of fixed length N .

Altenberg interprets M as the genotype-phenotype mapping. If there are many 1s in a column,
the respective fitness component depends on many genes, i.e., polygeny is high. If there are many
1s in a row, the respective gene influences many fitness components, i.e., pleiotropy is high.

The model for the evolution of the genotype-phenotype mapping considers only one individual
x and is an alternation between a phase of hill climbing by adapting x without changing M or Φ
and a phase of genome growth where n is increased by 1 and the new gene in x and the new row
in M are chosen randomly. The hill climbing phase lasts until a local optimum is found. During
genome growth the addition of a new gene is accepted only when it results in no decrease of total
fitness. Otherwise the gene addition is discarded and “another gene” is added (i.e., the new gene
value and the new row of M are again chosen randomly). The genome growth phase lasts until a
new gene has been added without fitness decrease.

How should one interpret this model?

Altenberg demonstrates very interesting effects with this model, e.g., that during evolution
pleiotropy (as defined above) is decreased—an effect that he calls “constructional selection for low
pleiotropy.” But let us first discuss how one should interpret the model itself. Since Altenberg
calls M the GP-map and M evolves by continuous addition of rows during genome growth, he
considers his model as an example for the evolution of the GP-map. But is M really the mapping
from genotype to phenotype? What are actually the genotype and phenotype spaces in his model?

Let us first consider the space of all strings of any length as genotype space,

G =
nmax⋃
n=1

{0, 1}n .

And let us consider the tuple of vectors (x̄1, .., x̄n) with x̄j = x and (M·j) as the phenotype. In this
interpretation the fitness function from phenotype to a real number is fixed and well-defined via
Φ and, indeed, M specifies the mapping from genotype to phenotype. But the question becomes:
When you add a single gene to the genome x, namely add one bit to the bit-string, why should
this gene have random effects on the phenotype, i.e., why should the additional row in M (which
is supposed to correspond to the pleiotropic effects of the new gene) be random? In nature, when
you add a specific DNA sequence to a genome, the effects are not random but in some way (be it
stochastically) determined by the laws of nature.

For that reason one should interpret the new row of M not as a character of the GP-map but
as a character of the new gene. But all characters of a gene are determined by the sequence of
the gene. Hence, the new row of M is actually an abstract way of specifying a new gene in terms
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of its pleiotropic effects instead of by its sequence—and thus M is part of the genotype! In that
interpretation the genotype space comprises the matrices,

G =
nmax⋃
n=1

{0, 1}n × {0, 1}n×f .

The genotype-phenotype mapping G → P , (x,M) 7→ (x̄1, .., x̄n), is well-defined, fixed, and not
subject to evolution. This interpretation challenges none of the results presented by Altenberg—
the genotype (x,M) evolves, via constructional selection, such that pleiotropy between genes is
decreased. But it challenges the statement that this is due to an evolution of the GP-map.

This discussion should be transferred to the scenarios we discussed earlier. E.g., the tRNA
molecule could be compared with M : it characterizes the effects of genes. But the evolution of
the tRNA molecules does not imply an evolution of the GP-map; the tRNA is itself specified by
the genome. The same holds for any kind of mechanisms that determine the phenotypic effects of
genes but are themselves determined by the genome as a whole (e.g., gene regulation mechanisms
which are determined by the sequences of promoters, inhibitors, etc.).
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1.5 A computational model

The model we introduce and discuss in this section is meant to demonstrate the evolution of
genetic representations in the case of a non-trivial GP-map. The main point will be a specific
genotype-phenotype mapping that we introduce as an abstraction and simplification of ontogenetic
mechanisms. Although the model is rather simple, it offers a very complex variability of exploration
distributions that goes beyond existing models.

1.5.1 The genotype and genotype-phenotype mapping

An abstract model of ontogenetic development mimics the basic operon-like mechanism to
induce complex phenotypic variability.

Let us consider the development of an organism as an interaction of its state Ψ (describing,
e.g., its cellular configuration) and a genetic system Π, neglecting environmental interactions.
Development begins with an initial organism in state Ψ(0), the “egg cell”, which is also inherited
and which we model as part of the genotype. Then, by interaction with the genetic system, the
organism develops through time, Ψ(1),Ψ(2), .. ∈ P , where P is the space of all possible organism
states. Hence, the genetic system may be formalized as an operator Π : P → P modifying
organism states such that Ψ(t) = Πt Ψ(0). We make a specific assumption about this operator: We
assume that Π comprises a whole sequence of operators, Π = 〈π1, π2, .., πr〉, each πi : P → P . A
single operator πi (also called production rule) is meant to represent a transcription module, i.e.,
a single gene or an operon. Based on these ideas we define the general concept of a genotype and
a genotype-phenotype mapping for our model:

A genotype consists of an initial organism Ψ(0) ∈ P and a sequence Π = 〈π1, π2, .., πr〉, πi : P →
P of operators. A genotype-phenotype mapping φ develops the final phenotype Ψ(T ) by recursively
applying all operators on Ψ(0).

This definition is somewhat incomplete because it does not explain the stopping time T of
development and in which order operators are applied. We keep to the simplest options: We apply
the operators in sequential order and will fix T to some chosen value.

For the experiments we need to define how we represent an organism state Ψ and how operators
are applied. We represent an organism by a sequence of symbols 〈ψ1, ψ2, ..〉, ψi ∈ A. Each symbol
may be interpreted, e.g., as the state of a cell; we choose the sequence representation as the
simplest spatially organized assembly of such states. Operators are represented as replacement
rules 〈a0:a1, a2, ..〉, ai ∈ A, that apply on the organism by replacing all occurrences of a symbol a0

by the sequence 〈a1, a2, ..〉. If the sequence 〈a1, a2, ..〉 has length greater than 1, the organism is
growing; if it has length 0, the organism shrinks. Calling a0 promoter and 〈a1, a2, ..〉 the structural
genes gives the analogy to operons in natural genetic systems. For example, if the initial organism
is given by Ψ(0)=〈a〉 and the genetic system is Π=

〈
〈a:ab〉,〈a:cd〉,〈b:adc〉

〉
, then the organism grows

as: Ψ(0)=〈a〉, Ψ(1)=〈cdadc〉, Ψ(2)=〈cdcdadcdc〉, etc.

The general idea is that these operators are basic mechanisms which introduce correlating
effects between phenotypic traits. Riedl (1977) already claimed that the essence of the operon
is to introduce correlations between formerly independent genes in order to adopt the functional
dependence between the genes and their phenotypic effects and thereby increase the probability of
successful variations.
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The proposed model is very similar to the models by Kitano (1990), Gruau (1995), Lucas (1995),
and Sendhoff & Kreutz (1998), who use grammar-encodings to represent neural networks. It is
also comparable to new approaches to evolve complex structures by means of so-called symbiotic
composition (Hornby & Pollack 2001a; Hornby & Pollack 2001b; Watson & Pollack 2002).

The crucial novelty in our model are specific 2nd-type mutations. These allow for genetic
variations that explore the neutral sets which are typical for any grammar-like encoding. Without
these neutral variations, self-adaptation of genetic representations and of exploration distributions
is not possible.

1.5.2 2nd-type mutations for the variability of exploration

A new type of structural mutations allows for reorganizations of the genetic representations
and exploration of the respective neutral sets.

Consider the three genotypes given in the first column,
genotype phenotype phenotypic neighbors

Ψ(0)=〈a〉, Π=
〈
〈a:bcbc〉

〉
〈bcbc〉 〈*〉, 〈*cbc〉, 〈b*bc〉, 〈bc*c〉, 〈bcb*〉

Ψ(0)=〈a〉, Π=
〈
〈a:dd〉, 〈d:bc〉

〉
〈bcbc〉 〈*〉, 〈*bc〉, 〈bc*〉, 〈*c*c〉, 〈b*b*〉

Ψ(0)=〈bcbc〉, Π=
〈 〉

〈bcbc〉 〈*cbc〉, 〈b*bc〉, 〈bc*c〉, 〈bcb*〉
All three genotypes have, after developing for at least two time steps, the same phenotype Ψ(t)=
〈bcbc〉, t ≥ 2. The third genotype resembles what one would call a direct encoding, where the
phenotype is directly inherited as Ψ(0). Assume that, during mutation, all symbols, except for the
promoters, mutate with fixed, small probability. By considering all one-point mutations of the three
genotypes, we get the phenotypic neighbors of 〈bcbc〉 as given in the third column of the table,
where a star * indicates the mutated random symbol. These neighborhoods differ significantly; we
have an example for a neutral set such that phenotypic variational topology along this set varies.
The neighborhood induced by the second genotype is particularly interesting: A mutation on the
first operator leads to neighbors 〈*bc〉, 〈bc*〉 where the whole “module” bc is replaced by another
symbol. On the other hand, a mutation on the second operator leads to neighbors 〈*c*c〉 and
〈b*b*〉 such that the two stars in each neighbor represent the same random symbol; the module bc

itself is mutated and duplicated. Thus, there exist high correlations in the exploration distribution
between symbols within one module and the corresponding symbols of different modules. This is a
first example of how correlations and the hierarchical kind of genotype-phenotype mapping leads
to a notion of modularity.

In order to enable a variability of genetic representations within such a neutral set we need to
allow for mutational transitions between phenotypically equivalent genotypes. A transition from
the 1st to the 3rd genotype requires a genetic mutation that applies the operator 〈a:bcbc〉 on the
egg cell 〈a〉 and deletes it thereafter. Both, the application of an operator on some sequence (be
it the egg cell or another operator’s) and the deletion of operators will be mutations we provide
in the computational model. The transition from the 2nd to the 1st genotype is similar: The 2nd
operator 〈d:ab〉 is applied on the sequence of the first operator 〈a:dd〉 and deleted thereafter. But
we must also account for the inverse of these transitions. A transition from the 3rd genotype to
the 1st is possible if a new operator is created by randomly extracting a subsequence (here bcbc

from the egg cell) and encoding it in a new operator (here 〈a:bcbc〉). The original subsequence is
then replaced by the promoter. Similarly, a transition from the 1st to the 2nd genotype occurs



1.5. A COMPUTATIONAL MODEL 59

• First type mutations are ordinary symbol mutations that occur in every sequence (i.e., promoter or rhs

of an operator) of the genotype; namely symbol replacement, symbol duplication, and symbol deletion,

which occur with equal probabilities. The mutation frequency for every sequence is Poisson distributed

with the mean number of mutations given by (α · sequence-length), where α is a global mutation rate

parameter.

• The second type mutations aim at a neutral restructuring of the genetic system. A 2nd-type mutation

occurs by randomly choosing an operator π and a sequence p from the genome, followed by one of the

following operations:

– application of an operator π on a sequence p,

– inverse application of an operator π on a sequence p; this means that all matches of the operator’s

rhs sequence with subsequences of p are replaced in p by the operator’s promoter,

– deletion of an operator π, only if it was never applied during ontogenesis,

– application of an operator π on all sequences of the genotype followed by deletion of this operator,

– generation of a new operator ν by extracting a random subsequence of stochastic length 2 +

Poisson(1) from a sequence p and encoding it in an operator with random promoter. The new

operator ν is inserted in the genome behind the sequence p, followed by the inverse application

of ν on p.

All these mutations occur with equal probabilities. The total number of second type mutations for a

genotype is Poisson distributed with mean β. The second type mutations are not necessarily neutral

but they are neutral with sufficient probability to enable an exploration of neutral sets.

• A genotype is mutated by first applying second type mutations and thereafter first type mutations,

the frequencies of which are given by β and α, respectively.

Table 1.6: The mutation operators in our model.

when the subsequence bc is extracted from the operator 〈a:bcbc〉 and encoded in a new operator
〈d:bc〉.

Basically, the mutations we will provide are the generation of new operators by extraction
of subsequences (deflation), and the application and deletion of existing operators (inflation).
Technical details can be found in table 1.6; the main point of these mutation operators though is
not their details but that they in principle enable a transition between phenotypically equivalent
representations in our encoding.

1.5.3 First experiment: Neutral σ-evolution

Genetic representations reorganize themselves in favor of short genome length and modular
phenotypic variability.

Specification.

The first experiment is designed to demonstrate the dynamics of σ-evolution on a neutral set.
We initialize a population of λ = 100 genotypes on a single point in the neutral set and investigate
how evolution explores the rest of the neutral set. The neutral set comprises all possible encodings
of the fixed, self-similar phenotype 〈abcdeabcdeabcdeabcdeabcdeabcde〉, i.e. 5× the sequence abcde.
We choose the direct encoding, without operators and Ψ(0) equal to the phenotype, to initialize
the population. The mutations we introduced in the last section allow for the development of more
complex genetic representations.
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λ 100 (offspring) population size

µ 30 (selected) parent population size

α .03 frequency of symbol replacement mutations

.0 frequency of symbol insertion and deletion mutations

β .1 frequency of all second type mutations

A a,..,h symbol alphabet

T 1 stopping time of development

2000 number of samples to analyze the exploration distributions

Table 1.7: The parameters we use in the first experiment

The mutations, the genotype-phenotype mapping, and the initialization have been specified so
far. The selection we utilize is the most simplest one could think of: Only “correct” phenotypes,
equal to the one given by the neutral set that we investigate, are selected. The algorithmic
implementation is also very simple; it is the so-called (µ, λ)-selection (Schwefel 1995). We randomly
select µ = 30 parents out of the population (it never occurred that we had less than µ correct
phenotypes in the population), generate λ = 100 clones of them (by roulette-wheel selection),
and mutate this offspring. We simulated no crossover. The few parameters of the simulation are
summarized in table 1.7.

Measures.

We utilized several measures to analyze the dynamics of σ-evolution. Three of them are features
of the phenotypic exploration distribution Ξσ and are calculated from a finite size sample (of size
2000) of the distribution for each individual. First, this is the neutral degree

n = (Ξσ)(x) ,

as we defined it in 1.2.9 (page 24), where x is the parent’s phenotype, in our case the “correct
phenotype”. Second, we calculate the mutual information between phenotypic variables in the
exploration distribution Ξσ,

Iij =
∑
a,b∈A

Ξσij(a, b) ln
Ξσij(a, b)

Ξσi(a) Ξσj(b)
,

where Ξσi denotes the marginal distribution of Ξσ in the i-th variable, and Ξσij the marginal
in both, the i-th and j-th variable. We display the mutual information by normalizing with the
marginal entropies,

I ′ij =
2 Iij

Hi +Hj
, Hi =

∑
a∈A

Ξσi(a) lnΞσi(a) ,

and drawing I ′ij as a gray-shade matrix where black corresponds to 0 and white to 1. The third
measure, the modular degree, we specifically introduce for our scenario: It is the sum of probabilities
that, when a variation occurs at position i of the phenotype, the same variation occurs also at a
position [(i+k ·5) mod 25], summed over k = 1..4. The positions [(i+k ·5) mod 25] have distance
5, 10, 15, or 20 from the position i and represent corresponding variables of different modules. If
the modular degree is high, then mutations within one module are likely to occur in the same way
also in other modules—it is thus a measure of the self-similarity of variability.
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gene-
ration

genotype I ′ij

0
〈abcdeabcdeabcde...

