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Experimental studies of reasoning and planned behavior have provided
evidence that nervous systems use internal models to perform predictive
motor control, imagery, inference, and planning. Classical (model-free)
reinforcement learning approaches omit such a model; standard sensori-
motor models account for forward and backward functions of sensorimo-
tor dependencies but do not provide a proper neural representation on
which to realize planning. We propose a sensorimotor map to represent
such an internal model. The map learns a state representation similar
to self-organizing maps but is inherently coupled to sensor and motor
signals. Motor activations modulate the lateral connection strengths and
thereby induce anticipatory shifts of the activity peak on the sensori-
motor map. This mechanism encodes a model of the change of stimuli
depending on the current motor activities. The activation dynamics on the
map are derived from neural field models. An additional dynamic process
on the sensorimotor map (derived from dynamic programming) realizes
planning and emits corresponding goal-directed motor sequences, for
instance, to navigate through a maze.

1 Introduction

Köhler’s (1917) studies with monkeys were one of the first systematic in-
vestigations in the capability of planned behavior in animals. In one of his
classic experiments, monkeys had to reach for a banana mounted below the
ceiling. After many attempts in vain, one of the monkeys eventually exhib-
ited the behavior that Köhler found so fascinating: the monkey retreated
and sat quietly in a corner for minutes, staring at the banana and at some
time also staring at a nearby table. It started to saccade several times be-
tween the banana and the table while still sitting quietly. Then it suddenly
rushed up, grabbed the table, pulled it below the banana, mounted it, and
jumped to grab the banana.

Reading these experiment scripts today, one realizes how little we know
about the neural processes in the monkey’s brain when Köhler read in
its face the effort to reason about sequential behaviors to reach a goal.
Classical (model-free) reinforcement learning approaches explicitly omit
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internal models (Sutton, & Barto, 1998; see also Majors & Richards, 1997).
More recent studies in the cognitive sciences converge to the postulate that
nervous systems use internal models to perform predictive motor control,
imagery, and planning in a way that involves a simulation of actions and
their perceptual implications (Grush, 2004). Based on experiments with
humans, who were asked to imagine the way from a starting position in
a maze to a goal position, Hesslow (2002) formulates three assumptions
that may explain a simulation theory of cognitive functions: (1) behavior
can be simulated by activating motor structures, as during an overt action,
but suppressing its execution; (2) perception can be simulated by internal
activation of sensory cortex, as during normal perception of external stimuli;
and (3) both overt (executed) and covert (suppressed) actions can elicit
perceptual simulation of their normal consequences.

The evidence in favor of internal models and the hypotheseses developed
in cognitive science raise the challenge to propose concrete models of how
neural systems are capable of these processes. Such systems must be able to
anticipate the sensorial implications of motor activities, but they also must
account for planned, goal-oriented behavior.

The sensorimotor map we propose in this letter provides mechanisms to
self-organize a representation of sensorimotor data that encodes the depen-
dencies between motor activity and predictable changes of stimuli (see also
Toussaint, 2004). The self-organization process largely adopts the classi-
cal approaches to self-organizing neural stimulus representations (von der
Malsburg, 1973; Willshaw & von der Malsburg, 1976; Kohonen, 1995) and
their extensions with respect to growing representations (Carpenter, Gross-
berg, Markuzon, Reynolds, & Rosen, 1992; Fritzke, 1995; Bednar, Kelkar,
& Miikkulainen, 2002) and temporal dependencies (Bishop, Hinton,
& Strachan, 1997; Euliano & Principe, 1999; Somervuo, 1999; Wiemer, 2003;
Varsta, 2002; Klemm & Alstrom, 2002). However, unlike previous self-
organizing maps, our model couples sensor and motor signals in a joint
representational layer.

