
Probabilistic Inference for Solving Discrete and Continuous State
Markov Decision Processes

Marc Toussaint mtoussai@inf.ed.ac.uk
Amos Storkey a.storkey@ed.ac.uk

School of Informatics, University of Edinburgh, 5 Forrest Hill, Edinburgh EH1 2QL, UK

Abstract

Inference in Markov Decision Processes has
recently received interest as a means to in-
fer goals of an observed action, policy recog-
nition, and also as a tool to compute poli-
cies. A particularly interesting aspect of the
approach is that any existing inference tech-
nique in DBNs now becomes available for an-
swering behavioral questions–including those
on continuous, factorial, or hierarchical state
representations. Here we present an Expecta-
tion Maximization algorithm for computing
optimal policies. Unlike previous approaches
we can show that this actually optimizes the
discounted expected future return for arbi-
trary reward functions and without assuming
an ad hoc finite total time. The algorithm is
generic in that any inference technique can be
utilized in the E-step. We demonstrate this
for exact inference on a discrete maze and
Gaussian belief state propagation in continu-
ous stochastic optimal control problems.

1. Introduction

The problems of planning in stochastic environments
and inference in Markovian models are closely related,
in particular in view of the challenges both of them
face: e.g., coping with very large state spaces spanned
by multiple state variables, or realizing planning (or
inference) in continuous state spaces. Both fields de-
veloped techniques to address these problems. For in-
stance, in the field of planning, they include work on
Factored Markov Decision Processes (Boutilier et al.,
1995; Koller & Parr, 1999; Guestrin et al., 2003; Kve-
ton & Hauskrecht, 2005) or abstractions (Hauskrecht

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

et al., 1998). On the other hand, in the field of proba-
bilistic inference, techniques for approximate inference
on factorial latent representations (e.g., Factorial Hid-
den Markov Models Ghahramani & Jordan, 1995) and
a large amount of work on approximate inference in
continuous state spaces does exist (ranging from par-
ticle filters to, e.g., Assumed Density Filtering; see,
e.g., (Minka, 2001) for an overview).

In view of these similarities one may ask whether
approaches to probabilistic inference can exactly be
transferred to the problem of planning, in other words,
whether one can translate the problem of planning ex-
actly into a problem of inference. Clearly, the aim of
this is to connect both fields more strongly but even-
tually also to apply, e.g., efficient methods of proba-
bilistic inference directly in the realm of planning.

Bui et al. (2002) have used inference on Abstract Hid-
den Markov Models for policy recognition, i.e., for rea-
soning about executed behaviors, but do not address
the problem of computing optimal policies from such
inference. Attias (2003) recently proposed a frame-
work which suggests a straight-forward way to trans-
late the problem of planning to a problem of inference:
A Markovian state-action model is assumed, which is
conditioned on a start state x0 = A and a goal state
xT = B. Here, however, the total time T has to be
fixed ad hoc and the MAP action sequence that is pro-
posed as a solution is not optimal in the sense of maxi-
mizing an expected future reward. Thirdly, Verma and
Rao (2006) used inference to compute plans (consider-
ing the maximal probable explanation (MPE) instead
of the MAP action sequence) but again the total time
has to be fixed and the plan is not optimal in the ex-
pected return sense. In this paper our contribution is
to (1) provide a framework that translates the problem
of maximizing the expected future return exactly into
a problem of likelihood maximization in a latent vari-
able mixture model, for arbitrary reward functions and
without assuming a fixed time, (2) demonstrate the
approach first on a discrete maze problem using exact

Probabilistic Inference for Solving Markov Decision Processes

at

r1 r2 rt

x0 x1 x2 xt

a0 a1 a2

r0

Figure 1. Dynamic Bayesian Network for a MDP. The x
states denote the state variables, a the actions and r the
rewards.

inference in the E-step, then on a continuous stochas-
tic optimal control problem assuming Gaussian belief
state representations and using the unscented trans-
form to handle non-linear dynamics.