...abcdeabcde〉

21
〈abchbchbchbchbcde〉
〈h:dea〉

125
〈abfhbfhbcde〉
〈f:chbc〉
〈h:dea〉

145
〈adadadadad〉
〈d:bcde〉

150
〈fffff〉
〈f:ace〉
〈c:bcd〉

200
〈fffff〉
〈f:abcde〉

gene-
ration

genotype I ′ij

215
〈fffff〉
〈f:he〉
〈h:abcd〉

220
〈hehehehehe〉
〈h:abcd〉

225
〈eef〉
〈e:ff〉
〈f:abcde〉

255
〈f〉
〈f:fffff〉
〈f:abcde〉

270
〈fffff〉
〈f:abcde〉

Figure 1.4: Different genotypes encode the same phenotype of length 25 but with different explo-
ration distributions. The 25×25-matrix I ′ij comprises the normalized mutual informations between
two phenotypic variables in the phenotypic exploration distribution Ξσ. White means 1 and black
means 0. The diagonals are white because Iii = Hi. The regular strips in the matrix exhibit the
correlations between symbols (typically they have distance 5 in the phenotype sequence!). The
first symbols of the phenotype sequence correspond to the upper left corner of the matrix, the
last symbols to the lower right. E.g., the matrix in generation 225 shows that the last module is
encoded differently than the others.

Two further measures give simple information about the genetic representation. The genome
length is the sum of lengths of the egg cell Ψ(0) and all operators πi. The operator usage is the
number of operators that have been applied during ontogenesis.

Results.

Figures 1.4, 1.5, and 1.6 display the result of the simulation. From figure 1.4 one gets an
idea on what kind of genotypes are explored during σ-evolution. It displays the genotypes and
mutual information matrices of exploration for a single randomly picked individual in selected
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generations. All genotypes represent of course the same phenotype but evolution has managed
to generate new operators by extracting and encoding subsequences. The modular encoding of
these subsequences leads to the correlations between certain phenotypic variables as displayed by
the mutual information matrices. For example, the representation found in generation 21 has
extracted a subsequence of length 3 and the mutual information matrix exhibits the correlations
between those phenotypic variables that stem from the same variable on the first operator. In
the next genetic reformation, at generation 125, a second operator is introduced leading to more
correlations. Further reformations occur until, in generation 200, a genetic representation is found
that one might consider optimal. It is the representation of minimal length 11. In the sequel, other
genetic representations are found, but all similar to the optimal one.

Since the evolution occurs only on a neutral set, there is no need to display a fitness curve.
Instead, figures 1.5 and 1.6 directly illustrate the evolution of phenotypic exploration distributions
by displaying features of Ξσ. Figure 1.5 shows the curves for the same individual as in figure 1.4.
Notice that the scaling of the genome length has been inverted to emphasize the strong relation
between genome length and neutral degree. Evolution starts with a representation of length 25
and rather low neutral degree of 0.45. Until about generation 200, the genome length decreases
significantly, down to length 11, and the neutral degree increases correspondingly to 0.7. The
decrease of genome length is achieved by using operators which, in turn, induce these special kind
of correlations measured by the modular degree. After generation 200, all four measures fluctuate
in high correlation. Figure 1.6 displays the same four measures, but now averaged over the whole
population of λ = 100 offspring. The upper two curves show the strong pressure towards small
genome length and high neutral degree. And the lower two curves show the concise impact of
operator usage on the modularity of the exploration distribution.

Validation of theory.

In summary, what we find is that σ-evolution, here exclusively on a neutral set, indeed realizes
an exploration of the neutral set and a great variability of phenotypic exploration distributions with
respect to the three features we tracked (neutral degree, modular degree, and mutual information).
The dynamics of σ-evolution are such that the neutral degree increases together with certain
correlations and modular dependencies. We have to check that this is consistent with the theoretical
findings of the previous section.

The selection mechanism was such that “correct” phenotype are selected with equal probability.
This means that for each generation t we may choose a selection

f̃ (t)(p) =

{
1
c(t) if p = pcorrect

0 if p 6= pcorrect .

where pcorrect ∈ P is the correct phenotype and c(t) is the number of correct phenotypes in this
generation. The σ-quality of an exploration distribution σ is〈

f̃ (t) , σ
〉

=
∑
p∈P

f (t)(p) Ξσ(p) =
1
c(t)

Ξσ(pcorrect) =
n

c(t)
, (1.14)

where pcorrect ∈ P is the correct phenotype and n the neutral degree of σ. Thus, at each time,
σ-quality is proportional to the neutral degree.

The neutral degree is actually a measure of mutational robustness, i.e., the chance that muta-
tions do not destroy a phenotype. In correspondence to Wagner (1996), our experiment demon-
strates the evolution of evolutionary plasticity towards mutation robustness under the condition
that evolution is not dominated by innovative progress.
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Figure 1.7: The fitness depicted here is the negative percentage of symbols of a phenotype that do
not match with the correct phenotype. The four graphs display the evolution with and without
2nd-type mutations (β = 0.1 and β = 0) and with low and high mutation rate (α = 0.03 and
α = 0.06). Each graph contains the dotted curves of 10 independent trials and their average.
Notice that the time scales are different for different mutation rates α.

1.5.4 Second experiment: σ-evolution for phenotypic innovation

Genetic representations develop in favor of highly correlated phenotypic variability allowing
for simultaneous phenotypic innovations.

The second experiment demonstrates the benefit of 2nd-type mutations for phenotypic adapta-
tion. The scenario remains the same as for the first experiment except for the initialization and
selection. We initialize each individual as Ψ(0)=〈a〉 and no operators. The µ individuals that are
closest to the correct phenotype are selected ((µ, λ)-selection with respect to Hamming distance).
We investigate four different cases: We study the dynamics with and without 2nd-type mutations
(β = 0.1 and β = 0) once for moderate mutation rate (α = 0.03) and once with higher mutation
rate (α = 0.06) w.r.t. symbol replacement, insertion, and deletion. All remaining parameters are
the same as for the first experiment. We perform 10 independent trials for each case, see figure
1.7.

The two graphs on the left refer to the case of moderate mutation rate α = 0.03, where moderate
means that α < 1

25 (recall the length 25 of the correct phenotype). The upper graph displays the
fitness curves with 2nd-type mutations enabled, β = 0.01, whereas for the lower graph β = 0
and no 2nd-type mutations occur. Without 2nd-type mutations, neutral sets are not explored, no
operators are created and the encoding remains a direct one, as it was initialized. In both cases the
optimal phenotype is found, but the characteristics of evolution are very different. For the direct
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encoding, innovation occurs as successive adaptation of single symbols what becomes apparent
by the successive small steps in the fitness curve. Instead, with 2nd-type mutations enabled, a
few small steps of innovation occur at the beginning; then huge steps of innovation occur when
2nd-type mutations have generated operators, changed the exploration distribution, and enabled
a modular and self-similar growth of the phenotype; and further smaller steps of adaptation follow
until the optimum is reached. These last steps can be interpreted as symbol-wise adaptation of
the tail and head of the phenotype (which might not be encoded modularly from the beginning,
see below). Evolution with 2nd-type mutations is much faster due to the better adapted (modular,
self-similar) exploration distributions. Here, the selective pressure in σ-evolution is not only the
neutral degree but the symmetric structure of the fitness distribution, which is not concentrated
only at the optimum as for the first experiment.

The two graphs on the right display the case of high mutation rate α = 0.06. The direct encoding
of a phenotype of length 25 is not stable and the curves for the direct encoding case (lower plot)
do not converge towards the optimal phenotype but fluctuate around 20% non-optimal symbols.
Instead, when 2nd-type mutations are enabled, β = 0.01, evolution arranges to find a stable
encoding of the optimal phenotype by using operators and decreasing description length.

We observe an important phenomenon of σ-evolution in our model. The neutral genetic vari-
ations supposed to explore the variety of phenotypically equivalent encodings also change the
description length. However, in the case of high mutation rates, encodings of long description
lengths are not stable. Often though, a transition between different compact encodings requires
first a neutral inflation of the genome (dissolving and removing operators and approaching a more
direct encoding) before deflating it again. The intermediate state of long description length, al-
though it is phenotypically equivalent, is a barrier for σ-evolution because in the case of high
mutation rate its σ-quality is very low. These barriers inhibit the exploration of the whole neutral
set and cause local optima with respect to σ-quality. In some cases, this also inhibits the transition
toward the optimal phenotype.

Four of the 10 runs (for α = 0.06 and β = 0.01) exemplify this phenomenon. Two runs did not
at all find the optimal phenotype, the population centered around the following genotypes:

genotype phenotype

〈abgdeacccc〉, 〈c:bc〉, 〈c:cdea〉 〈abgde abcde abcde abcde abcdea〉
〈abcddddae〉, 〈d:deabc〉 〈abcde abcde abcde abcde abcae〉

The first genotype maneuvered itself into a dead-end in several respects. The g (3rd symbol of
Ψ(0)) cannot be replaced by a c since c is used as a promoter. The only chance would be to dissolve
the two operators by inflation and thereafter create new operators with other promoters than c.
This however would require to trespass the barrier of long description length. Further, the last
symbol of the phenotype (the a) cannot be removed because it is needed in the 2nd operator as
part of the module bcdea. The genetic system implemented the module bcdea instead of abcde.
The situation is similar for the second genome. The symbol a (second to last) in Ψ(0) cannot
be replaced by a d because d is used as a promoter. Again, only an inflation would enable an
advantageous genetic reformation.

Two further runs did not realize the “optimal encoding” of length 11, the population centered
around the following genomes:

genotype phenotype

〈abcffffde〉, 〈f:deabc〉 〈abcde abcde abcde abcde abcde〉
〈accccd〉, 〈c:da〉, 〈d:bcde〉 〈abcde abcde abcde abcde abcde〉

Both of them realize this sort of unfortunate modularization; the first implements modules deabc,
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the second bcdea. This kind of modularization may stem from earlier epochs of evolution where
subsequences are extracted from the middle. Consequently, the head and tail of the final phenotype
are not encoded by operators. A restructuring in favor of shorter description length would require
an inflation.

It is particular interesting to see this crucial impact of early developed genetic structures or
modules on evolution.

1.5.5 Third experiment: Evolving artificial plants

Evolving artificial plants is an illustrative demonstration of the evolution of genetic repre-
sentations to encode large-scale, structured, self-similar phenotypes.

The third experiment concerns the evolution of artificial plants in the encoding of Prusinkiewicz
& Hanan (1989) that we already discussed in section 1.4.3 (page 52). The sequences we are evolving
are arbitrary strings of the alphabet {A,..,P} which are mapped on the L-system symbols according
to {A,..,I} 7→ {F,+,-,&,^,\,/,[,]} and {J,..,P} 7→ {.}. Given such a sequence we evaluate its
fitness by first drawing the corresponding 3D plant in a virtual environment (the OpenGL 3D
graphics environment). We chop off everything of the plant that is outside a bounding cube of size
b× b× b. Then we grab a bird’s view perspective of this plant and measure the area of green leaves
as observed from this perspective. The measurement is also height dependent: the higher a leave
(measured by OpenGL’s depth buffer in logarithmic scale where 0 corresponds to the cube’s floor
and 1 to the cube’s ceiling), the more it contributes to the green area integral

L =
∫
x∈bird’s view area

[
color of x = green

]
·
[
height at x

] dArea
b2

∈ [0, 1] . (1.15)

This integral is the positive component of a plant’s fitness. The negative component is related to
the number and “weight” of branch elements: To each element i we associate a weight wi which is
defined recursively. The weight of a leave is 1; the total weight of a subtree is the sum of weights of
all the elements of that subtree; and the weight of a branch element i is 1 plus the total weight of
the subtree that is attached to this branch element. E.g., a branch that has a single leave attached
has weight 1 + 1 = 2, a branch that has two branches each with a single leave attached has weight
1 + (2 + 1) + (2 + 1) = 7, etc, see figure 1.8. The idea is that wi roughly reflects how “thick” i has
to be in order to carry the attached weight. The total weight of the whole tree,

W =
∑
i

wi ,

gives the negative component of a plant’s fitness. In our experiments we used

f = L − %W

as the fitness function, where penalty factor % was chosen % ∈ {0, 10−6, 10−7} in the different
experiments.

Details of the implementation.

Evolving such plant structures already gets close to the limits of today’s computers, both, with
respect to memory and computation time. Hence, we use some additional techniques to improve
efficiency: First, we impose different limits on the memory resource that a genotype and phenotype
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Figure 1.8: Example for the weight functional. The dashed areas mark subtrees of the plant. The
numbers indicate the weight each plant elements and subtrees. The plant’s total weight is 13.

is allowed to allocate, namely three: (1) The number of symbols in a phenotype was limited to be
lower or equal than a number Mmax. This holds in particular during ontogenesis: If the application
of an operator results in a phenotype with too many symbols, then the operator is simply skipped.
(2) The number of operators in a genotype is limited to be ≤ Rmax. If a mutation operator would
lead to more chromosomes, this mutation operator is simply skipped (no other mutation is made in
place). (3) There is a soft limit on the number of symbols in a single chromosome: A duplication
mutation is skipped if the chromosome already has length ≥ Umax. The limit though does not
effect 2nd-type mutations; an inflative mutation π · p may very well lead to chromosomes of length
greater than Umax. phenotype is allowed to allocate, namely three:

Second, we adopt an elaborated technique of self-adaptation of the mutation frequencies. We
used the scheme similar to the self-adaptation of strategy parameters proposed by Bäck (1996).
Every genome i additionally encodes two real numbers αi and βi. Before any other mutations are
made, they are mutated by

αi ← αi (S N(0, τ) + τ ′) , (1.16)

βi ← βi (S N(0, τ) + τ ′) ,

where S N(0, τ) is a random sample (independently drawn for αi and βi) from the Gaussian dis-
tribution N(0, τ) with zero mean and standard deviation τ . The parameter τ ′ allows to induce a
pressure towards increasing mutation rates. After this mutation, αi and βi determine the mutation
frequencies of 1st- and 2nd-type mutations respectively.

The A-trial: Demonstrating problems and features.

Let us discuss four trials made with different parameters. Table 1.8 summarizes the parameter
settings. The A-trial was one of our first experiments with the system. It assumes a recursion time
T = 5, which actually leads to problems and therefore is replaced by T = 1 in later experiments.
I chose to discuss the A-trial not because it exhibits a nice and efficient evolutionary dynamics
but rather demonstrates typical problems and features that one needs to know to understand the
system.

See figure 1.9. For the A-trial, the curves show some sudden change at generation ∼450 where
the fitness, the number of phenotypic elements, and the total genome length explodes. The most
significant curve in the graph after this explosion is the decaying genome size. We will find this
phenomenon of explosion followed by decay of genome length also in other experiments and it
typically indicates that the genomes in this period are too large and mutationally unstable. Hence,
the innovation extincts and genomes are decaying until, in generation ∼1700, another innovation
occurred and leads to a stable situation at generation ∼2600.
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A-trial B-trial C-trial D-trial

δ, l 30/.5 ←↩ 20/.3 ←↩ L-system angle δ, width l of the leave geometry

b 10 ←↩ 20 ←↩ size of the bounding cube

T 5 ←↩ 1 ←↩ stopping time of development

% 0 ←↩ 10−7 10−6 factor of the weight term W in a plant’s fitness

α .01 ←↩ ←↩ ←↩ (initial) frequency of first type mutations (ã,
aa, 6a)

β .1 .01 .01 .3 (initial) frequency of second type mutations

τ (τ ′) 1. (0) .2 (0) .5 (.1) 0 (0) rate of self-adaptation of α and β

rank µ, λ ←↩ ←↩ type of selection

yes no ←↩ ←↩ crossover turned on?