The activation dynamics on the sensorimotor map are adopted from
dynamic field models of a homogeneous, laterally connected neural layer
(Amari, 1977). In the language of neural fields, the anticipation of a new
stimulus corresponds to a shift of the activity peak, which is induced by
a modulation of the lateral connection strengths. A key ingredient of our
model is that the modulation depends on the current motor activities. A
motor representation is coupled to the neural field by modulating the lat-
eral connectivity instead of connecting directly to the neural units. By this
mechanism, different motor activities lead to different shifts of the peak.
The coupling encodes all the information necessary for anticipating a stim-
ulus change depending on the motor activations and also for planning
goal-directed motor sequences. On the sensorimotor map, an additional
dynamic process similar to spreading activation dynamics (Bagchi, Biswas,
& Kawamura, 2000) accounts for planning. The same coupling to the motor
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representation allows the system to emit motor excitations that execute the
plan.

The next section briefly recalls the relevant aspects of standard neural
field dynamics. Section 3 gives an overview of the considered architecture.
The sensorimotor map and how it couples to sensor and motor represen-
tations is introduced in section 4. Section 5 shows how the topology and
parameters of the sensorimotor map can be learned online from data gath-
ered during sensorimotor exploration. A demonstration of anticipation with
the sensorimotor map is given in section 6, while section 7 introduces and
demonstrates planning. In section 8, we briefly address possible extensions
of the basic model before discussing related work in more detail in Section 9.
A discussion concludes.

2 Neural Field dynamics

Amari (1977) investigated a spatially homogeneous neural field as an ap-
proximation of a dense layer of interconnected neurons. His main interest
was in a theory of the dynamics of activity pattern formation on such sub-
strates. The lateral connectivity is assumed to induce local excitation and
widespread inhibition, as typically described with a Mexican hat–type in-
teraction kernel. The most elementary interesting stable solution to such a
dynamic system is the single peak solution (also called activity bump or
packet), where the activity is localized and stabilized around a center while
the widespread inhibition emitted from the peak inhibits any spontaneous
activation in the neighborhood. This simple solution has some important
functional properties: if the peak is induced by a stimulus, it stabilizes its
representation against noise; it may even stabilize the representation when
the stimulus vanishes or is temporally occluded; it fuses two nearby stimuli
while implementing a competition between distal stimuli; and it exhibits
some delay to shift the peak to a new position when the stimulus switches
(hysteresis). These properties make the model appealing for sensory pro-
cessing and decision making, as well as motor control, where the dynamics
effectively allow the system to filter noisy signals, decide among conflicting
signals, and stabilize such decisions (Erlhagen & Schöner, 2002). Conse-
quently, neural fields also find application in motor control and robotics
problems (Schöner & Dose, 1992; Schöner, Dose, & Engels, 1995; Iossifidis
& Steinhage, 2001; Dahm, Bruckhoff, & Joublin, 1998; Bergener et al., 1999).

We introduce here a discrete implementation of such a neural field, fol-
lowing Erlhagen and Schöner (2002). In this implementation, the activation
mi of a unit i (denoted by m to anticipate the meaning of motor activations)
is governed by the dynamics

τm ṁi = −mi + hm + Ai +
∑

j

wi j φ(m j ) + [ξ ∼ N (0, ρm)]. (2.1)



A Sensorimotor Map 1135

Here, τm is the timescale of the dynamics, hm the resting level, Ai some
feedforward input to unit i , ξ a gaussian noise term with variance ρm, and
φ(m) a sigmoid. We choose

φ(m) = m̂ =



0 m < 0
m 0 ≤ m ≤ 1
1 m > 1

(2.2)

as a simple parameterless, piecewise-linear sigmoid.
The crucial term in these dynamics is the interaction strength wi j between

units i and j . In spatially homogeneous neural fields, this strength is usually
assumed to depend on only the distance between the locations r i and r j of
the two neurons. Namely, for short distances, the interaction is excitatory,
while for longer distances, it is inhibitory:

wi j = wE exp
−(r i − r j )2

2σ 2
E

− wI . (2.3)

The parameters here are the strengths of excitation (wE ) and inhibition (wI ),
and the width σE of the excitatory range.

We generally omit indicating the time dependence of dynamic variables
except when we need to refer to the time steps of the Euler integration
m(t)

i = m(t−1)
i + ṁ(t)

i that we use to simulate the dynamics.