The key step to our approach is to introduce a mix-
ture of finite-time MDPs as a model that is equiv-
alent to the original time-unbounded MDP but has
two advantages: it allows us to formulate a likelihood
proportional to the expected future return, and infer-
ence in the mixture model can efficiently be realized
with a single synchronous forward-backward propaga-
tion without having to fix a finite total time in ad-
vance. The next three sections introduce this frame-
work, show equivalence to maximizing expected future
rewards, and describe an EM-algorithm to compute
optimal policies. Section 5 explains the intimate rela-
tion to Policy Iteration and the examples in Section 6
and 7 demonstrate the feasibility of this approach.

2. Markov Decision Processes

Figure 1 displays the Dynamic Bayesian Network for
a time-unlimited Markov Decision Process (MDP),
which is defined by the state transition probability
P (xt+1 | at, xt), the action probability P (at |xt ;π),
and the reward probability P (rt | at, xt). The random
variables x and a can be discrete or continuous whereas
the reward variable is, without loss of generality, as-
sumed to be binary, rt ∈ {0, 1}.1 Throughout this
paper we assume that the transition and reward prob-
abilities are given, i.e. known a priori. Such probabili-
ties can also be estimated from experience, but this is
not addresses here.

The action probability P (at |xt ;π) is directly param-
eterized by an unknown policy π such that P (at =
a |xt = i ;π) = πai, the numbers πai ∈ [0, 1] are nor-
malized w.r.t. a. The problem is to solve the MDP,
i.e. to find a policy that maximizes the expected fu-
ture return:

1Assuming binary reward variables is sufficient to as-
sociate arbitrary reward expectations P (rt | at, xt) in the
interval [0, 1] to states and actions, which is, modulo rescal-
ing, the general case in Reinforcement Learning scenarios.

M
IX

T
U

R
E

 o
f f

in
ite

−
tim

e
M

D
P

s

xT

a0

a0 a1 a2

r

a0 a1 a2

r

a0 a1

r

T = 2

T = 1

T = 0
x0

x0

x0 x1

x1

x2

x2x1x0

r

aT

Figure 2. Mixture of finite-time MDPs.

Definition 2.1 Solving an MDP means to find a
parameter π of the graphical model in Figure 1
that maximizes the expected future return V π(i) =
E {

∑∞
t=0 γt rt |x0 = i ;π}, where γ ∈ [0, 1] is a dis-

count factor.

The classical approach to solving MDPs is anchored
in Bellman’s equation, which simply reflects the re-
cursive property of the future discounted return RT =∑∞

t=T γt rt = rT + γ RT+1 and consequently of its
expectation conditioned on the current state, V π(i) =∑

j,a P (j | a, i) P (a | i ;π) [P (rt = 1 | a, i) + γ V π(j)].
Standard algorithms for computing value functions
can be viewed as iterative schemes that converge to-
wards the Bellman equation. We discuss relations in
section 5.

3. Mixture of MDPs and likelihoods

Our approach is to cast the problem of solving an
MDP into a problem of optimizing the parameters of a
graphical model with many hidden variables, namely
all future states and actions. The only observables are
the current state and rewards. To achieve exact equiv-
alence between solving the MDP and standard likeli-
hood maximization we need to define a likelihood that
is proportional to the expected future return. This
is most easily done by formally considering a mixture
of finite-time MDPs. By a finite-time MDP we mean
one which is limited in time by T and which emits a
reward variable only at the very final time step, as il-

Probabilistic Inference for Solving Markov Decision Processes

lustrated for various T in Figure 2. The full joint for
a finite-time MDP is

P (r, x0:T ,a0:T |T ;π) = P (r | aT , xT) P (a0 |x0 ;π) P (x0)

·
T∏

t=1

P (at |xt ;π) P (xt | at−1, xt−1) . (1)

The full mixture of finite-time MDPs is then given by
the joint

P (r, x0:T , a0:T , T ;π) = P (r, x0:T , a0:T |T ;π) P (T) .
(2)

Here, P (T) is a prior over the total time, which
we choose proportional to the discounting, P (T) =
γT (1−γ). Note that each finite-time MDP shares the
same transition probabilities and is parameterized by
the same policy π.