〈A〉 〈AFJ〉 〈AAAFFFJ〉 ←↩ initialization of Ψ(0) of all genotypes in the first
population (they have no operators)

A {A,..,P} ←↩ ←↩ ←↩ symbol alphabet

λ 100 ←↩ ←↩ ←↩ (offspring) population size

µ 30 ←↩ ←↩ ←↩ (selected) parent population size

Mmax 1000 10 000 100 000 1 000 000 maximal number of symbols in a phenotype

Rmax 100 ←↩ ←↩ ←↩ maximal number of operators allowed in one
genotype

Umax 40 ←↩ ←↩ ←↩ symbol duplication mutations are allowed only
if a sequence has less than Umax symbols

Table 1.8: Parameter settings of the four trials. The “←↩” means “same as for the previous trial”
and shows that only few parameters are changed from trial to trial.

In table 1.9, the illustrations of the best individual in selected generations explain in more detail
what happened. Until generation 420 the population consists of very basal phenotypic structures
of no more than about 44 elements. Then, within the next few generations, a restructuring of the
genome leads to much more complex phenotypes and the number of elements increases rapidly
up to ∼600 elements in generation 465. However, this restructuring was such that all operators
disappeared and the phenotypes were solely encoded by a huge Ψ(0); the genome size increases
severely (from 37 in generation 420 to 2742 in generation 465) which leads to very high mutability.
As a consequence these phenotypes are unstable, phenotypic variability becomes almost chaotic.
The former innovation dies out, the genome size settles back to 73 in generation 1650 where the
phenotype has only 25 elements. In generation 1680 a new innovation occurs. Again the recursive
dependency of the new C-operator is exploited to encode a large number of phenotypic elements
(326 in generation 1680). But this time the genome size remains reasonably limited (82) to ensure
the stability of the encoding. This kind of genome dominates the next 1000 generations until,
in generation 2560, a slight reorganization of that same genome leads to an even shorter genome
that encodes about the same number of phenotypic elements in a very structured way—see the
hexagonal structure. This genetic organization overtakes the generation at about generation 2560
and is continuously further optimized in the following. In the end, a second recursive G-operator
was added and a very short genome of size 62 encodes a nicely hexagonally structured, dense
phenotype of 322 elements that efficiently covers the area with green leaves.
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What this trial demonstrates is the important interplay between genome size and phenotypic
innovation. Only a properly organized genome can stably encode a large phenotype. Our choice
of a recursion time T = 5 lead to the problem of very sudden phenotypic “explosions.”

The B-trial: Fixing problems of the A-trial.

The B-trial adopts most parameters of the A-trial except for the mutation rate parameters,
axion initialization, and Mmax. The mutation rate parameters were chosen to make the evolution
more stable, in particular the self-adaptation of mutation frequencies was damped (τ = .2). The
maximal phenotype size was increased to Mmax=10 000 and all Ψ(0) were initialized by a small
reasonable phenotype to speed up the early phase of evolution. We only briefly need to discuss the
results. The second graph in figure 1.9 exhibits a clear structure. The gnome sizes are one order
of magnitude lower than for the A-trial while the number of phenotypic elements encoded is an
order of magnitude higher. At generation 200, the crucial innovation occurs and rapidly increases
fitness almost to the optimal value 1.

The illustrations in table 1.10 confirm that evolution occurs rather orderly. Up to generation 180,
phenotypes are improved in tiny steps. In generation 195 operator usage is exploited. The genome,
consisting of the egg cell and one operator that is always applied 5×, is continuously optimized
until it encodes surface-like phenotypic structures in generations 205 to 220. The concept is further
developed until in generation 380 the plant’s leaves cover almost all the area.

The C-trial.

The major difference of the C- and D- trials to the A- and B- trials is that we set the recursion
time T to 1 and we introduce a non-vanishing weight penalty factor % = 10−7. The consequence of
T = 1 is that it is much harder for a genome to encode large phenotypic structures. Instead of a
single operator that is applied 5×, the genome has to develop more operators, each of which is only
applied once. As a consequence, the phenotypic structures become more interesting. The weight
punishing factor % enforces structures that are regularly branched instead of long curling arms.
Further, we increase the limit Mmax on the maximal phenotype size and initialize Ψ(0) non-trivially
with small phenotypes to speed up early evolution.

In the third graph of figure 1.9 we also see some sudden change at generation ∼4000 where the
fitness, the number of phenotypic elements, the number of operators in the genomes, and the total
genome length explodes. Between generation ∼4000 and ∼5400, the most significant curve in the
graph is the repeatedly decaying genome size. Indeed we will find that the genomes in this period
are too large and mutationally unstable. The innovations extinct and genome size decays until
at generation ∼5400 a comparably large number of phenotypic elements can be encoded by much
smaller genomes that comprise more operators.

Referring to table 1.11 we find that for a long time not much happens until, in generation 4000,
a couple of leaves turn up at once at certain places of the phenotype. This is exactly what we
defined a correlated phenotypic adaptation and was enabled by encoding all the segments that
now carry a leave within one operator. The concept is rapidly exploited until, in generation 4025,
every phenotypic segment has a leave attached and is encoded by the single operator, namely the
A-operator. The resulting “long-arm-building-block” triggers a revolution in phenotypic variability
and leads to the large structures as illustrated for generations 4400 (3467 elements) and 4500 (7698
elements). However, as we had it in the A-trial, these structures are not encoded efficiently, the
genome size is too large (512 and 720, respectively) and phenotypic variability becomes chaotic.
The raise is followed by a fall of this species until, in generation 5100, evolution finds a much better
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structured genome to encode large phenotypes. The J-operator becomes dominant and allows to
encode 1479 phenotypic elements with a genome size of 217. This beautiful concept is further
improved and evolves until, in generation 8300, a genome of size 141 with 2 operators encodes a
regularly structured phenotype of 3652 elements.

The D-trial.

For the D-trial we turned off the self-adaptation mechanism for the mutation frequencies (based
on the experience with the previous trials we can now estimate a good choice of α = .01 and
β = .3 for the mutation frequencies and fix it) and increase the limit Mmax to maximally 1 000 000
elements per phenotype. The severe change in the resulting structures is also due to the increase of
the weight penalty factor % to 10−6—the final structure of the C-trial has a weight of about .3·10−6

which would now lead to a crucial penalty. The weight punishing factor % enforces structures that
are regularly branched instead of long curling arms.

Table 1.12 presents the results of the D-trial. Comparing the illustrations for generation 950,
1000, and 1010 we see that evolution very quickly developed a fan-like structure that is attached at
various places of the phenotype. The fans arise from an interplay of two operators: The N-operator
encodes the fan-like structures while the F-operator encodes the spokes of these fans. Adaptation
of these fans is a beautiful example for correlated exploration. The N-operator encodes more and
more spokes until the fan is complete in generation 1010, while the F-operator makes the spokes
longer. Elongation proceeds and results in the “hairy”, long-armed structures. Note that, in
generation 1650, one N- and two B-operators are redundant. Until generation 1900, leaves are
attached to each segment of the arms, similar to generation 4025 of the C-trial. At that time, the
plant’s weight is already 105 099 and probably prohibits to make the arms even longer (since weight
would increase exponentially). Instead a new concept develops: At the tip of each arm two leaves
are now attached instead of one and this quickly evolves until there are three leaves, in generation
1910, and eventually a complete fan of six leaves attached at the tip of each arm. In generation
2100, a comparably short genome with 10 used operators encodes a very dense phenotype structure
of 9483 elements.

Conclusions.

Let us briefly discuss whether similar result could have been produced with a more conven-
tional GA that uses, instead of our non-trivial genotype-phenotype mapping, a direct encoding of
sequences in {F,+,-,&,^,\,/,[,]} that describe the plants. For example, setting β = 0 in our
model corresponds to such a GA since no operators will be created and the evolution takes places
solely on the “egg cell” Ψ(0), which is equal to the final phenotype in the absence of operators. We
do not need to present the results of such a trial—not much happens. The obvious reason is the
unsolvable dilemma of long sequences in a direct encoding: On the one hand, mutability must be
small such that long sequences can be represented stably below the error threshold of reproduc-
tion; on the other hand mutability should not vanish in order to allow evolutionary progress. This
dilemma becomes predominant when trying to evolve sequences of length ∼104, as it is the case for
the plants evolved in the D-trial. Also elaborate methods of self-adaptation of the mutation rate
cannot circumvent this problem completely; the only way to solve the dilemma is to allow for an
adaptation of genetic representations. The key novelty in our model that enabled the adaptation
of genetic representations are the 2nd-type mutations we introduced.

In our example, two important features of the genetic representations coincide. First, this is
the capability to find compact representations that allow to encode large phenotypes with small
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Figure 1.9: The graphs display the curves of the fitness, the number of phenotypic elements, the
genome size, and the operators usage of the best individual in all generations of the four trials.
Note that every quantity has been rescaled to fit in the range of the ordinate, e.g., the number of
phenotype elements has been divided by 1000 as indicated by the notation “# elements/1000”. The
* for the operator usages indicates that the curve has been smoothed by calculating the running
average over an interval of about a hundredth of the abscissae (30, 3, 80, and 20 in the respective
graphs).
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genotypes solving the error threshold dilemma. Second, this is the ability for complex adaptation,
i.e., to induce highly structured search distributions that incorporate large-scale correlations be-
tween phenotypic traits. For example, the variability of one leave is, in certain representations, not
independent of the variability of another leave. A GA with direct encoding would have to optimize
each single phenotypic element by itself, step by step. The advantage of correlated exploration is
that many phenotypic elements can be adapted simultaneously in dependence of each other.

Our experiments demonstrated the theory of σ-evolution which mainly states that the evolution
of genetic representations is guided by a fundamental principle: They evolve such that the match
between the evolutionary search distribution and the distribution of good solutions becomes better.
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420: f=.031 e=44 w=421 o=15 g=37/3

Ψ(0)=〈HFAAOKAILEEJECELJJJJLJI〉
Π=〈〈O:OII〉,〈L:IBJDAL〉,〈F:FA〉〉
A simple phenotype where the re-

cursive L-operator encodes the regu-

lar 5-leaves-fans and the recursive F-

operator produces the long stem.

465: f=.21 w=604 e=9437 o=0 g=2742/0

Ψ(0)=〈2742〉
Π=〈〉
Good fitness but all the phenotype is

encoded in the huge axiom; mutability

is too high.

1650: f=.032 e=25 w=223 o=0 g=73/0

Ψ(0)=〈73〉
Π=〈〉
The previous innovation died out.

1680: f=.27 e=326 w=15361 o=5 g=82/1

Ψ(0)=〈74〉
Π=〈〈C:CCAIJDD〉〉
Similar fitness as in generation 465,

but the regular phenotype is encoded

by the recursive C-operator such that

the genome size remains reasonable.

2560: f=.41 e=295 w=5195 o=9 g=56/4

Ψ(0)=〈38〉
Π=〈〈G:D〉,〈E:AA〉,〈L:BCG〉,
〈C:KAICCJDD〉〉
The C-operator was further developed

leading to an efficient hexagonal

structure; other operators further

decrease the genome size.

3280: f=.56 e=322 w=5887 o=6 g=62/4

Ψ(0)=〈42〉
Π=〈〈K:CJ〉,〈E:ICC〉,〈C:AICCJDD〉,
〈G:GJDD〉〉
In addition to the C-operator, the

new recursive G-operator makes the

phenotype even more dense.

Table 1.9: The A-trial. The illustrations display the phenotypes at selected generations. The
two squared pictures in the right lower corner of each illustration display exactly the bird’s view
perspective that is used to calculate the fitness: The lower colored picture displays the plant as seen
from above and determines which area enters the green area integral in equation (1.15), and the
upper gray-scale picture displays the height value of each element which enters the same equation
(where white and black refer to height 0 and 1, respectively). Below each illustration you find
some data corresponding to this phenotype: f=〈fitness〉 e=〈number of elements〉 w=〈plant’s total
weight〉 o=〈number of used operators〉 g=〈genome size〉/〈number of chromosomes in the genome〉.
Below, the genetic system Π is displayed. In all cases except the first, Ψ(0) is too large to be
displayed here and only the sequence length is given.
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180: f=.017 e=19 w=116 o=0 g=50/1

Ψ(0)=〈42〉
Π=〈〉
Early evolution in tiny steps.

195: f=.046 e=51 w=476 o=5 g=74/1

Ψ(0)=〈64〉
Π=〈〈B:BDIIFFHJJ〉〉
First usage of the recursive B-operator.

200: f=.061 e=51 w=593 o=5 g=70/1

Ψ(0)=〈58〉
Π=〈〈B:BDDAIIFFHJJ〉〉
The B-operator is further developed.

205: f=.21 e=205 w=5236 o=5 g=68/1

Ψ(0)=〈56〉
Π=〈〈B:BDBAIIFFHJJ〉〉
The B-operator induces larger growth

since there are two B’s on its rhs.

220: f=.83 e=2516 w=1071401 o=5

g=86/1

Ψ(0)=〈72〉
Π=〈〈B:DBBBAIKIIFHJJ〉〉
Now there are three B’s on the rhs.

380: f=.95 e=3215 w=1740542 o=10

g=79/2

Ψ(0)=〈65〉
Π=〈〈B:DOBAIIIFJJ〉,〈O:BB〉〉
The encoding is optimized leading

to almost optimal fitness and small

genome size.

Table 1.10: The B-trial. Please see the caption of table 1.9 for explanations.
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3800: f=.0034 e=49 w=612 o=2 g=66/2

Ψ(0)=〈52〉
Π=〈〈N:NNAA〉,〈M:MMMPNNAA〉〉
Over aeons not much happens.

4000: f=.0053 e=70 w=814 o=1 g=109/1

Ψ(0)=〈106〉
Π=〈〈H:AA〉〉
A first correlated phenotypic adapta-

tion: the leaves along the stems pop

up at once.

4025: f=.0087 e=156 w=1813 o=1

g=114/1

Ψ(0)=〈108〉
Π=〈〈A:IMAJA〉〉
Every stem segment is now encoded by

the A-operator, which attached a leave

to each segment.

4400: f=.28 e=3467 w=92031 o=5

g=512/5

Π=〈〈K:KA〉,〈J:64〉,〈B:BF〉,
〈G:GIFJCIJAIJA〉,〈O:29〉〉
The concept of “long arms” is ex-

ploited, fitness explodes, but the

genome becomes too large and

non-stable.

4500: f=.26 e=7698 w=216119 o=3

g=720/3

Π=〈〈K:O〉,〈J:105〉,〈O:33〉〉
The large genome makes exploration

chaotic; the species will extinguish.

5100: f=.20 e=1479 w=57134 o=2

g=217/2

Π=〈〈K:〉,〈J:77〉〉
A new concept with much shorter

and stable genome takes over; the J-

operator becomes dominant.

5400: f=.22 e=1410 w=59219 o=3

g=159/3

Π=〈〈I:AJ〉,〈C:JJCJ〉,〈J:64〉〉
The new concept is further developed

and exploited till the end ...