3 Overview of the Sensorimotor Architecture

Figure 1 displays the sensorimotor architecture that we will use in the
experiments. The architecture is composed of three layers. The bottom layer
is an arbitrary sensor representation. In the experiments, the representation
will comprise either 2 units for the x- and y-coordinates of a limb or 40 units
encoding range sensor data from a maze.

The top layer is the motor representation, which we choose to be a
one-dimensional cyclic neural field. Different units in the field will encode
different bearing directions of movements. The dynamics of these units are
exactly as given in equation 2.1; the “distance” |r i − r j | between two units
that determines the excitatory kernel in equation 2.3 is taken as the minimal
distance on the circle, measured by how many units are between j and i .

The central layer is the sensorimotor map governed by equation 4.1 given
below. The key architectural feature is that the motor units project to lateral
connections (i j) between two sensorimotor units j and i by multiplicatively
modulating the signal transmission of that lateral connection. In contrast,
sensor units project directly to sensorimotor units, as it is typical for self-
organizing maps.
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Figure 1: Schema of the considered architecture. (A) The bottom layer is a sensor
representation, projecting to units of the sensorimotor map via gaussian kernels.
The top layer is a motor representation that projects to lateral connections (i j)
between sensorimotor units j and i . (B) This coupling induces a multiplicative
modulation of the lateral interactions in the sensorimotor map, which depends
on the current motor activations.

4 Modulating the Lateral Interactions

The core of the architecture is the sensorimotor map. Its activation dynamics
is very similar to those of neural fields and reads

τx ẋi = −xi + hx + Si + η
∑

j

[Mi jwi j − wI ] φ(xj ) + [ξ ∼ N (0, ρx)]. (4.1)

As for the neural field, the first term −xi induces an exponential relaxation
of the dynamics, the second term hx is the resting level, and the third term Si

is a feedforward input from the sensor representation to unit i . We assume
that the sensorial input is given as a (unnormalized) gaussian kernel,

Si = exp
−(si − s)2

2σ 2
S

, (4.2)
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that compares the input weight vector si (or codebook vector) of the unit i
with the current sensor activations s.

The fourth term describes the lateral interactions between units in the
sensorimotor map. The lateral topology is not necessarily homogeneous but
should reflect the topology of the state space and possible state transitions
and is given by the lateral weighs wi j . In this article, we assume that wi j = 0
if there exists no connection and wi j = 1 if there exists one (see Toussaint,
2004, and section 8 for a version where wi j is continuous and learned with
a temporal Hebb rule). The parameter wI specifies the global inhibition.

The crucial difference to a standard neural field is the modulation Mi j of
the lateral interactions. This modulation is how motor signals couple into
the sensorimotor map. More precisely, we assume that

Mi j = 〈mi j ,m̂〉, (4.3)

which is the scalar product of the weight vector mi j and the current mo-
tor activations m̂. Thus, lateral interactions are modulated multiplicatively
depending on the current motor activation.

The weight vector mi j , which is associated with every lateral connection
(i j), could be thought of the codebook vector of that connection. In a sense,
lateral connections “respond” to certain motor activations. Due to the mul-
tiplicative coupling, a lateral connection contributes to lateral interaction
only when the current motor activity “matches” the weight vector of this
connection.

Biologically plausible implementations of such modulation are, for ex-
ample, pre- or postsynaptic inhibition of the signal transmission. In the
case of presynaptic inhibition (Rose & Scott, 2003), synapses attach directly
to the presynaptic terminal of other synapses, thereby modulating their
transmission. In the case of postsynaptic inhibition (shunting inhibition),
inhibitory synapses attach to branches of the dendritic tree near the soma,
thereby modulating the transmission of the dendritic input accumulated
at this dendritic branch (Abbott, 1991). Generally, modulation is a funda-
mental principle in biological neural systems (Phillips & Singer, 1997). The
modulation may also be regarded as a special variant of sigma-pi neural
networks (Mel, 1990; Mel & Koch, 1990).