Now we can consider the reward variable r as obser-
vations, condition on the start state, and define the
likelihood for a single finite-time MDP,

Lπ
T (i) = P (r=1 |x0 = i, T ;π) = E {r |x0 = i, T ;π} ,

(3)

and for the full mixture of MDPs,

Lπ(i) = P (r=1 |x0 = i ;π)

=
∑
T

P (T) E {r |x0 = i, T ;π} . (4)

This likelihood is, for the discounted time prior
P (T) = γT (1−γ), proportional to the expected future
return,2

Lπ(i) = (1− γ) V π(i) . (5)

Hence we have established

Theorem 3.1 Maximizing the likelihood (4) in the
mixture of finite-time MDPs (Figure 2) is equivalent
to solving the MDP (definition 2.1).

Besides establishing exact equivalence between likeli-
hood and expected future return maximization, con-
sidering the mixture of finite-time models has a second
advantage: the finite-time property of every mixture
component makes the E-step in the full mixture model
rather simple and efficient, as detailed in the next sec-
tion.

2Note that the expectation term E {r |x0 = i, T ; π}
here is exactly the same as the terms E {rt |x0 = i ; π} for
t = T in definition 2.1: we are taking the expectation w.r.t.
a full probabilistic forward-sweep through the MDP, from
time 0 to time T , given the policy π. All MDPs share the
same transition probabilities.

4. An EM-algorithm for computing the
optimal policy

Formulating the objective function in terms of a likeli-
hood allows us to apply Expectation-Maximization to
find optimal parameters (the policy π) of our model.
All action and state variables (except for x0) are hid-
den variables. The E-step will, for a given π, compute
posteriors over state-action sequences as well as T con-
ditioned on x0 = A and r = 1. The M-step then adapts
the model parameters π to optimize the expected like-
lihood (expectations then taken w.r.t. the posteriors
calculated in the E-step). Conceptually, the E-step in
this Markovian model is straight-forward. However,
the special structure of the finite-time MDPs will allow
for certain simplifications and save us from performing
separate inference sweeps in all finite-time MDPs.

E-step: forward-backward in all MDPs syn-
chronously. Since we assume the transition prob-
abilities to be stationary, we may use the simpler no-
tations p(j|a, i) = P (xt+1 = j | at = a, xt = i) and
p(j|i ;π) = P (xt+1 = j |xt = i ;π) =

∑
a p(j|a, i) πai.

Further, as a “seed” for backward propagation, we de-
fine

β̂(i) = P (r=1 |xT = i ;π)

=
∑

a

P (r=1 | aT =a, xT = i) πai . (6)

In the E-step, we consider a fixed given policy π and
all the quantities we compute depend on π even if not
explicitly annotated. For a single MDP of finite time T
the standard forward and backward propagation com-
putes

α0(i) = δi=A , αt(i) = P (xt = i |x0 =A ;π)

=
∑

j

p(i|j ;π) αt−1(j) , (7)

β̃T (i) = β̂(i) , β̃t(i) = P (r=1 |xt = i ;π)

=
∑

j

p(j|i ;π) β̃t+1(j) . (8)

We find that all the α-quantities do not depend on T
in any way, i.e., they are valid for all MDPs of any
finite time T . This is not true for the β̃-quantities
when defined as above. However, we can use a simple
trick, namely define the β’s to be indexed backward in
time (with the ‘time-to-go’ τ), an get

β0(i) = β̂(i) , βτ (i) = P (r=1 |xT−τ = i ;π)

=
∑

j

p(j|i ;π) βτ−1(j) . (9)

Probabilistic Inference for Solving Markov Decision Processes

Defined in that way, all β-quantities do indeed not
depend on T . For a specific MDP of finite time T , set-
ting τ = T−t would allow us to retrieve the traditional
forward-indexed β̃-quantities.

This means that we can perform α- and β-propagation
in parallel, incrementing t and τ synchronously, and
can retrieve the α’s and β’s for all MDPs of any finite
time T . Although we introduce a mixture of MDPs we
only have to perform a single forward and backward
sweep. This procedure is, from the point of view of
ordinary Hidden Markov Models, quite unusual—it is
possible because in our specific setup we only condition
on the very first (x0 = A) and very last state (r = 1).
Apart from the implementation of discounting with the
time prior, this is the main reason why we considered
the mixture of finite-time MDPs (Figure 2) in the first
place instead of a single time-unbounded MDP that
could emit rewards at any times (Figure 1).