7500: f=.39 e=3215 w=350509 o=3

g=135/3

Π=〈〈I:39〉,〈J:38〉,〈B:DDHDDJAIC〉〉

8300: f=.31 e=3652 w=379288 o=2

g=141/2

Π=〈〈I:39〉,〈J:60〉〉

Table 1.11: The C-trial. Please see the caption of table 1.9 for explanations. For some operators,
the size of the rhs is given instead of the sequence.
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950: f=.018 e=144 w=2681 o=3 g=163/3

Π=〈〈N:IP〉,〈P:JF〉,〈F:IIAJJF〉〉
Early evolution develops small pheno-

types. Here, the interplay between the

N- and the F-operator starts.

1000: f=.025 e=218 w=4337 o=2

g=171/2

Π=〈〈N:IJFFFFFFF〉,〈F:IIAJJF〉〉
The N-operator encodes fan-like struc-

tures attached at various places of the

phenotype, the F-operator encodes the

spokes of these fans.

1010: f=.032 e=506 w=10250 o=2

g=211/2

Π=〈〈N:NIJFFFFFFFFF〉,〈F:IIAAJJF〉〉
Adaptation of these fans is a beauti-

ful example for correlated exploration:

the N-operator encodes more spokes;

the F-operator makes them longer.

1650: f=.052 e=1434 w=31476 o=5

g=180/8

Π=〈〈B:IJNN〉,〈N:IAAJFIAAJF〉,〈N:NNBJ〉,
〈B:JJJ〉,〈B:NFNNKKKKB〉,〈F:IINFNNKK

KCBJF〉,〈B:IJNNAJ〉,〈N:IJBA〉〉
The fan spokes become longer and

longer. Note that one N- and two

B-operators are redundant.

1750: f=.11 e=2867 w=65674 o=7

g=228/8

Π=〈〈B:NN〉,〈N:IAABFIAFJF〉,〈N:52〉,〈B:B

BBJ〉,〈B:MMNNLDLCO〉,〈F:IIBJF〉,〈B:29〉,
〈N:NNNIJA〉〉
Leaves are attached to each segment

of the long arms; similar to generation

4025 of the C-trial.

1900: f=.17 e=4915 w=105099 o=10

g=230/12

Π=〈〈B:NN〉,〈N:IABFIAAJF〉,〈N:33〉,〈J:MO

FJ〉,〈D:KNME〉,〈B:BBBBJ〉,〈B:FB〉,〈B:MN

NLDDM〉,〈F:32〉,〈B:28〉,〈N:NLA〉,〈L:IJ〉〉
Two leaves are attached at the tip of

each arm. The genome becomes to

complex to be easily understood.

1910: f=.20 e=4340 w=89996 o=12

g=226/14

Π=〈〈B:NN〉,〈N:IABFIAAJF〉,〈N:33〉,〈J:M
MJ〉,〈J:NJ〉,〈D:KNME〉,〈B:BBBBJ〉,〈B:FB〉,
〈B:MNNLDDM〉,〈F:30〉,〈B:CCHEGEJFNJJ

JMNLLCK〉,〈C:KCKKCLK〉,〈N:NLA〉,〈L:IJ〉〉
Now three leaves are attached at each

tip.

1940: f=.26 e=7366 w=149003 o=11

g=290/13

Π=〈〈B:NN〉,〈N:IAFBFIAAJF〉,〈N:85〉,〈J:M
J〉,〈J:NJ〉,〈D:DONMME〉,〈B:FBFBFBFBFB

J〉,〈B:MNNLDDM〉,〈F:34〉,〈B:CCJHMEJNJJ

JNMNLLCK〉,〈C:CCGKKCLKK〉,〈N:NNLA〉,
〈L:IJ〉〉
Now six leaves...

2100: f=.33 e=9483 w=192235 o=10

g=261/15

Π=〈〈B:NN〉,〈N:IAABFIAAJF〉,〈N:57〉,
〈J:B〉,〈J:JJ〉,〈D:DOIE〉,〈B:FBFBFBFBHJ〉,
〈B:ENNDD〉,〈F:36〉,〈B:25〉,〈B:BJEMLL〉,
〈C:CCGLB〉,〈B:CLK〉,〈N:NNLA〉,〈L:IJ〉〉
The plant becomes more and more

dense and the genome size is opti-

mized.

Table 1.12: The D-trial. Please see the caption of table 1.9 for explanations.
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1.6 Conclusions

Throughout this chapter we developed a point of view on evolutionary adaptation that emphasizes
the notion of the phenotypic exploration distribution, which is a general description of all of an
individual’s mutational properties. As a benefit we can formalize the relation and conceptual
similarity between natural evolution, evolutionary algorithms, and the generic heuristic search
scheme that we introduced as a basic information theoretic paradigm of what it means to “learn
the structure of a problem and exploit it for future exploration.” All three of them are based on a
process of accumulating information—in a more or less explicit way. Concepts of self-adaptation
or derandomized adaptation of probabilistic search strategies in evolutionary computation become
comparable to the evolution of exploration strategies in natural evolution.

Based on this formalism we analyzed the implications of a non-trivial genotype-phenotype map-
ping for phenotypic search. The major result is the theorem on σ-evolution which basically proves
that genetic representations, in particular also neutral traits in a neutral set, evolve such that the
information given by selection is indeed accumulated: Genetic representations evolve such that the
induced phenotypic exploration distributions (the “world models of evolution”) adopt the struc-
ture of experienced selection distributions. This similarity has been termed the “required match
between the functional relationships of the phenotypic characters [in the selection distribution] and
their genetic representation [inducing the exploration distribution].” (Wagner & Altenberg 1996,
section 6)

We also analyzed the meaning of crossover in terms of the structure of the exploration distribu-
tion it induces. The result is that crossover essentially destroys correlations between genes (“linkage
correlations”) by transforming the mutual information between the genes, that is present in the
non-crossed population, into entropy of the crossed population. In that sense, crossover does the
inverse of correlated exploration. Consequently, Holland’s notion of building blocks significantly
differs from our idea of functional phenotypic modules based on correlated exploration.

The discussion of natural genetic encodings (the DNA and its variability; transcription, trans-
lation and protein folding; gene regulation and the operon) showed that many aspects can be
understood and systematized by discussing them in our formalism, i.e., always rethinking of what
these mechanisms mean in terms of structuring the phenotypic exploration distribution. Especially
the discussion of the operon, as a paradigm for the induction of correlated exploration, and the
evolution of the tRNA molecules (which pinpoints the issue of “evolving GP-maps”) proves how
helpful it is to backtrack discussions to the central theme of structure in phenotypic exploration
distributions and their σ-evolution.

The computational model was designed to demonstrate and illustrate what the theory on σ-
evolution is about. We chose a genotype-phenotype mapping that incorporates basic mechanisms
to induce correlated variability similar to the operon: Generically a genotype comprises an initial,
premature phenotype (“the egg cell”) and a set of transformation operators (“genes or operons”)
that recursively transform the phenotype during ontogenesis. The key point are the interactions
between the operators that emerge from their recursive application, i.e., the operon like depen-
dencies of their expression. This grammar-like GP-map is highly non-trivial in the strict sense we
defined it; there exist genotypes that encode for the same phenotype but induce completely differ-
ently structured phenotypic variation distributions. Our model goes beyond similar models in the
literature by introducing 2nd-type mutations that allow for neutral transitions between equivalent
genotypes and thereby enable a neutral σ-evolution as demonstrated in the experiments. These
2nd-type mutations are neutral reformations of the genetic system, which result in a change of
phenotypic exploration being not only a rescaling of the phenotypic neighborhood (as it is typi-



78 CHAPTER 1. EVOLUTIONARY ADAPTATION

cally for strategy parameters) but a severe change of the variational topology on the phenotype
space.

The model illustrates our claim that the underlying mechanism that originates the evolution
of complex phenotypic adaptation is σ-evolution. Gene interactions emerge as a result of interde-
pendent gene functionalities. Interesting is the strong impact of early developed genetic structures
(modules) on future exploration and evolution. Some genomes also store neutral operators (genes
that are not expressed during ontogenesis) which can be triggered non-neutral by a single mutation
and thereby structurally influence phenotypic exploration. This literally demonstrates how the ge-
netic representation of a phenotype, in particular also neutral parts of a genome, store information
(measurable in terms of the exploration distribution) that has been accumulated earlier and can
be exploited by further innovation.

The way genetic systems are organized is a mirror of what evolution has learned about the
problem.



Chapter 2

Neural adaptation

2.1 Introduction

Decomposed adaptation and neural systems.

The basis for the following work is to distinguish between the functionality of an adaptive neural
system and its parameters. The functionality generally means the way of information processing of
the network, which might be to map a given input on some response or to deliver a control signal.
The parameters are the system’s free variables that are directly subject to adaptation, namely
synaptic (and bias) weights. This perfectly matches the notions of phenotype and genotype. As in
the previous chapter, a central issue will be the analysis of the relation between parameters (“geno-
type”) and functionality (“phenotype”) and the influence of this relationship on the adaptation
process.

To illustrate the approach reconsider the example about playing the piano and riding the bike
that was mentioned in the introduction. At first sight, there is no way to say how these two
functionalities are represented in the brain. But there is some indication if we also consider the
adaptation process. Usually, when learning to play the piano one will not automatically unlearn (or
even learn) to ride a bike and vice versa. Hence, to put it in the language of the previous chapter,
there exists no adaptational correlation (cf. “no correlations in phenotypic exploration”) between
the two functionalities (“phenotypic traits”). Based on this adaptational decorrelation one may
call these two functionalities functional modules (cf. “building blocks”), where the notion module
is used in an abstract rather than architectural way: It does not presume that there really exist
physically separable parts of the neural system that correspond to each functionality; instead it
requires that these functionalities are parameterized in a modular way, as we will define it precisely
later.

In turn, in this view it is not useful to define the notion of functional modularity for non-adaptive
systems. Given a non-adaptive system’s fixed functionality, the system’s internal structure becomes
irrelevant; the system is just a realization of a single point in the space of functionalities—and why
should one associate a structuredness like modularity to a single point? The situation would be
the same as for evolution which does not evolve: The genotypic representation of a phenotype
becomes irrelevant.

The situation though changes if one considers an adaptive system the functionality of which is
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Figure 2.1: Two points of view on the model selection problem. On the left the functionality
space F is organized as a nested sequence of subspaces F1 ⊆ .. ⊆ Fd ⊆ .. ⊆ F of increasing
complexity, which illustrates the traditional approaches. On the right, the parameterization of
a chosen functionality space Fd and the resulting induced functional metric is emphasized, what
illustrates our approach.

not fixed. Adaptation means a transformation, actually a translation of this point in functionality
space. Over the time, the adaptive system realizes a trajectory through functionality space and
it makes sense to analyze structural characteristics of this trajectory (like correlatedness in a
stochastic path) as we will do. The decomposability of a system is related to its behavior under
adaptive transformation.

Model Selection.

The analysis of the space of functionalities and how neural systems parameterize this space is
tightly related to the research on model selection. Following Kearns et al. (1995), the problem of
model selection may be defined as follows: Given a finite set of data points, find a function (or
conditional probability distribution, also called hypothesis) such that the expected generalization
error is minimized. Here, generalization error means the error on a data subset that was not used to
find or optimize the model. Typically, the search space F (the functionality space, e.g., the space of
functions or conditional probability distributions) is assumed to be organized as a nested sequence
of subspaces F1 ⊆ .. ⊆ Fd ⊆ .. ⊆ F of increasing complexity, see figure 2.1. For instance, the index
d may denote the number of parameters or the Vapnik-Chervonenkis dimension (Vapnik 1995).
Finding the function with minimal generalization error then amounts to finding the appropriate
sub-search-space before applying ordinary optimization schemes. Many approaches to solve the
model selection problem introduce a penalty term related to complexity which has to be minimized
together with the training error in order to find the appropriate model complexity. Penalty terms
are, for example, the number of parameters of the model, the number of effective model parameters,
the Vapnik-Chervonenkis dimension, or the description length (Akaike 1974; Amari 1993; Moody
1991; Rissanen 1978; Vapnik 1995). An alternative based on geometric arguments is presented by
Schuurmans (1997).

As illustrated by figure 2.1, our approach has a different emphasis than the classical research
on model selection. The choice of a specific model (e.g., a neural network) to represent a function
has two implications: It defines the complexity and sub-space Fd of representable functions—
as it is emphasized by classical model selection theories—but it also defines a parameterization
of this space in the sense of introducing coordinates on that space, i.e., introducing a mapping
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Φ : W → Fd from some parameter space W onto the respective sub-search-space. To avoid
confusion, we use the term model class for the sub-search-space Fd, and model parameterization
for the parameterization Φ of this sub-search-space. For example, an artificial neural network with
m free parameters, fixed topology, and fixed activation functions defines a model class (the subspace
of functions it can realize, which, if the topology is appropriate, includes an approximation of any
function, Hornik, Stinchcombe, & White 1989)—but it also defines the model parameterization,
i.e., the way functionalities are represented by the neural system.

As was mentioned in the introduction, a reason for the strong interest in model classes instead of
model parameterizations might be the ultimate impact of the universal approximation theories as
well as gradient learning. Given these fundamentals of classical Artificial Neural Network research,
it seems that there is hardly motivation to rethink the way neural systems parameterize functions.
Nevertheless, a non-structured, arbitrary parameterization of functionalities leads to problems:

Generalization, cross-talk, catastrophic forgetting, and the credit assignment problem.

The benefit of the analysis of the model parameterization is an understanding of the precise
relation between variations of parameters and functional variations of the system. In turn, this is
particularly helpful in understanding the adaptation dynamics of the system. In principal, adap-
tation occurs by variation of some parameters. In many cases, the observation of a single datum
(a single learning step during online learning or a single reinforcement signal during Reinforcement
Learning (RL)) triggers this adaptation. The model parameterization now describes the functional
effects of the parameter adaptations—in particular also the variations of functionalities that were
not subject to this single datum. Hence, the model parameterization is the key to understand the
system’s way of “generalizing” experienced to non-experienced data, or on how the system forgets
previously learned data. This has indirectly been the subject of much research:

• Jacobs, Jordan, & Barto (1990) introduced the notion of spatial and temporal cross-talk
which describes the fact that, in conventional neural networks, the response of two differ-
ent neurons on the same datum or the response of the same neuron on two different data
are typically not independent because the neurons share system parameters on which they
depend. They argue that such crosstalk may be undesirable and is avoided by explicitly
separating neurons in disjoint experts. As we will see below, selecting a multi-expert model
is a very intuitive way to explicitly declare an independence of functional components and
realize decomposed adaptation.

• Catastrophic forgetting describes that a conventional neural network, when trained for some
time exclusively on new data, will typically forget the previously learned data (see French
1999 for a review). One may think of this as a special form of temporal cross-talk.

• Early approaches in Reinforcement Learning (before Q-learning became popular) used neural
systems to directly implement the mapping between stimulus and response, or policy (see,
e.g., Sutton & Barto 1998). At every time only a scalar feedback on the quality of the system
output and not a precise feedback on the error of the output is given. Adaptation has to
occur by some trial and error strategy. However, if the model parameterization is complex, it
is very difficult to tell which parameter adaptations are responsible for which improvements
or deteriorations of the system’s functionality. This problem is called the credit assignment
problem.