5 Learning the Sensorimotor Map

The self-organization and learning of the sensorimotor map combines
standard techniques from self-organizing maps (von der Malsburg, 1973;
Willshaw & von der Malsburg, 1976; Kohonen, 1995) and their extensions
with respect to growing representations (Carpenter et al., 1992; Fritzke,
1995) and the learning of temporal dependencies in lateral connections
(Bishop et al., 1997; Wiemer, 2003). The free variables that need to be adapted
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are (1) the number of units in the map and their lateral connectivity and
(2) the weight vectors si and mi j coupling to the sensor and motor layers,
respectively. Except for the adaptation of the motor coupling mi j , all the
adaptation mechanisms are standard, and we keep their description brief.

The topology. There already exist numerous techniques for the self-
organization of representational maps, mostly based on the early work
on self-organizing maps (von der Malsburg, 1973; Willshaw & von der
Malsburg, 1976; Kohonen, 1995) or vector quantization techniques (Gersho
& Gray, 1991). We prefer not to predetermine the state space topology but
learn it, and hence adopt the technique of growing neural gas (Fritzke,
1995) to self-organize the lateral connectivity and that of fuzzy ARTMAPs
(Carpenter et al., 1992) to account for the insertion of new units when the
representation needs to be expanded. We detect novelty when the difference
between the current stimulus s and the best matching weight vector si

becomes too large. We make this criterion more robust against noise by
using a low-pass filter (leaky integrator) of this representation error. More
precisely, if i∗ is the unit with the best match, i∗ = argmaxi Si , we integrate
the error measure ei∗ via τe ėi∗ = −ei∗ + (1 − Si∗ ). Note that Si∗ = 1 ⇐⇒
si∗ = s. Whenever this error measure exceeds a threshold ν ∈ [0, 1] termed
vigilance, ei∗ > ν, we generate a new unit j and reset the error measures,
ei∗ ← 0, e j ← 0. Exactly as for growing neural gas, we add new lateral
connections between i∗ and j∗ = argmaxi �=i∗ Si if they were not already
connected. To organize the deletion of lateral connections, we associate an
“age” ai j with every connection, which is increased at every time step by
an amount of Mi j φ(xj ) and is reset to zero when i and j are the best and
second-best matching units. If a connection’s age exceeds a threshold amax,
the connection is deleted.

The sensor and motor coupling. Standard self-organizing maps adapt
the input weight vectors si of a unit i in a Hebbian way such that si converges
to the average stimulus for which i is the best matching unit. To avoid
introducing additional learning parameters and to make the convergence
more robust, we realize this with a weighted averaging,

si
(T) = 1∑T

t′=1 α
(t′)
i

T∑
t=1

α
(t)
i s(t), (5.1)

where α
(t)
i ∈ {0, 1} determines whether i is the best matching unit at time t.

The averaging can efficiently be realized incrementally without additional
parameters.

We follow the same approach to adapt the motor coupling,

m(T)
i j = 1∑T

t′=1 α
(t′)
i j

T∑
t=1

α
(t)
i j m̂(t). (5.2)
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Here, the averaging weight α
(t)
i j ∈ {0, 1} is chosen such that mi j learns the

average motor signals that lead to an increasing postsynaptic and a de-
creasing presynaptic activity. In that way, mi j learns which motor signals
contribute, on average, to a transition from the stimulus s j to a stimulus si .
The simplest realization of this rule is

α
(t)
i j =

{
1 if ẋi > 0 and ẋ j < 0

0 else
. (5.3)

5.1 Experiments. All experiments will consider the problem of control-
ling a limb with position y ∈ [−1, 1]2 in a two-dimensional plane or maze.
In this experiment, the sensor representation is directly the 2D coordinate
of this limb, that is, s = y (see section 8 for an example where the sensor
representation is based on range measurements). The motor representation
is given by 20 units, m̂ ∈ [0, 1]20, which encode 20 different bearing direc-
tions ϕi ∈ {0◦, 18◦, . . . , 342◦}. Activations of motor units directly lead to a
limb movement with velocity ẏ according to the law

(
ẏ1

ẏ2

)
=

20∑
i=1

m̂i

(
cos(ϕi )
sin(ϕi )

)
. (5.4)

At the borders or walls of a maze, this law is violated such that ẏ1 or ẏ2 is
set to zero when otherwise the border or wall would be crossed.