During α- and β-propagation, we can compute the
state posteriors, which are clearly not independent of
the total time T . We define

γtτ (i) = P (xt = i |x0 =A, r=1, T = t + τ ;π)

=
1

Z(t, τ)
βτ (i) αt(i) , (10)

with the normalization

Z(t, τ) =
∑

i

αt(i) βτ (i)

=
P (x0 =A, r=1 |T = t + τ ;π)

P (x0 =A)
= Z(t + τ) . (11)

Time and reward posterior. It is interesting to
realize that the normalization constant Z only depends
on the sum t+τ , i.e., we can define Z(t+τ) = Z(t, τ).
Further, Z(t + τ) is related to the likelihood P (x0 =
A, r = 1 |T = t + τ ;π), i.e., the likelihood that the
start state is A and the final state leads to reward
if one assumes an MDP of specific length T . Using
Bayes rule, this leads us to the posterior over T (in
abbreviated notation),

P (T |x0, r ;π) =
P (x0, r |T ;π)

P (x0, r ;π)
P (T) =

Z(T) P (T)
P (r |x0 ;π)

,

(12)

and the reward posterior

P (r |x0 ;π) =
∑
T

P (T) Z(T) . (13)

Action and state posteriors. Let us briefly derive
the action and state posteriors that are relevant for

the later discussion. For convenience, let

qtτ (a, i) = P (r=1 | at =a, xt = i, T = t + τ ;π)

=
{ ∑

j p(j|i, a) βτ−1(j) τ > 1
P (r=1 | aT =a, xT = i) τ = 0

. (14)

As expected, this quantity is independent of A and t
because we conditioned on xt and the history before
time t becomes irrelevant in the Markov chain. We
may use the simpler notation qτ (a, i) = qtτ (a, i). Mul-
tiplying with the time prior and eliminating the total
time we get the action-conditioned likelihood

P (r=1 | at =a, xt = i ;π)

=
1
C

∞∑
τ=0

P (T = t + τ) qτ (a, i) , (15)

where C =
∑

τ ′ P (T = t + τ ′), and which is for the
discounted time prior independent of t because P (t +
τ) = γtP (τ) which is absorbed in the normalization.
Further, with Bayes rule we get the action posterior

P (at =a |xt = i, r=1 ;π)

=
πai

C ′

∞∑
τ=0

P (T = t + τ) qτ (a, i) , (16)

where C ′ = P (r =1 |xt = i ;π)
∑

τ ′ P (T = t + τ ′) can
be computed from normalization, and which is also
independent of t. Finally, in the experimental results
we will display the posterior probability of visiting a
certain state i. This is derived as

P (i ∈ x0:T |x0, r=1 ;π) (17)

=
∑
T

P (T) Z(T)
P (r=1 |x0 ;π)

[
1−

T∏
t=0

[
1− γt,T−t(i)

]]
.

M-step: the policy update. The stan-
dard M-step in an EM-algorithm maxi-
mizes the expected complete log-likelihood
Q(π∗, π) =

∑
T

∑
x0:T ,a0:T

P (x0:T , a0:T , T | r =
1 ;π) log P (r = 1, x0:T , a0:T , T ;π∗) w.r.t. the new
parameters π∗, where expectations over the latent
variables (T, x0:T , a0:T) were taken w.r.t. the posterior
given the old parameters π. In our case, in strong
analogy to the standard HMM case, this turns out
to assign the new parameters to the posterior action
probability given in equation (16),

π∗ai = P (at =a |xt = i, r=1 ;π) . (18)

However, exploiting the structure of the MDP, we can
also write the likelihood as

P (r=1 |x0 = i ;π∗) =
∑
aj

P (r=1 | at =a, xt =j ;π∗) π∗aj

· P (xt =j |x0 = i ;π∗) . (19)

Probabilistic Inference for Solving Markov Decision Processes

Maximizing this expression w.r.t. π∗aj can be done sep-
arately for every j and is thus independent of P (xt =
j |x0 = i ;π∗) and thereby also independent of t be-
cause P (r = 1 | at = a, xt = j ;π∗) is so (see equation
(15)). Using the E-step we can approximate the first
term and maximize

∑
a P (r = 1 | at = a, xt = j ;π) π∗aj

via

π∗ai = δa=a∗(i) ,

a∗(i) = argmax
a

P (r=1 | at =a, xt = i ;π) (20)

where a∗(i) maximizes the action-conditioned likeli-
hood (15). Given the relations between equation (15)
and (16), the main difference to the standard M-step is
that this update is much greedier and converges faster
in the MDP case. We will use the update (20) rather
than (18) in the experiments.