The connectionist way to parameterize functionalities.
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In this view, why should we use neural systems to represent functionalities in the first place?
Besides the typical argument that nature does it, are there other principle reasons? In fact,
many alternative systems are continuously proposed, most importantly Support Vector Machines,
Bayesian Networks, etc. In some domains they exhibit better performances than neural systems
and in other domains they are worse. In my view, the odds in favor of neural systems is that they
in principal allow to adapt the way they parameterize functionalities. This “meta-adaptation”
could be realized by evolutionary means or by neural mechanisms themselves (like gating mech-
anisms). The reason we argue for the adaptability of the way of parameterization goes back to
the discussion of “complex adaptation mechanisms on arbitrary representations—or simple adap-
tation mechanisms on suitable representations” given in the introduction. We argued that current
research tends to proceed with more and more sophisticated adaptation mechanisms on arbitrary
representations instead of developing sophisticated mechanisms to adapt the representation such
that simple functional adaptation—probably as simple as the Hebb rule—becomes possible. Here,
the general advantage of connectionist systems might be that, due to their structural generality,
they allow to implement any kind of modular, hierarchical, functionally dependent or independent
representations.

Overview.

In the next section we propose a theory, based on a differential geometry point of view, on the
(co-)adaptation behavior of conventional feed-forward neural networks (FFNNs). For instance, the
theory allows to analytically describe the rate of forgetting of these networks which we exemplify
and verify in a basic example. We apply the method of analyzing the model parameterization on
a whole class of standard FFNNs. We find that the variety of FFNNs with arbitrary topology
is actually not a great variety with respect to certain characters of the model parameterization.
In particular, FFNNs generically introduce strong correlations between functional variations and
thereby are predisposed to forget previously learned data. Using FFNNs as a function model means
a limitation—not with respect to representable functions but with respect to learning character-
istics. A comparison of conventional neural networks with networks that incorporate competitive
interactions between neurons reveals how competition in principle allows to structure the repre-
sentation of functionalities in favor of decorrelated adaptation dynamics.

These results have important implications for practical model selection: Commonly evolutionary
algorithms are used to optimize network architectures in favor of the system’s adaptability. We
argue that the search space of architectures should be generalized to include also systems that
incorporate competitive interactions. We propose such a new class of systems in section 2.3 that
may incorporate competitive as well as so-called gating interactions between neurons anywhere
in their architecture. This class generalizes the class of conventional neural networks as well as
the class of conventional Multi-Expert Systems. Four straight-forward learning schemes for these
systems can be applied on any architecture: gradient learning, EM-learning, Q-learning, and a
variant of Q-learning. A selection of tests proves the functionality of these systems and learning
schemes. Systems of this class can realize arbitrary correlated or decorrelated representations of
system functionality.

Parts of this work were first published in (Toussaint 2002b; Toussaint 2002a).
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2.2 Functional modularity in NN: A theory of coadaptation

and decomposed adaptation in neural systems

2.2.1 Decomposed adaptation

The adaptation dynamics of a neural system can be described as a Markov process—the
structure of the transition distribution constitutes the notions of correlated adaptation and
functional modules of a neural system.

As we did it for evolutionary systems, we define the adaptation process of neural systems on
the level of system parameters. Instead of genes, synaptic and bias weights represent these degrees
of freedom and we assume there are a finite number of real-valued weights w ∈ W = Rm that
parameterize the neural system. We distinguish these system parameters from the functional
traits of the neural system just as we distinguished genotype from phenotype. Let us first assume
the simplest case where a neural system represents and input-output mapping f : X → Rn; below
we will generalize this to probabilistic neural systems. In this case, functional traits refer exactly
to this input-output mapping—from an external point of view only this input-output mapping
is observable and may determine the quality of the system (cf. definition 1.2.5, page 23, of a
phenotype). Hence, in analogy to the phenotype space, let us define F as the space of all mappings
X → Rn; a given neural system with fixed parameters w then corresponds to exactly one point
Φ(w) ∈ F in this space. The mapping Φ : W → F is in analogy to the genotype-phenotype
mapping and will be within our focus in the following considerations.

As argued above, our approach to define modularity is to consider the system’s behavior under
adaptation. More precisely, we want to characterize the correlation of different functional traits
of the system under adaptation. Let us assume that the adaptation process is a Markov process
described by a stochastic transition operator H : W → ΛW that acts on the system parameters, i.e.,
maps a current parameter state w(t) on the probability distribution Hw(t) of adapted parameter
states. Stochastic adaptation dynamics are then given by

w(t+1) = S1 Hw(t) ,

where the sample operator S1 describes the stochastic process of sampling the new weight config-
uration w(t+1) from the probability distribution Hw(t) (see the definition on page 18). The basic
example for stochastic adaptation is online learning, where at each time a training datum referring
to one or a few functional traits is drawn independently from a data distribution.

The function space F , which could also be written as (Rn)X , is n|X|-dimensional and the
system functionality Φ(w) can be described by n|X| real-valued numbers fa, a = 1..n|X|, that
we call function components. These function components fa may also be regarded as entries of a
lookup-table representation of the function Φ(w) where the index a specifies the location in the
lookup-table. Namely, an index a refers to a specific input x (say, the row of the lookup-table) and
an output dimension i (the column) such that fa is the i-th dimension of the system’s output for
some input x.

The question is whether two different functional traits adapt in correlation. We capture this in
the following definition:

Definition 2.2.1 (Adaptation covariance and coadaptation). Given a neural model Φ :
W → F and an adaptation process H : W → ΛW , we define the adaptation covariance between
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two functional components a and b as

Cab(w) = covHw(Φa,Φb)

= 〈Φa Φb〉Hw − 〈Φ
a〉Hw〈Φ

b〉Hw

=
∑
w′

(Hw)(w′)
(
Φ(w′)a Φ(w′)b

)
−
[∑
w′

(Hw)(w′) Φ(w′)a
][∑

w′

(Hw)(w′) Φ(w′)b
]
,

where 〈 · 〉 means averaging over the specified distribution. The adaptation covariance depends on
the current parameter state w ∈W of the neural system.

The adaptation covariance is a very rich description of the adaptation process. On the one
hand, if the adaptation covariance between two functional traits is non-vanishing, it describes how
the neural system generalizes the adaptation of one functional trait to another: For example, if
during online learning, fa is tested and results in system adaptation, the covariance describes how
another component f b is co-adapted in correlation to fa, although it was not explicitly subject
to experience during the training. Whether this coadaptation is desirable or not depends on the
problem. In general, one would like to choose from a variety of different coadaptation schemes,
i.e., one would like to select a model from a variety of models with different kinds of coadaptation.

On the other hand, if the adaptation covariance between two functional traits fa and f b vanishes,
the system will not generalize an adaptation of fa to a coadaptation of f b. In that way, all the
functional traits of the system may be organized in groups; traits of the same group depend on
each other and form a functional module, traits of different groups adapt independently of each
other:

Definition 2.2.2 (Adaptation decomposition and functional modules). Let A be the index
set of all functional traits. (For input-output functions X → Rn, A has cardinality n|X|.) A
partition of functional traits is given by disjoint, non-empty subsets A1, .., Ag ⊂ A which unite to
A, i.e.

⋃g
i=1Ai = A. If there exists a partition such that the adaptation covariance becomes a

block matrix, i.e.,

∀w ∈W : a ∈ Ai, b ∈ Aj , i 6= j =⇒ Cab(w) = 0 ,

then we speak of adaptation decomposition. We call the collection of functional traits fa in one
group a ∈ Ai a functional module.

This can be transfered also to probabilistic models X → ΛY that map some input to an output
distribution over some space Y : The simplex ΛY of distributions is a subspace of R|Y |−1, every
distribution in ΛY can be parameterized by |Y |−1 real numbers. Thus, a model f ∈ F : X → ΛY

can likewise be described by (|Y | − 1)|X| real-valued functional components fa.

A more information theoretic notion of correlated adaptation.

The covariance matrix Cab can be interpreted in a more information theoretic style when as-
suming that the functional adaptation distribution ΞHw(t) ∈ ΛF is of the exponential family,
i.e.,

(ΞHw(t))(f) =
1
C

exp
[
−
∑
ab

Cab f
af b
]

where the scaling factor C is uniquely given via normalization. The projection Ξ : ΛW → ΛF of
distributions over parameter space to distribution over the functional space is defined in analogy
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to definition 1.2.8 (page 24). It can be shown that the mutual information between two functional
traits is then given by

Iab = ln
Caa Cbb

Caa Cbb − C2
ab

.

Hence, mutual information vanishes if and only if the adaptation covariance Cab between these
two traits vanishes.

2.2.2 The geometry of adaptation

The relation between a neural system’s free parameters and its functional traits can be de-
scribed geometrically. The induced metric on the functional space determines the correlated-
ness of adaptation.

The mapping Φ establishes the relation between the parameter spaceW and the functional space
F . We introduced adaptation as a process on the parameter space that results in a trajectory on the
parameter space. The mapping Φ tells us how the local properties of the trajectory, in particular
its direction, translate to the adaptational direction in the functional space. This is in perfect
analogy to our point of view that the genotype-phenotype mapping represents a lift of topology
from a locality in genotype space to a corresponding locality in phenotype space.

In terms of differential geometry (see figure 2.2) the mapping Φ is (the inverse of) a coordinate
map (or chart, or atlas) on the manifold of representable functions Φ(W ) = {Φ(w) |w ∈W} ⊆ F ,
i.e. the image of Φ. Such a mapping Φ : W → F induces also the linear differential mapping
dΦ(w) : TwW → TΦ(w)F from the local tangent TwW space of W to the corresponding tangent
space of F . The differential map allows to lift or pull-back all objects (vectors, tensors, metrics)
that live in one tangent space to the other. Above all, this allows to translate a vector ∆w ∈ TwW
that describes a variation of system parameters into a vector ∆Φ = dΦ(∆w) ∈ TΦ(w)F (sometimes
also written ∆Φ = ∆wcdΦ) that describes the corresponding variation of system functionality. In
coordinates this simply reads:

∆Φ(w)a =
∑
i

∂Φ(w)a

∂wi
∆wi .

In this language, we define a metric that will be a generic tool in understanding the relation
between the variation of parameters and functional variations.

Definition 2.2.3 (Functional metric). Given a neural model Φ : W → F and a metric ĝij on
the parameter space, we define the functional metric on the (dual) tangent space T ∗Φ(w)F of F as

gab(w) :=
∑
ij

ĝij
∂Φ(w)a

∂wi
∂Φ(w)b

∂wi
, (2.1)

where ĝij is the inverse of ĝij . The inverse gab of gab is the functional metric on the ordinary
tangent space TΦ(w)F .

Ordinary gradient online learning

We describe online learning within our formalism as follows: At every time, a training datum
ta for one functional trait a is drawn independently from a data distribution. The error of the
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TΦ(w)F

F

gab

gij

Φ(w)
TwW

Φ

dΦ

W

w

Figure 2.2: The differential geometry point of view. The parameterization Φ maps parameter
states w on the system functionality Φ(w). Important for adaptation dynamics is the relation
between parameter variations and the functional variations they induce. This relation is, in first
order, given by the differential dΦ that maps from the tangent space TwW around w to the tangent
space TΦ(w)F around Φ(w). In particular it also allows to define the functional metric gab on the
functional space which is induced by a presumed metric gij on parameter space.

system’s functional component Φ(w)a is measured with a functional E(ta,Φ(w)a). In the case of
ordinary gradient learning with adaptation rate α, the adaptation of the system’s parameters is
then realized by

∆wi = −α
∑
a

∂Φ(w)a

∂wi
e(w)a , e(w)a :=

∂E(ta,Φ(w)a)
∂Φ(w)a

. (2.2)

The components e(w)a are the dual components of the vector of steepest descent ~e(w) =
∑
a e(w)a~ξa

=
∑
a,b ĝ

ab e(w)b ~ξa on the functional space, where ~ξa are the local basis vectors of the coordinate
frame in F . E.g., for the square error, which corresponds to the Euclidean metric, e(w)a =
2 (ta−Φ(w)a) is the actual error made at the component a. Being familiar with differential geome-
try, one realizes here already that equation (2.2), although it dominated NN research for decades, is
in some sense confused because the lhs are (contravariant) components of a vector whereas the rhs
are (covariant) components of a dual vector. One could say that ordinary gradient online learning
hides the presumption of a fixed Euclidean metric on the parameter space W . To account for this
presumption at least notationally, we rewrite the equation as:

∆wi = α
∑
j

ĝij
∑
a

∂Φ(w)a

∂wj
e(w)a , where ĝij ≡ ĝij ≡ δij is Euclidean . (2.3)

On the functional level, this leads to an adaptation of all functional traits according to

∆Φ(w)b =
∑
i

dΦ(w)b

dwi
∆wi

= α
∑
a

∑
ij

ĝij
dΦ(w)b

dwi
dΦ(w)a

dwj
e(w)a .

Applying definition (2.1) of the functional metric, this reads

∆Φ(w)b = α
∑
a

gab e(w)a . (2.4)

There are two points to emphasize when interpreting this simple equation:

• The lhs ∆Φ(w)b are the components of the vector ∆Φ =
∑

∆Φ(w)a ~ξa that describes the
actual variation of the system functionality in the tangent space TΦ(w)F . In the rhs, e(w)a
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are the dual components of the vector of steepest descent in the dual tangent space T ∗Φ(w)F .
Now, equation (2.4) relates ∆Φ to e “as if gab was the true metric on F”. But gab actually
depends on the choice Φ of model since it is derived from the presumed ĝij via (2.1). Definitely
gab does not equal to a metric that one would naturally assume on F , e.g., the mean square
metric on function space or the Fischer metric on probability distributions. Hence, for
ordinary gradient descent, the actual direction of system adaptation is model dependent and
does not equal to the natural steepest descent direction on F (i.e., the steepest descent with
respect to a naturally chosen metric on F .) E.g., it is not invariant under transformations
of the parameter space. All this stems from the ad hoc assumption of the Euclidean metric
ĝij = ĝij = δij on W in equation (2.2) respectively (2.3).

• Concerning the topic of coadaptation, we find that the functional metric gab describes the
variation of a functional component Φ(w)b when ta is trained. In other words, the functional
metric gab is a first order description of how the neural system generalizes the experience of
a target value ta in order to adapt also functional components Φb. This also allows to derive
an exact expression for the adaptation covariance:

Theorem 2.2.1 (Coadaptation and functional modules in ordinary gradient online
learning). In the case of ordinary gradient online learning, the adaptation covariance is given
by

Cbc = 4α2
∑
a

p(a) gba gca
(
e(w)a

)2 − 〈∆f b〉〈∆fc〉 .
If 〈fa〉 = 0 (i.e., after the early phase of mean adaptation) then, for two traits a and b, the
adaptation covariance Cab vanishes for arbitrary e(w) if and only there exists and ordering of
indices such that functional metric gab can be written as a block matrix and the indices a and
b correspond to different blocks. These blocks of the functional metric then define the functional
modules of the system.

Proof.

Cbc = 〈∆f b ∆fc〉 − 〈∆f b〉〈∆fc〉

=
∑
a

p(a) 2α gab 2α gac
(
e(w)a

)2 − 〈∆f b〉〈∆fc〉
= 4α2

∑
a

p(a) gba gca
(
e(w)a

)2 − 〈∆f b〉〈∆fc〉 .
Concerning the first term, the product gba gca vanishes for all a if and only if there exists and
ordering of indices such that the functional metric is a block matrix and b and c refer to different
blocks:

g =

(
A ∈ Rµ×µ 0

0 B ∈ Rν×ν

)
, b ≤ µ , c > µ ,

whereA andB are arbitrary symmetric matrices and µ+ν = n|X|. Thus, adaptation is decomposed
into two subsets of functional components exactly if the functional metric is a block matrix and the
functional component subsets correspond to these blocks (cf. equation (2) in the introduction).
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Natural gradient online learning

We pointed out that in equation (2.2), the rhs α
∑
a
dΦ(w)a

dwi e(w)a is actually covariant (with
lower index i) whereas the lhs ∆wi is contravariant (referring to components of the parameter
vector), and thus the equation is not invariant under transformations which means that, if one
transforms the parameter space (e.g., a transformation from Cartesian to polar coordinates in
W ) then the real direction of the parameter adaptation vector ∆~w in the tangent space TΦ(w)W

changes (∆~w =
∑
i ∆w

i~ei, where ~ei are the basis vectors of the coordinate frame) and thus also
the real direction of the functional adaptation vector ∆~Φ(w) changes. Amari (1998) was the first
to notice this circumstance. He proposed to presume a meaningful—natural—metric ĝab on F

instead of presuming the Euclidean metric ĝij on W and use a transformation invariant adaptation
rule based on this metric.

There are two typical choices for the natural metric ĝab on F : If F is a space of functions, the
mean square metric is the natural one; and if F is a space of conditional probability distributions,
then the Fisher metric is the natural choice.

Given the natural metric ĝab on F , natural gradient descent is given by

∆wi = α
∑
j

gij
∑
a

dΦ(w)a

dwj
e(w)a , (2.5)

where gij(w) :=
∑
a,b

ĝab(w)
∂Φ(w)a

∂wi
∂Φ(w)b

∂wj
, gij =

[
gij

]−1

.

We see that natural gradient descent reads almost the same as ordinary gradient descent as given
in (2.3) except for the important fact that gij is not presumed ad hoc and fixed independently of
the parameterization but rather derived from the natural metric ĝab on F . In fact, gij is roughly
the image of gab under (dΦ)−1, see figure 2.2, which is called “pull-back” in differential geometry.

Consequently, adaptation on the functional level yields

∆Φ(w)b =
∑
i

dΦ(w)b

dwi
∆wi

= α
∑
a

∑
ij

gij
dΦ(w)b

dwi
dΦ(w)a

dwj
e(w)a

= α
∑
a

ĝab e(w)a .

We find that the functional adaptation vector ∆~Φ(w) =
∑
a ∆Φ(w)a ξa points exactly in the

direction of the vector of steepest descent ~e(w) =
∑
a e(w)a ξa =

∑
a,b ĝ

ab e(w)b ξa w.r.t. the
chosen natural metric ĝab on F .

What does that mean for the discussion of coadaptation? Well, all the results that we have
derived for ordinary gradient descent are valid here if we replace gab by the natural functional
metric ĝab. This holds in particular for theorem 2.2.1 and hence, the choice of the natural metric
directly determines the system’s coadaptation behavior. For instance, if the mean square metric is
chosen as the natural metric on a function space F , it follows directly that coadaptation vanishes
for 〈fa〉 = 0 (i.e., after the early phase of mean adaptation). The same is true if the system realizes
a conditional probability X → Λ{0,1} (i.e., fa directly equals the probability p(1|x) for some input
x ∈ X) and the cross-entropy is chosen as the natural metric on this space F of conditional
probability distributions. In both cases the metric on F is diagonal and coadaptation vanishes.
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A note on the natural gradient.

At first sight, these results seems very encouraging for the natural gradient. It shows that, using
the natural gradient, one has no first order coadaptational effects, no catastrophic forgetting, no
cross-talk. However, this might not always be advantageous. For some problems, coadaptation
might be desirable and speed up learning—e.g., when the problem allows to generalize knowledge
from one datum to another. Of course, one may argue that it is better to have, to first-order, no
coadaptation instead of uncontrolled arbitrary coadaptation as with the ordinary gradient. But
how could one achieve an adaptation of coadaptation, as it is done in the case of ordinary gradient
learning by means of evolutionary architecture adaptation, in the case of natural gradient learning?

There exists a second, probably more obvious objection against the natural gradient: its com-
putational complexity. Natural gradient learning requires to compute the inverse parameter metric
gij and then multiply it to the covariant derivative vector

∑
a
dΦ(w)a

dwj e(w)a, see equation (2.5). If
gij cannot be given analytically, there exists a method to approximate this metric “on the fly”
(Amari, Park, & Fukumizu 2000). However, all these calculations and also memory resources scale
with the size of the metric gij , i.e., with the square of number of parameters. Even for small neural
systems with about a hundred synapses, this computational disadvantage might likely exceed the
advantage in learning speed. Large-scale neural systems with thousands of neurons can hardly be
handled in this way.

These are the reasons why, despite its theoretical elegance, we do not consider any further
natural gradient learning in the following.

2.2.3 An example: Comparing conventional NN with multi-expert mod-

els

An example demonstrates how the theory precisely describes the difference in adaptation
dynamics between a conventional NN and a multi-expert w.r.t. their coadaptation behavior.

The task.

In this section we illustrate the implications of the theory with a basic example. The task we
choose to test learning behavior is very simple. A mean square error (MSE) regression of only two
3-bit patterns has to be learned by mapping the first pattern on +1 and the second on −1. However,
we impose that these patterns have to be learned online where they alternate only after they have
been exposed for 100 times in succession. This task focuses on the analysis of the coadaptation
of the responses on these two patterns and the 100-fold repetition of the same datum makes it
non-trivial for conventional artificial neural networks to learn it. The task is not unrealistic; similar
effects of learning and unlearning occur in online learning when a specific response is unlearned
during the course of training other responses for several time steps. In real world simulations it
is plausible that stimuli remain unchanged for many time steps. The two patterns were chosen as
110 and 010. Learning is realized by a slow gradient descent with adaptation rate 2 · 10−3 and
momentum 0.5. The metric components are calculated from the gradients.

The architectures.

We test two neural systems on this task. On the one hand, this is a standard 3-4-1 feed-forward
neural network and on the other, this is the same architecture with a softmax competition in the
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• The feed-forward neural network we investigate here is 3-4-1-layered; layers are completely
connected; the output neuron is linear, the hidden ones implement the sigmoid 1

1+exp(−10 x) ;
only the hidden neurons have bias terms.

• The softmax model is the same as the standard model with the exception that the four neurons
in the hidden layer compete for activation: their output activations yi are given by

yi =
e30 xi

X
, xi =

∑
j∈ input

wijyj + wi ,

X =
∑

i∈ hidden

e30 xi . (2.6)

Here, wij and wi denote weight and bias parameters. The exponent factor 30 may be interpreted
as a rather low temperature, i.e., high competition. The calculation of the gradient is a little
more involved than ordinary back-propagation but straightforward and of same computational
cost. (It is a special case of the general gradient we calculate in section 2.3.1.)

Table 2.1: The two models we investigate: A standard feed-forward neural network and a similar
network involving a softmax competition.

hidden layer (the details can be found in table 2.1). The parameters of both systems are initialized
randomly by the normal distribution N(0, 0.1).

Results.

Please see figures 2.3 and 2.4 for the results. The standard neural model exhibits strong forget-
ting of the untrained pattern during the training of the other. In contrast, for the softmax model
the error of the untrained pattern hardly increases. The rate of forgetting, given by the slope of the
error curve of the untrained pattern, is perfectly described by theory as given by equation (2.4);
the graphs in the middle display these curves and show the perfect match of theory and experi-
ment. The bottom graphs display the functional metric components and generally show that the
cross-component g01, which is responsible for coadaptation and forgetting, is quite large for the
standard model compared to the softmax model. Further, the softmax model seems to learn the
adaptation decomposition, as defined in section 2.2.1, after the 200th time step.

All these results demonstrate the significance of the developed theory on coadaptation. Not
surprisingly, the standard model is not well-suited to solve the simple task given. Remarkably is
that the components g00 and g11 become significantly greater than 1 during the training phase of
the respective functional component. By equation (2.4), this means that the “effective” adaptation
rate is larger than 2 · 10−3.

2.2.4 Generic properties of the class of conventional NN and multi-

expert models

The statistics of coadaptational features in the space of all neural networks of a given archi-
tecture and in the space of all multi-expert systems of a given architecture exhibits a generic
difference.
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Figure 2.3: Test of the standard model.
For all four graphs the abscissa denotes the time step.

Top: The learning curves (errors) for both patterns are displayed. Only one of the patterns is trained—

alternating every 100 time steps. The error of the untrained patterns increases.

Second: The slope (change of error per time step) of the untrained learning curve is displayed. The dotted

line refers to the measured slope of the upper curve, the normal line is calculated according to equation

(2.4).

Third: The slope (measured and calculated) of the trained learning curve.

Bottom: The three components of the functional metric g00, g01, g11 are displayed in logarithmic scale. In

particular the cross-component g01 is clearly non-vanishing.

The theory clarifies and emphasizes the meaning of the functional metric as a description of
a system’s coadaptation behavior; and the previous example gave some intuition about this met-
ric. We can now generically analyze both types of neural systems, with and without competitive
interactions, solely based on a discussion of the systems’ functional metric.

We investigate the distribution of the functional metric components over the whole respective
model classes. The two classes correspond to the two systems we investigated above, where the
system architecture is fixed, but the parameters are free and span the class space. For both classes
we want to calculate the probability that the functional metric components acquire a certain value.
In other words, if we randomly choose a system from one or another class, what coadaptational
feature may we expect from the system? To calculate these probabilities we need to assume a
probability distribution over parameters for both classes; we will choose the normal distribution
N(0, 0.1).

Figure 2.5 displays the distributions of functional metric components for both classes. Clearly,
the standard model exhibits a Gaussian like distribution of the cross-component g01 with mean
around 1.5; a vanishing cross-component g01 is not likely. On the other hand, the softmax model
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Figure 2.4: Test of the softmax model.
Top: The learning curves (errors) for both patterns are displayed. The untrained patterns is scarcely

forgotten.

Second: The slope (measured and calculated) of the untrained learning curve nearly vanishes.

Third: The slope (measured and calculated) of the trained learning curve.

Bottom: The three components of the functional metric g00, g01, g11 (in logarithmic scale). The cross-

component g01 is small, it decreases significantly at time step 200.

exhibits two strong peaks at g01 = 0 and g01 = 1, such that the probability for g01 < 0.1 is larger
than 10%.

These distributions are generic properties of the two system classes and we may conclude:

• In the class of conventional feed-forward neural networks of the given architecture and with
ordinary gradient descent it is very unlikely to have no coadaptation. Coadaptation, cross-
talk, and forgetting are generic and inevitable “features” of the class of feed-forward neural
networks.

• In the class of systems of the same architecture but with the competitive hidden layer, sys-
tems with non-vanishing and with identically vanishing coadaptation are equally likely. The
general point here is that the class of systems that incorporate competition has a greater
variety w.r.t. coadaptational features. Hence, if one aims at the adaptation of coadapta-
tional features, this class seems highly more suited as a search space than the class without
competition.
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Figure 2.5: Distribution of metric components.
The distribution was calculated as a histogram of 1 million samples by using bins of size 1

100 . All
curves integrate to 1.
Top: The standard model. The probability of vanishing cross-component g01 is very small.
Bottom: The softmax model. The inset graph is in logarithmic scale. The probability of vanishing
cross-component g01 is fairly high.

2.2.5 Summary

The cornerstones of this section are the three definitions made. First, the definition 2.2.1 (page 83)
of coadaptation—in analogy to correlated evolutionary exploration—allows a general description
of adaptation dynamics with respect to cross-talk, forgetting, or the way of generalization. The
definition 2.2.2 (page 84) of functional modules transfers the notion of functional phenotypic mod-
ules from evolution to neural systems. And the definition 2.2.3 (page 85) of the functional metric,
motivated by a differential geometric description of neural systems, allows to analyze coadapta-
tion properties of neural networks. Based on this formalism, it was straightforward to derive the
theorem 2.2.1 (page 87) on the coadaptation in neural networks.

The empirical investigations we made demonstrate the meaning of coadaptation and the func-
tional metric as it is described theoretically. The last study offers a general characterization of
conventional neural networks and systems with competitive interactions by analyzing the distri-
bution of the functional metric over the whole model class, see figure 2.5. We concluded that
one should generalize the search space of artificial neural systems to include also systems with
competitive interactions in order to allow for an adaptation of coadaptation features. We propose
such a generalization in the next section.
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2.3 A space of more modular neural systems

The question of how to select a system with appropriate coadaptation features has not yet been
addressed. As discussed in the introduction, classical approaches to model selection commonly
introduce a penalty term in order to reduce the model’s complexity. Following this tradition
we could introduce a penalty term that reduces coadaptation. For instance, this could be the
term

∑
ab(g

ab)2 −
∑
a(g

aa)2 which is a measure of the cross-components in the functional metric.
Introducing this penalty term in the quality measure during (e.g., evolutionary) search for good
systems would lead to a bias toward systems with reduced coadaptation.

Although this would perfectly match the classical approaches to model selection, this is not
quite what we intended. Our goal is not to enforce a special kind of coadaptation but rather to
allow for an adaptation of a system’s coadaptation behavior to the specific problem. If certain
coadaptational dependencies between functional components simplify the problem solution, then
we should not enforce a bias towards vanishing coadaptation.

The evolution of neural networks, as it recently became an elaborated branch of research (Yao
1999), is a promising method for model selection, and specifically for the adaptation of coad-
aptational features. However, most of these existing approaches focus on the search space of
conventional neural networks. The belief is that the variety of topologies offers a variety of func-
tionally different models. The previous section challenges this belief, though, and motivates the
generalization of the search space to also include systems with more structured functional met-
ric. The presented softmax model involving competitive interactions between neurons is a step in
this direction. In this section we will define a search space of neural systems that may comprise
competitive and so-called gating interactions anywhere in the architecture. The resulting space of
neural system generalizes conventional neural networks as well as multi-expert systems.

2.3.1 A neural model for multi-expert architectures

A generalization of conventional artificial neural networks allows for a functional equivalence
to multi-expert systems.

When using multi-expert architectures for modeling behavior or data, the motivation is the
separation of the stimulus or data space into disjoint regimes on which separate models (experts)
are applied (Jacobs 1999; Jacobs, Jordan, & Barto 1990). The idea is that experts responsible
for only a limited regime can be smaller and more efficient, and that knowledge from one regime
should not be extrapolated to another regime, i.e., optimization on one regime should not interfere
with optimization on another. In the previous section we have shown that this kind of adaptability
cannot be realized by a single conventional neural network.

To realize a separation of the stimulus space one could rely on the conventional way of imple-
menting multi-experts, i.e., allow neural networks for the implementation of expert modules and
use external, often more abstract types of gating networks to organize the interaction between
these modules. Much research is done in this direction (Bengio & Frasconi 1994; Cacciatore &
Nowlan 1994; Jordan & Jacobs 1994; Rahman & Fairhurst 1999; Ronco, Gollee, & Gawthrop
1997). The alternative we want to propose here is to introduce a neural model that is capable of
representing systems that are functionally equivalent to multi-expert systems within a single inte-
grative network. This network does not explicitly distinguish between expert and gating modules
and generalizes conventional neural networks by introducing a counterpart for gating interactions.
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What will be novel features of this new representation of multi-expert systems?

• First, our representation allows much more and qualitatively new architectural freedom. E.g.,
gating neurons may interact with expert neurons; gating neurons can be a part of experts.
There is no restriction with respect to serial, parallel, or hierarchical architectures—in a much
more general sense than proposed in (Jordan & Jacobs 1994).