5. Relation to Policy Iteration

The β-quantities computed during backward propaga-
tion are actually the value function for a single MDP
of finite time T . More precisely, comparing (9) with
the reward likelihood (3) for the MDP of finite time T
and the definition 2.1 of the value function, we have
βτ (i) ∝

(
V π(i) of the MDP of time T = τ

)
. Accord-

ingly, the full value function is the mixture of the β’s,
V π(i) = 1

1−γ

∑
T P (T) βT (i), when a discount time

prior is chosen. Further, the quantities qτ (a, i) de-
fined in (14) are equally related to the Q-function, in
the sense that Qπ(a, i) = 1

1−γ

∑
T P (T) qT (a, i) for a

discount time prior. Note that this is also the action-
conditioned likelihood (15) and, interestingly, the ac-
tion posterior (16) is proportional to πai Qπ(a, i).
Hence, the E-step performs a policy evaluation which
yields the classical value function but additionally the
time, state and action posteriors, which have no tra-
ditional analogue. Given this relation to policy evalu-
ation, the M-step performs a policy update which (for
the greedy M-step (20)) is the standard policy update
in Policy Iteration (Sutton & Barto, 1998), maximiz-
ing the Q-function w.r.t. the action a in state i. Thus,
the EM-algorithm using exact inference and belief rep-
resentation is effectively equivalent to Policy Iteration
(also w.r.t. convergence) but computes the necessary
quantities in a different way. However, when using ap-
proximate inference or belief representations (as in the
second example) the EM-algorithm amounts to a qual-
itatively different algorithm. One should also mention
the related approach by (Ng et al., 1999), using den-
sity propagation for forward simulation of a policy (the
α-propagation) and estimation of the policy gradient.
In practical implementation, knowing the time, state
and action posteriors can be exploited by pruning un-

(a)

(b)

Figure 3. (a) State visiting probability calculated by PIP
for some start and goal state. The radii of the dots are pro-
portional to (17). (b) The probability of reaching the goal
(for PIP) and the value calculated for the start state (PS)
against the cost of the planning algorithms (measured by
evaluations of p(j|i, a)) for both start/goal configurations.

necessary computations as discussed in the following
example.

6. Discrete maze example

We tested our probabilistic inference planning (PIP)
algorithm on a discrete maze of size 100×100 and com-
pared it to standard Value Iteration (VI) and Policy
Iteration (PI). Walls of the maze are considered to be
trap states (leading to unsuccessful trials) and actions
(north, south, east, west, stay) are highly noisy in that
with a probability of 0.2 they lead to random transi-
tions. In the experiment we chose a uniform time prior
(discount factor γ = 1) and iterated the policy update
k = 5 times. To increase computational efficiency we
exploited that the algorithm explicitly calculates pos-
teriors which can be used to prune unnecessary mes-
sage passings as explained in appendix A. For policy
evaluation in PI we performed 100 iterations of stan-
dard value function updates.

Figure 3(a) displays the posterior state visiting prob-
abilities generated by our probabilistic inference plan-
ner (PIP) for a problem where rewards are given when
some goal state is reached. Computational costs are
measured by the number of evaluations of the environ-
ment p(j|i, a) needed during the planning procedure.

Probabilistic Inference for Solving Markov Decision Processes

Figure 3(b) displays the probability of reaching the
goal P (r = 1 |x0 = A ;π) against these costs for the
same two start/goal state configurations. Note that
for PIP (and PI) we can give this information only af-
ter a complete E- and M-step cycle (policy evaluation
and update) which are the discrete dots (triangles) in
the graph. The graph also displays the curve for VI,
where the currently calculated value VA of the start
state (which converges to P (B|A) for the optimal pol-
icy) is plotted against how often VI evaluated p(j|i, a).