• Second, our representation allows in an intuitive way to combine techniques from various
learning theories. This includes gradient descent, unsupervised learning methods like Hebb
learning or the Oja rule, and an EM-algorithm that can be transferred from classical gating-
learning theories (Jordan & Jacobs 1994). Further, the interpretation of a specific gating as
an action exploits the realm of reinforcement learning, in particular Q-learning and (though
not discussed here) its TD(λ) variants (Sutton & Barto 1998).

• Third, our representation makes a simple genetic encoding of such architectures possible.
There already exist various techniques for evolutionary architecture optimization of networks
(see Yao 1999 for a review). Applied on our representation, they become techniques for the
evolution of multi-expert architectures.

Conventional multi-expert systems.

Assume the system has to realize a mapping from an input space X to an output space Y .
Typically, an m-expert architecture consists of a gating function ĝ : X → [0, 1]m and m expert
functions fi : X → Y which are combined by the softmax linear combination:

y =
m∑
i=1

gi fi(x) , gi =
eβĝi(x)∑m
j=1 e

βĝj(x)
, (2.7)

where x and y are input and output, and β describes the “softness” of this winner-takes-all type
competition between the experts, see figure 2.6. The crucial question becomes how to train the
gating. We will discuss different methods below.

Neural implementation of multi-experts.

We present a single neural system that has at least the capabilities of a multi-expert architecture
of several neural networks. Basically we provide additional competitive and gating interactions (for
an illustration compare figure 2.6 and figure 2.7-B). We introduce the model as follows:

The architecture is given by a directed, labeled graph of neurons (i) and links (ij) from (j) to (i),
where i, j = 1..n. Labels of links declare if they are ordinary, competitive, or gating connections.
Labels of neurons declare their type of activation function. With every neuron (i), an activation
state (output value) zi ∈ [0, 1] is associated. A neuron (i) collects two terms of excitation xi and
gi given by

xi =
∑
(ij)

wijzj + wi (2.8)

gi =

{
1 if Ni = 0

1
Ni

∑
(ij)g zj otherwise

, Ni =
∑
(ij)g

1 , (2.9)

where wij , wi ∈ R are weights and bias associated with the links (ij) and the neuron (i), respec-
tively. The second excitatory term gi has the meaning of a gating term and is induced by Ni
g-labeled links (ij)g.
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g
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Figure 2.6: Ordinary multi-expert architecture. Gating and experts modules are explicitly sepa-
rated and the gating may not depend on internal states or the output of experts.

In case there are no c-labeled links (ij)c connected to a neuron (i), its state is given by

zi = φ(xi) gi . (2.10)

Here, φ : R → [0, 1] is a sigmoid function. This means that, if a neuron (i) has no gating links
(ij)g connected to it, then gi = 1 and the sigmoid φ(xi) describes its activation. Otherwise, the
gating term gi is multiplied.

Neurons (i) that are connected by (bi-directional) c-labeled links (ij)c form a competitive group
in which only one of the neurons (the winner) acquires state zwinner = 1 while the other’s states
are zero. Let {i}c denote the competitive group of neurons to which (i) belongs. On this group,
we introduce a normalized distribution yi,

∑
j∈{i}c yj = 1, given by

yi =
ψ(xi)
Xi

, Xi =
∑
k∈{i}c

ψ(xk) . (2.11)

Here, ψ is some function R→ R (e.g., the exponential ψ(x) = eβx). The neuron states zj ∈ {0, 1},
j ∈ {i}c depend on this distribution yi by one of the following competitive rules of winner selection:
We will consider a selection with probability proportional to yi (softmax), deterministic selection
of the maximum yi, and ε-greedy selection (where with probability ε a random winner is selected
instead of the maximum).

Please see figure 2.7 to get an impression of the architectural possibilities this representations
provides. Example A realizes an ordinary feed-forward neural network, where the three output
neurons form a competitive group. Thus, only one of the output neurons will return a value of 1,
the others will return 0. Example B realizes exactly the same multi-expert system as depicted in
figure 2.6. The two outputs of the central module form a competitive group and gate the output
neurons of the left and right module respectively—the central module calculates the gating whereas
the left and right modules are the experts. Example C is an alternative way of designing multi-
expert systems. Each expert module contains an additional output node which gates the rest of
its outputs and competes with the gating nodes of the other experts. Thus, each expert estimates
itself how good it can handle the current stimulus (see the Q-learning method described below).
Finally, example D is a true hierarchical architecture. The two experts on the left compete to give
an output, which is further processed and, again, has to compete with the larger expert to the
right. In contrast, Jordan & Jacobs (1994) describe an architecture where the calculation of one
single gating (corresponding to only one competitive level) is organized in a hierarchical manner.
Here, several gatings on different levels can be combined in any successive, hierarchical way.

In the following we introduce four different learning methods, each of which is applicable in-
dependently of the specific architecture. We generally assume that the goal is to approximate



2.3. A SPACE OF MORE MODULAR NEURAL SYSTEMS 97

c

B

= gating

= competition

g

c

gggg c gg

C

ggg g

g c

c

g

D

c
cA c

g

c

g gg gg

ji

ji

Figure 2.7: Sample architectures.

training data given as pairs (x, t) of stimulus and target output value.

Gradient learning

To calculate the gradient, we assume that selection in competitive groups is performed with
probability proportional to the distribution yi. We calculate an approximate gradient of the con-
ditional probability P(y|x) that this system represents by replacing the actual state zi in eq. (2.8)
by its expectation value yi for neurons in competitive groups (see also Neal 1990). For simplicity
of notation, we identify zi ≡ yi. Then, for a neuron (i) in a competitive group obeying eq. (2.11),
we get the partial derivatives of the neuron’s output with respect to its excitations:

∂zi
∂xj

=
ψ′(xi) δij

Xi
− ψ(xi)

(Xi)2
[
ψ′(xj) δj∈{i}c

]
=
ψ′(xj)
Xi

[
δij − zi δj∈{i}c

]
, (2.12)

∂zi
∂gj

= 0 , (2.13)

where δj∈{i}c = 1 iff j is a member of {i}c. Let E = E(z1, .., zn) be an error functional. We write
the delta-rule for back-propagation by using the notations δ̌i = dE

dzi
, δi = dE

dxi
, and δgi = dE

dgi
for the

gradients at a neuron’s output and inputs, respectively, and ei = ∂E
∂zi

for the local error of a single
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(output) neuron. From eqs. (2.8, 2.9, 2.12, 2.13) we get

δ̌i =
dE

dzi
= ei +

∑
j

dE

dxj

∂xj
∂zi

+
∑
j

dE

dgj

∂gj
∂zi

= ei +
∑
(ji)

δj wji +
∑
(ji)g

δgj
1
Ni

, (2.14)

δi =
dE

dxi
=
∑
j

δ̌j
∂zj
∂xi

=
ψ′(xi)
Xi

[
δ̌i −

∑
j∈{i}c

δ̌j zj
]
, (2.15)

δgi =
dE

dgi
=
∑
j

δ̌j
∂zj
∂gi

= 0 . (2.16)

(In eq. (2.15) we used Xi = Xj for i ∈ {j}c and i ∈ {j}c ⇔ j ∈ {i}c.) For neurons that do not
join a competitive group we get from eq. (2.10)

∂zi
∂xj

= φ′(xi) gi δij ,
∂zi
∂gj

= φ(xi) δij , (2.17)

δi =
dE

dxi
=
∑
j

δ̌j
∂zi
∂xj

= φ′(xi) gi δ̌i , (2.18)

δgi =
dE

dgi
=
∑
j

δ̌j
∂zi
∂gj

= φ(xi) δ̌i , (2.19)

where δ̌i is given in eq. (2.14). The final gradients are

dE

dwi
= δi ,

dE

dwij
= δi zj . (2.20)

The choice of the error functional is arbitrary. E.g., it can be chosen as the square error E =∑
i(zi−ti)2, ei = 2(zi−ti) or as the negative log-likelihood E = − ln

∏
i z
ti
i (1−zi)ti , ei = 1−ti

1−zi
− ti
zi

,
where in the latter case the target are states ti ∈ {0, 1}.

The basis for further learning rules.

For the following learning methods we concentrate on the question: What target values should
we assume for the states of neurons in a competitive group? In the case of gradient descent,
eq. (2.14) gives the answer. It actually describes a linear projection of the desired output variance
down to all system states zi—including those in competitions. In fact, all the following learning
methods will adopt the above gradient descent rules except for a redefinition of δ̌i (or alternatively
δi) in the case of neurons (i) in competitive groups. This means that neurons “below” competitive
groups are adapted by ordinary gradient descent while the local error at competitive neurons is
given by other rules than gradient descent. Actually this is the usual way for adapting systems
where neural networks are used as internal modules and trained by back-propagation (see, e.g.,
Anderson & Hong 1994).

EM-learning

We briefly review the basic ideas of applying an EM-algorithm to the problem of learning gatings
in multi-experts (Jordan & Jacobs 1994). The algorithm is based on an additional, very interesting
assumption: Let the outcome of a competition in a competitive group {c}c be described by the
states zi ∈ {0, 1},

∑
i∈{c}c zi = 1 of the neurons that are members of this group. Now, we assume
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that there exists a correct outcome hi ∈ {0, 1},
∑
i∈{c}c hi = 1. Formally, this means to assume

that the complete training data are triplets (x, hi, t) of stimuli, competition states, and output
values.1 However, the competition training data is unobservable or hidden and must be inferred
by statistical means. Bayes’ rule gives an answer on how to infer an expectation of the hidden
training data hi and lays the ground for an EM-algorithm. The consequence of this assumption is
that now the yi of competitive neurons are supposed to approximate this expectation of the training
data hi instead of being free. For simplification, let us concentrate on a network containing a single
competitive group; the generalization is straightforward.

• Our system represents the conditional probability of output states zo and competition states
zc, depending on the stimulus x and parameters θ = (wij , wi):

P(zo, zc|x, θ) = P(zc|x, θ) P(zo|zc, x, θ) . (2.21)

• (E-step) We use Bayes rule to infer the expected competition training data hi hidden in a
training tuple (x, ·, t), i.e., the probability of hi when x and t are given.

P(hi|x, t) =
P(t|hi, x)P(hi|x)

P(t|x)
(2.22)

Since these probabilities refer to the training (or teacher) system, we can only approximate
them. We do this by our current approximation, i.e., our current system:

P(hi|x, t, θ) =
P(t|hi, x, θ) P(hi|x, θ)

P(t|x, θ)

=
P(t|hi, x, θ) P(hi|x, θ)∑
zc P(zc|x, θ) P(t|zc, x, θ)

. (2.23)

• (M-step) We can now adapt our system. In the classical EM-algorithm, this amounts to
maximizing the expectation of the log-likelihood (cp. eq. (2.21))

E[l(θ′)] = E[lnP(h|x, θ′) + lnP(t|zc, x, θ′)] , (2.24)

where the expectation is with respect to the distribution P(h|x, t, θ) of h-values (i.e., de-
pending on our inference of the hidden states h); and the maximization is with respect to
parameters θ. This equation can be simplified further—but, very similar to the “least-square”
algorithm developed by Jordan & Jacobs (1994), we are satisfied to have inferred an explicit
desired probability ŷi = P(hi = 1|x, t, θ) for the competition states zi that we use to define
a mean square error and perform an ordinary gradient descent.

Based on this background we define the learning rule as follows and with some subtle differences
to the one presented by (Jordan & Jacobs). Equation (2.23) defines the desired probability ŷi of
the states zi. Since we assume a selection rule proportional to the distribution yi, the values ŷi
are actually target values for the distribution yi. The first modification we propose is to replace
all likelihood measures involved in eq. (2.23) by general error measures E: Let us define

Qi(x) := 1− E(x) if (i) wins. (2.25)

1More precisely, the assumption is that there exists a teacher system of same architecture as our system. Our

system adapts free parameters wij , wi in order to approximate this teacher system. The teacher system produces

training data and, since it has the same architecture as ours, also uses competitive groups to generate this data.

The training data would be complete if it included the outcomes of these competitions.
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Then, in the case of the likelihood error E(x) = 1−P(t|x, θ), we retrieve Qi(x) = P(t|hi = 1, x, θ).
Further, let

V (x) :=
∑
i

Qi(x) yi(x). (2.26)

By these definitions we may rewrite eq. (2.23) as

ŷi(x) =
Qi(x) yi(x)

V (x)
=

Qi(x) yi(x)∑
j Qj(x) yj(x)

. (2.27)

However, this equation needs some discussion with respect to its explicit calculation in our context—
leading to the second modification. Calculating Qj(x) for every j amounts to evaluating the system
for every possible competition outcome. One major difference to the algorithm presented in (Jor-
dan & Jacobs 1994) is that we do not allow for such a separate evaluation of all experts in a single
time step. In fact, this would be very expensive in case of hierarchically interacting competitions
and experts because the network had to be evaluated for each possible combinatorial state of com-
petition outcomes. Thus we propose to use an approximation: We replace Qj(x) by its average
over the recent history of cases where (j) won the competition,

Q̄j ← γ Q̄j + (1− γ)Qj(x) whenever (j) wins , (2.28)

where γ ∈ [0, 1] is a trace constant (as a simplification of the time dependent notation, we use
the algorithmic notation ← for a replacement if and only if (j) wins). Hence, our adaptation rule
finally reads

δ̌i = −αc
[
yi −

Qi yi∑
j∈{i}c Q̄j yj

]
if (i) wins, (2.29)

and δ̌i = 0 if (i) does not win; which means a gradient descent on the square error between the
approximated desired probabilities ŷi and the distribution yi.

Q-learning

Probably, the reader has noticed that we chose notations in the previous section in the style of
reinforcement learning: If one interprets the winning of neuron (i) as a decision on an action, then
Qi(x) (called action-value function) describes the (estimated) quality of taking this decision for
stimulus x; whereas V (x) (called state-value function) describes the estimated quality for stimulus
x without having decided yet, see (Sutton & Barto). In this context, eq. (2.27) is very interesting:
It proposes to adapt the probability yi(x) according to the ratio Qi(x)

/
V (x)—the EM-algorithm

acquires a very intuitive interpretation. To realize this equation without the approximation de-
scribed above one has to provide an estimation of V (x), e.g., a neuron trained on this target value
(a critic). We leave this for future research and instead directly address the Q-learning paradigm.

For Q-learning, an explicit estimation of the action-values Qi(x) is modeled. In our case, we
realize this by considering Qi(x) as the target value of the excitations xi, i ∈ {c}c, i.e., we train
the excitations of competing neurons toward the action values,

δi = αc

{
xi −Qi if (i) wins

0 else .
(2.30)

This approach seems very promising—in particular, it opens the door, e.g., to TD(λ) methods and
other fundamental concepts of reinforcement learning theory.
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– The adaptation rate is α = 0.01 for all algorithms (as indicated in eqs. (2.29,2.30,2.32), the delta-values

for neurons in competitive groups are multiplied by the learning rate αc).

– Parameters are initialized normally distributed around zero with standard deviation σ = 0.01.

– The sigmoidal and linear activation functions are φs(x) = 1
1+exp(−10x)

and φl(x) = x, respectively.

– The competition function ψ for softmax competition is ψs(x) = e5x.

– The Q-learning algorithm uses ε-greedy selection with ε = 0.1; the others select either the maximal

activation or with probability proportional to the activation.

– The values of the average traces Q̄i and V̄ are initialized to 1.

– The following parameters were used for the different learning schemes:

gradient EM Q Oja-Q

αc – 1 10 100

γ – 0.9 – 0.9

ψ ψs φs φl φl

selection proportional max greedy max

Here, αc is the learning rate factor, γ is the average trace parameter, and ψ is the competition function.

Table 2.2: Implementation details

Oja-Q learning

Besides statistical and reinforcement learning theories, also the branch of unsupervised learn-
ing theories gives some inspiration for our problem. The idea of hierarchically, serially coupled
competitive groups raises a conceptual problem: Can competitions in areas close to the input be
trained while higher level areas (closer to the output) are not yet operative and vice versa? Usually,
back-propagation is the standard technique to address this problem. But this does not apply on
either the EM-learning or the reinforcement learning approaches because they generate a direct
feedback to competing neurons in any layer. Unsupervised learning in lower areas seems to show
a way out of this dilemma. As a first approach we propose a mixture of unsupervised learning
in the fashion of the normalized Hebb rule and Q-learning. The normalized Hebb rule (of which
the Oja rule is a linearized version) can be realized by setting δi = −αc zi for a neuron (i) in a
competitive group (recall zi ∈ {0, 1}). The gradient descent with respect to adjacent input links
gives the ordinary ∆wij ∝ zi zj rule. Thereafter, the input weights (including the bias) of each
neuron (i), i ∈ {c}c are normalized. We modify this rule in two respects. First, we introduce a
factor (Qi− V̄ ) that accounts for the success of neuron (i) being the winner. Here, V̄ is an average
trace of the feedback:

V̄ ← γ V̄ + (1− γ)Qi(x) every time step , (2.31)

where (i) is the winner. Second, in the case of failure, Qi < V̄ , we also adapt the non-winners in
order to increase their response on the stimulus next time. Thus, our rule reads

δi = −αc (Qi − V̄ )

{
zi if Qi ≥ V̄

zi − 0.5 else .
(2.32)

Similar modifications are often proposed in reinforcement learning models (Barto 1985; Barto &
Jordan 1987). The rule investigated here is only a first proposal; all rules presented in the excellent
survey of Diamantaras & Kung (1996) can equally be applied.
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Figure 2.8: The architecture we use for our experiments. All output neurons have linear activation
functions φ(x) = x. All neurons except the input neurons have bias terms.

2.3.2 Empirical tests

Some tests of the proposed architecture and the learning schemes on a task similar to the
what-and-where task demonstrate the functionality.

The task.

We test the functionality of our model and the learning methods by addressing a variant of the
what-and-where task also investigated by (Jacobs, Jordan, & Barto). A single bit of an 8-bit input
decides on the subtask that the system has to solve on the current input. The two subtasks itself
are rather simple and in our case (other than in Jacobs, Jordan, & Barto 1990) are to map the
8-bit input either identically or inverted on the 8-bit output. The task has to be learned online.

The architectures.

We investigate the learning dynamics of our model with the 4 different learning methods. We use
a fixed architecture similar to an 8-10-8-layered network with 10 hidden neurons but additionally
install 2 competitive neurons that receive the input, each of which gates half of the hidden neurons,
see figure 2.8. For completeness we also display the learning curve of a conventional feed-forward
neural network (FFNN) in which case we used the same architecture but replaced all gating and
competitive connections by conventional links.

Results.

Figure 2.9 displays the learning curves for each case averaged over 20 runs with different weight
initializations. For implementation details see table 2.2. First of all, we find that all of the 4
learning methods seem to work and perform well on this task. Not surprisingly, the conventional
FFNN fails. It was only sometimes able to solve the task completely what explains the rather high
error offset for its learning curve.

We get some more insight in the learning dynamics by investigating if and when the task
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Figure 2.9: Learning curves for the conventional neural network and the four different learning
schemes averaged over 20 runs with different weight initializations.

separation has been learned. Figure 2.10 displays the frequencies of winning of the two competitive
neurons in case of the different subtasks: “How often does the left or right neuron win in case of
the first and the second task?” The task separation would be perfect if these two neurons would
reliably distinguish the two subtasks. First noticeable is that all 4 learning methods learn the task
separation. Second, after the task separation has been found in principle, more or less noise is left,
depending on learning scheme. However, this second effect only mirrors the respective “action-
selection policy”: For Q-learning we used ε-greedy selection of the winner with ε = 0.1. Hence,
the actually perfectly learned task separation is distorted with 10% noise. This is similar with the
pure gradient method, where softmax selection introduces additional noise. Only EM and Oja-Q
display the perfect task separation since they use maximum winner selection.

The four learning methods only differ in how the two gating neurons are trained. Consequently,
if the gating neurons solved their problem of task-separation, the following epoch of learning the
two separate tasks is equivalent for all four learning methods. This explains why the four learning
curves in figure 2.9 are so similar except for the temporal offset corresponding to the time until
the task separation has been found and the non-zero asymptotic error corresponding to the noise
of task separation.

Generally, our experience was that the learning curves may look very different depending on
the weight initialization. It also happened that the task separation was not found when weights
and biases (especially of the competing neurons) were initialized with very large values (e.g., by
N(0, 0.5)). One of the competitive neurons then dominates from the very beginning and prohibits
the “other expert” to adapt in any way. Definitely, a special, perhaps equal initialization of
competitive neurons could be profitable.
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Figure 2.10: The gating ratios for single trials for the four different learning schemes: The four
rows refer to gradient, EM-, Q-, and Oja-Q-learning; and the two columns refer to the two classes
of stimuli—one for the “identical” task, and one for the “not” task. Each graph displays two
curves that sum to 1 and indicate how often the first or second gating neuron wins in case of the
respective subtask.



Conclusions

A key result of our discussion of evolutionary adaptation was that evolution implicitly learns
about the problem by adapting its genetic representations accordingly. The emerging genetic
representations, including their neutral traits, encode knowledge about where to explore. The
information is accumulated in the course of σ-evolution of the genetic systems. This theory together
with our experimental studies allows to understand some fundamental phenomena of evolution:

• Evolution can adapt genetic representations in order to induce correlated phenotypic vari-
ability as we observed it for the evolution of artificial plants in section 1.5.5. The origin
of the structuredness of phenotypic variability are basic correlating mechanisms within the
genotype-phenotype mapping (e.g., gene interaction mechanisms like the operon) that are
exploited by the adaptation of genetic representations.

• Evolution adapts genetic representations towards shorter and more modular genomes if oth-
erwise phenotypic mutability becomes too high. In some cases the price is that optimal
solutions are not found since they would require mutationally non-stable encodings, as, e.g.,
in the example in section 1.5.4.

• Neutrality is not redundant in the sense of superfluous since different genetic representa-
tions within a neutral set induce different phenotypic variability. Hence, neutral traits carry
information measurable in terms of phenotypic exploration distributions.

• Evolution exploits neutrality when adapting genetic representations without affecting the cur-
rent phenotype. In our computational model, structural mutations of the genome—2nd-type
mutations—account for such exploitation of neutrality and enable structural reformations of
genetic representations.

• Redundancy in the sense of multiple genes for the same purpose may occur when evolution
adapts genetic representations in favor of phenotypic mutational robustness. For instance,
this occurs in the D-trial in section 1.5.5 when several operators with the same promoter
exist of which some would only be expressed when the other is mutationally destroyed.

We claim that all these phenomena are merely different faces of the underlying principle of σ-
evolution. This is the adaptation of genetic representations driven by the pressure to match
phenotypic variability to the distribution of experienced good solutions—the fundamental principle
to learn from previous explorations by accumulating the information and exploiting it for future
exploration as we captured it formally in terms of Generic Heuristic Search.

In the introduction we formulated the idea of “simple adaptation mechanisms on suitable rep-
resentations” versus “complex adaptation mechanisms on arbitrary representations.” Our results
show that indeed the adaptation of genetic representations allows that a very simple adaptational
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mechanism on the actual substrate of evolutionary adaptation—on the level of genes—may induce
elaborate adaptation on the functional level.

The adaptability of neural systems can be understood and characterized in basically the same
way by analyzing how system functionalities are represented by the underlying adaptive substrate—
the synaptic (and bias) weights. We developed a theory on how the structure of neural systems
determines their style of functional adaptability. Unlike classical approaches to the model selec-
tion problem, which focus on the cardinality of the system (i.e., the cardinality of the space of
representable functions, e.g., the VC-dimension), our analysis captures precise characteristics of
how functions are represented and what style of adaptability, characterized by coadaptation, this
induces. This description of how functions are represented leads to a definition of functional mod-
ularity which contrasts to existing definitions of architectural modularity in neural systems (see,
e.g., Hüsken, Igel, & Toussaint 2002) which do not a priory have a functional meaning.

As an example for the significance of this theory we analyzed two types of neural systems;
conventional neural networks with and without lateral competitive interactions. This analysis
makes explicit and theoretically precise what has often been discussed:

• Despite the universal approximation capabilities of neural networks, their way of adaptability,
in the case of gradient learning, is not universal: They are inherently non-modular and
predisposed for coadaptation.

• Competitive interactions, as they are readily implicit in multi-expert systems to solve the
problem of cross-talk, can prevent undesired coadaptation and induce a much more modular
way of adaptability in the sense of definition 2.2.2.

Both results become apparent when investigating the distribution of the functional metric over the
respective model class, see figure 2.5. Such distributions are a generic way to characterize model
classes with respect to their adaptation behavior.

These results have important implications for the design of neural systems—in particular for
the approach to use evolutionary algorithms to optimize the architecture of neural systems: If one
is interested in optimizing the way of adaptability and the way of generalization of neural systems,
one should not only consider the space of conventional neural networks as the search space but also
include systems that incorporate competitive interactions. We defined such a general class of neural
networks that may incorporate competitive interactions as well as gating interactions anywhere
in the architecture and thereby unifies and generalizes the class of conventional neural networks
and the class of general architecture multi-expert systems. Evolutionary architecture optimization
within this class of networks should lead to neural systems of which functional adaptability is well
adapted to the problem at hand. E.g., functional traits that are decoupled in the problem should
be represented by different functional modules of the neural system.



Appendix
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Theorems, definitions and symbols in chapter 1

theorem page (number)

No Free Lunch (Wolpert & Macready 1995) 16 (1.2.1)

conditions for trivial neutrality 26 (1.2.2)

σ-evolution 30 (1.2.3), 31 (1.2.4)

entropy and mutual information of mutation 38 (1.3.2)

entropy and mutual information of crossover 39 (1.3.3)

two-gene entropy and mutual information of crossover 40 (1.3.4)

correlated exploration, mutation, and crossover 42 (1.3.5)

definition

finite distribution 18

Heuristic Search 18 (1.2.1)

Generic Heuristic Search (GHS) 19 (1.2.2)

Evolutionary processes 20 (1.2.3)

fitness 21 (1.2.4)

selection 21

finite populations 18

finite populations 22

phenotype 23 (1.2.5)

genotype 23 (1.2.6)

genotype-phenotype mapping (GP-map) 23

phenotype equivalence, neutral sets 23 (1.2.7)

phenotype projection, distribution equivalence 24 (1.2.8)

neutral degree 24 (1.2.9)

genotypic variational topology 24 (1.2.10)

trivial neutrality, trivial GP-map 25 (1.2.11)

σ-embedding (Toussaint 2003c) 29 (1.2.12)

crossover 36 (1.3.1)

simple mutation 36 (1.3.2)

correlated exploration 42 (1.3.3)

model genotype 57

model 2nd-type mutations 58
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symbol page (eq.) description

P 17, 23 space of solutions, the search space (in the context
of heuristic search) or the phenotype space

ΛP 17 space of distributions over the search space; space of
phenotypic exploration distributions

q(t) = Φy(t) ∈ ΛP 17 exploration distribution at time t

y(t) ∈ Y 17 parameters of the exploration distribution at time t

Φ : Y → ΛP 17 parameterization of the exploration distribution

Sλ : ΛP → ΛP 18 stochastic sampling operator makes a distribution
(population) finite

F : ΛP → ΛP 18 (1.1) fitness operator

H 18 (1.2) heuristic rule (essentially mapping y(t) to new pa-
rameters y(t+1))

D
(
p
∣∣∣∣ q) 19 (1.3) Kullback-Leibler divergence (“distance measure” be-

tween two distributions)

G 20, 23 genotype space

ΛG 20 space of distributions over genotype space, i.e., the
space of populations also finite populations

p(t) ∈ ΛG 20 genotype population

M : ΛG → ΛG 20 mutation or mixing (mutation plus crossover) oper-
ator

q(t) = M p(t) ∈ ΛG 21 genotype offspring population q(t) = Mp(t) (which is
at the same time the genotypic exploration distribu-
tion)

Λµ,P 22 space of finite distributions (i.e., populations) com-
prising µ samples (individuals)

φ : G→ P 23 genotype phenotype mapping

≡ 23 phenotype equivalence

[x] ⊆ G 23 neural set of the phenotype x ∈ P (i.e., the equiv-
alence class of genotypes with the same phenotype
x)

Ξ : ΛG → ΛP 24 phenotype projection of distributions (populations)

≡̂ 24 phenotype equivalence between distributions (popu-
lations) of genotypes

n(g) 24 neutral degree of a genotype g ∈ G
[x] ⊂ ΛG 29 (1.9) set of exploration distributions in a neutral set [x]

g 7→ (x, σ) 29 typical nomenclature of the σ-embedding: genotype
g, phenotype x = φ(g), and the “neutral traits” σ =
M(·|g) ∈ ΛG embedded in the space of distributions

C : ΛG → ΛG 36 crossover operator

M∗ 36 a simple mutation operator (the typical component-
wise (i.e., symbol-wise) mutation)
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Theorems, definitions and symbols in chapter 2

theorem page (number)

coadaptation and functional modules in gradient online
learning

87 (2.2.1)

definition

adaptation covariance and coadaptation 83 (2.2.1)

adaptation decomposition and functional modules 84 (2.2.2)

functional metric 85 (2.2.3)
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symbol page (eq.) description

F 80 functional space of neural systems, e.g., the space of
functions or conditional probability distributions

W 81 parameter space of neural systems, i.e., the weight
space Rm

ΛW , ΛF 81 space of distributions over parameter and functional
spaces, respectively

Φ : W → Fd 81, 83, 85 parameterization of functionalities

w ∈W = Rm 83 parameter state of a neural system

H : W → ΛW 83 stochastic adaptation operator, mapping w(t) to a
probability distribution for w(t+1)

Sλ : ΛW →W 83 stochastic sampling operator; see the definition on
page 18 in chapter 1

f ∈ F 83 functionality (function) represented by the neural
system

fa ∈ R 83 functional components

Cab(w) 83 covariance matrix between functional traits within
stochastic adaptation

〈 · 〉 84 averaging over a specified distribution

Ξ : ΛW → ΛF 84 projection of distributions from parameter space to
the functional space; see definition 24 (1.2.8) in chap-
ter 1

ĝij 85, 86 an ad-hoc presumed metric on the weight space W ,
namely the Euclidean metric

gab(w) 85 induced functional metric on F

ĝab 88 a presumed (natural) metric on F (namely the mean
square metric or the Fisher metric)

gij(w) 88 weight space metric induced from the natural metric
ĝab in the case of natural gradient descent

δij 86 Euclidean metric or, equivalently, the Kronecker
delta

α 86 adaptation rate
~ξa 86 local basis vectors of the coordinate frame in F
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