In contrast to VI and PI, the PIP algorithm takes con-
siderable advantage of knowing the start state in this
planning scenario: the forward propagation allows for
the pruning and the early decision on cutoff times of
the E-step as described in appendix A. It should thus
not be a surprise and not overstated that PIP is sig-
nificantly more efficient in this specific scenario. Cer-
tainly, some kind forward propagations could also be
introduced for VI or PI to achieve similar efficiency.
Nonetheless, our approach provides a principled way
of pruning by exploiting the computation of proper
posteriors.

A detailed inspection of the policies computed by all
three methods showed that they are equal for states
which have significantly non-zero state visiting proba-
bilities.

7. Stochastic optimal control

Gaussian belief state propagation. In the second
example we want to show that the framework naturally
allows to transfer other inference techniques to the
problem of solving MDPs. We address the problem of
stochastic optimal control in the case of a continuous
state and control space. A standard inference tech-
nique in continuous state spaces is to assume Gaus-
sian belief states as representations for α’s and β’s and
propagate forward-backward and using the unscented
transform to handle also non-linear transition dynam-
ics (see (Murphy, 2002) for an overview on inference
techniques in DBNs). Note that using Gaussian belief
states implies that the effective value function (section
5) becomes a mixture of Gaussians.

All the equations we derived remain valid when rein-
terpreted for the continuous case (summations become
integrations, etc) and the exact propagation equations
(7) and (9) are replaced by propagations of Gaussian
belief states using the unscented transform. In more
detail, let N (x, a,A) be the normal distribution over
x with mean a and covariance A and let N (x, a,A) be
the respective non-normalized Gaussian function with

N (a, a,A) = 1. As a transition model we assume

P (x′|u, x) = N (x′, φ(u, x), Q + (|u|/µ)2 I) (21)

where φ(u, x) is an non-linear function, Q is a constant
noise covariance, and we introduced a parameter µ for
an additional noise term that is squared in the control
signal.

With the parameterization αt(x) = N (x, at, At) and
βt(x) = N (x, bt, Bt) (note that β’s always remain non-
normalized Gaussian functions during propagation),
forward and backward propagation read

(at, At) = UTφ(at−1, AT−1)
(bt, Bt) = UTφ−1(bt−1, BT−1) ,

where UTφ(a,A) denotes the unscented transform of
a mean and covariance under a non-linear function.
In brief, this transform deterministically considers
2n + 1 points (say with standard deviation distance
to the mean) representing the Gaussian, maps these
point forward using φ (also taking care of the noise
terms), and returns the Gaussian that approximates
the mapped points (and their associated covariances).
Further we have

Ztτ = N (at, bτ , At + Bτ)

γtτ (x) = N (x, ctτ , Ctτ) , Ctτ = (A−1
t + B−1

τ)−1 ,

ctτ = Ctτ (A−1
t at + B−1

τ bτ)

The policy and the M-step. In general, the policy
is given as an arbitrary non-linear function π : x 7→ u.
Clearly, we cannot store such a function in memory.
However, via the M-step the policy can always be im-
plicitly expressed in terms of the β-quantities of the
previous E-step and numerically evaluated at specific
states x. This is particularly feasible in our case be-
cause the unscented transform used in the belief prop-
agation (of the next E-step) only needs to evaluate the
transition function at some states; and we have the ad-
vantage of not needing to approximate the function π
in any way. For the M-step we need equation (14),

qτ (x, u) =
∫

x′
P (x′|u, x) N (x′, bτ−1, Bτ−1)

= |2πB|1/2N (bτ−1, φ(x, u), Bτ−1 + Q + (|u|/µ)2 I) ,
(22)

and we maximize (15) with a gradient ascent using

∂uqτ (x, u) = −qτ (x, u)
[

hT
(
∂uφ(x, u)

)
−

u
1
µ2

(
tr(A−1)− hT h

)]
A := Bτ−1 + Q + (|u|/µ)2 I , h := A−1 (φ(x, u)− b)

(23)

Probabilistic Inference for Solving Markov Decision Processes

Examples. Consider a simple 2-dimensional prob-
lem where the start state is distributed around zero via
α0(x) = N (x, (0, 0), .01I) and the goal region is deter-
mined by P (r = 1 |x) = N (x, (1, 1), diag(.0001, .1)).
Note that this goal regions around (1, 1) is heavily
skewed in that rewards depend more on the precision
in the x−dimension than the y−dimension. The con-
trol law is simply φ(u, x) = x + .1 u and the discount
factor γ = 1. When choosing µ = 0 (no control-
dependent noise), the optimal control policy will try to
jump directly to the goal (1, 1). Hence we first consider
the solution when manually constraining the norm of
|u| to be small (effectively following the gradient of
P (r = 1 |ut = u, xt = x ;π)). Figure 4ab shows the
learned control policy π and the forward simulation
given this policy by displaying the covariance ellipses
for α0:T (x) after k = 3 iterations. What we find is
a control policy that reduces errors in x−dimension
more strongly than in y−direction, leading to the tan-
gential approach to the goal region. This is related to
studies on redundant control or the so-called uncon-
trolled manifold.

Next we can investigate what the effect of control-
dependent noise is without a constraint on the am-
plitude of u. Figure 4cd displays results (after k = 3
iterations) for µ = 1 and no additional constraints on
u. The process actually resembles a golf player: the
stronger the hit, the more noise. The optimal strat-
egy is to hit fairly hard in the beginning, hopefully
coming closer to the goal, such that later a number
of smaller and more precise hits can be made. The
reason for the small control signals around the goal re-
gion is that small steps have much more accuracy and
reward expectation is already fairly large for just the
x−coordinate being close to 1.

Finally we think of x being a phase space and consider
the dynamics φ(x, u) = (x1 + .1x2, x2 + .1u) where u is
the 1-dimensional acceleration of the velocity x2, and
x1 is a position. This time we set the start and goal to
(0, 0) and (1, 0) respectively, both with variance .001
and choose µ = 10. Figure 4ef display the result and
show nicely how the learned control policy approaches
the new position on the x−axis by first gaining and
then reducing velocity.

8. Conclusion

In this paper we presented a model that translates
the problem of planning into a problem of probabilis-
tic inference. Our main contribution over previous
approaches to inference in MDPs is that we do not
have to fix a total time and likelihood maximization is
equivalent to maximization of the expected future re-

(a) (b)

(c) (d)

(e) (f)

Figure 4. Actions to approach an aspheric Gaussian-
shaped target. Learned policy (a,c) and forward simu-
lation (α’s) of this learned policy (b,d) for the cases of
restricted action amplitude - the walker model (a,b) and
unconstrained amplitude - the golfer model (c,d). And the
approach to a new position under phase space dynamics
(e,f).

turn. A key step for this result was to consider the mix-
ture of finite-time MDP as an equivalent model, which
leads to a simple and efficient synchronous forward-
backward procedure for the E-step. We can compute
posteriors over actions, states, and the total time. We
showed that for exact inference and belief representa-
tion the resulting EM-algorithm (with greedy M-step)
is in effect equivalent to Policy Iteration.

However, the general motivation for us to consider in-
ference for solving MDPs is that the full variety of ex-
isting inference techniques can be applied. This refers
especially to more complex structured state represen-
tations for MDPs (continuous, factorial and hierarchi-
cal DBNs, options or macro-policies) in which there
is growing interest recently. We believe it is of great
interest to be able to apply existing inference methods
directly to such MDPs. The second example demon-

Probabilistic Inference for Solving Markov Decision Processes

strates such transfer: We combined standard infer-
ence methods, usually used for Kalman smoothing in
non-linear dynamics, with our framework to solve a
stochastic optimal control problem.

A. Pruning computations

Consider a finite state space and assume that we fixed
the maximum allowed time T by some upper limit TM

(e.g., by deciding on a cutoff time based on the time
posterior computed on the fly, see below). Then there
are potentially large regions of the state space on which
we may prune computations, i.e., states i for which the
posterior γtτ (i) = 0 for any t and τ with t + τ ≤ TM .
Let us consider the α-propagation only (all statements
apply conversely for the β-propagation). For iteration
time t we define a set of states

Xα(t) = {i |αt(i) 6= 0 ∧ (t < TM/2 ∨ βTM−t(i) 6= 0)} .

Further, given βτ (i) = 0 ⇒ ∀τ ′ ≤ τ : βτ ′(i) = 0, it
follows

i ∈ Xα(t) ⇐ αt(i) 6= 0 ∧ βTM−t(i) 6= 0
⇐ ∃τ ′≤TM−t : αt(i) 6= 0 ∧ βτ ′(i) 6= 0
⇐⇒ ∃τ :t+τ≤TM

: γtτ (i) 6= 0 (24)

Thus, every state that is potentially visited at time
t (for which ∃τ :t+τ≤TM

: γtτ (i) 6= 0) is included in
Xα(t). We will exclude all states i 6∈ Xα(t) from the
propagation procedure and not deliver their messages.
The constraint t < TM/2 concerning the β’s was in-
serted in the definition of Xα(t) only because of the
feasibility of computing Xα(t) at iteration time t. Ini-
tializing Xα(0) = {A}, we can compute Xα(t) recur-
sively via

Xα(t) =
[
Xα(t−1) ∪ OUT(Xα(t−1))

]
∩

{
S t < TM/2

{i |βTM−t(i) 6= 0} t ≥ TM/2 ,

where OUT(Xα(t−1)) is the set of states which have
non-zero probability transitions from states in Xα(t−
1).

For the discount prior, we can use a time cutoff TM for
which we expect further contributions to be insignif-
icant. The choice of this cutoff involves a payoff be-
tween computational cost and accuracy of the E-step.
Let T0 be the minimum time for which Z(T0) 6= 0. It
is clear that the cutoff needs to be greater than T0.
In the experiment in section 6 we used an increasing
schedule for the cutoff time, TM = (1 + 0.2 k) T0, de-
pending on the iteration k of the EM-algorithm.

Acknowledgments

Marc Toussaint was supported by the German Re-
search Foundation (DFG), Emmy Noether fellowship
TO 409/1-1.

References

Attias, H. (2003). Planning by probabilistic inference.
Proc. of the 9th Int. Workshop on Artificial Intelligence
and Statistics.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Ex-
ploiting structure in policy construction. Proc. of the
14th Int. Joint Conf. on Artificial Intelligence (IJCAI
1995) (pp. 1104–1111).

Bui, H., Venkatesh, S., & West, G. (2002). Policy recogni-
tion in the abstract hidden markov models. Journal of
Artificial Intelligence Research, 17, 451–499.

Ghahramani, Z., & Jordan, M. I. (1995). Factorial hid-
den Markov models. Advances in Neural Information
Processing Systems, NIPS (pp. 472–478). MIT Press.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S.
(2003). Efficient solution algorithms for factored MDPs.
Journal of Artificial Intelligence Research (JAIR), 19,
399–468.

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T.,
& Boutilier, C. (1998). Hierarchical solution of Markov
decision processes using macro-actions. Proc. of Un-
certainty in Artificial Intelligence (UAI 1998) (pp. 220–
229).

Koller, D., & Parr, R. (1999). Computing factored value
functions for policies in structured MDPs. Proc. of the
16th Int. Joint Conf. on Artificial Intelligence (IJCAI)
(pp. 1332–1339).

Kveton, B., & Hauskrecht, M. (2005). An MCMC approach
to solving hybrid factored MDPs. Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2005).

Minka, T. (2001). A family of algorithms for approximate
bayesian inference. PhD thesis, MIT.

Murphy, K. (2002). Dynamic bayesian networks: Rep-
resentation, inference and learning. PhD Thesis, UC
Berkeley, Computer Science Division. See particularly
the chapter on DBN at http://www.cs.ubc.ca/ mur-
phyk/Papers/dbnchapter.pdf.

Ng, A. Y., Parr, R., & Koller, D. (1999). Policy search
via density estimation. Advances in Neural Information
Processing Systems 12 (pp. 1022–1028).

Sutton, R., & Barto, A. (1998). Reinforcement learning.
MIT Press, Cambridge.

Verma, D., & Rao, R. P. N. (2006). Goal-based imita-
tion as probabilistic inference over graphical models.
Advances in Neural Information Processing Systems 18
(NIPS 2005).