In the first experiment, the limb performs random movements that are
induced by explicitly coupling a random signal Ai into the motor layer
(see equation 2.1). A random signal Ai is generated by randomly picking
a motor unit i∗ and choosing Ai∗ = 1 while Ai = 0 for all i �= i∗. The signal
is not randomized at every time step; instead, at each time step with a
probability .8, the signal remains unchanged, and with a probability .2, a
new i∗ is chosen.

These movements generate the data—the sequences of sensor and motor
signals m(t) and s(t)—from which the sensorimotor map learns the depen-
dencies between motor signals and stimulus changes. Our choice of param-
eters for the dynamics of the sensorimotor map and motor layer is shown
in Table 1. Those for adaptation are τe = 10, ν = .2, and amax = 300. During
the learning phase, the lateral coupling (which will induce anticipation) is
switched off (η = 0).

Figure 2A displays the topology of the sensorimotor map that has been
learned for the 2D plane after various time steps. In all displays, the units
are positioned according to their sensor weight vectors si . Concerning the
topology, we basically reproduce the standard behavior of growing neu-
ral gas: in the early phase, the map grows as more and more regions are
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Table 1: Parameters.

τ h wE σE wI ρ η σS

Sensorimotor 2 0 – – .5 .01 0 .05
map

Motor layer 5 −1 1 2 .6 .01 – –

explored. In the late phase, unnecessary connections are deleted, leading to
a Voronoi-like graph.

Figures 2B and 2C are two different illustrations of the learned motor
weight vectors mi j . To compute these diagrams, we first associate an an-
gle θi j = �(s j − si ) with every connection in the sensorimotor map. These
angles θi j correspond to the true geometrical direction of a transition from
j to i . Figure 2B displays tuning diagrams for 10 different motor units.
For a given motor unit k, we consider all connections (i j) and draw a line
with orientation θi j and length (mi j )k . The diagrams exhibit that motor units
that represent a certain bearing ϕk have larger weights to connections with
similar bearing θi j . The tuning curve 2C displays the same data in another
way: for every motor unit k and connection (i j), the weight (mi j )k is plotted
against the difference θi j − ϕk .

Finally, Figure 2D displays the learning curve with respect to an error
measure for the weight vectors mi j : as every motor unit k corresponds
to a bearing ϕk , every activation pattern m̂ over motor units corresponds
to an average bearing ϕ(m̂) (cf. equation 5.4). The weight vectors mi j are
such activation patterns and thus correspond to average bearings ϕ(mi j ).
The error measure is the absolute difference between this bearing ϕ(mi j )
and the geometrical direction θi j , averaged over all connections (i j). The
graph shows that this error measure does not fully converge to zero. In-
deed, most of this error is accumulated at the border of the region for an
obvious reason: according to the “physics” we defined, a motor command
that would diagonally cross a border leads to a movement parallel to the
border instead of a full stop. Thus, at the borders, a whole variety of motor
commands exists that all lead to the same movement parallel to the border.
Connections between two units parallel to a border thus learn an average
of motor commands that also includes diagonal motor commands.

6 Anticipation

The sensorimotor map as introduced so far is sufficient for short-term an-
ticipations. When the sensorimotor space is explored as previously with
random movements and given the map as learned in the previous example,
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B C

D

Figure 2: (A) The topology of the sensorimotor representation learned for the
2D region at different times. (B) Tuning diagrams for 10 of the 20 motor units
(we display only every second unit to save space): for a motor unit k, lines
with length (mi j )k and orientation θi j are drawn. (C) The tuning curve of motor
units for all motor units and lateral connections: the weight (mi j )k is plotted
against the difference of orientation of the motor unit (ϕk) and the connection
(θi j ). (D) The learning curve of an error measure for the difference in bearing
represented by mi j and φi j . Errors occur mostly at the borders. See section 5.1
for more details.
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we may compare the actual current stimulus s to what the sensorimotor
map currently represents,

s̄ = 1∑
i xi

∑
i

xi si . (6.1)

We term the quantity s̄ the represented stimulus, which may in general differ
from the true stimulus s; we term the difference �s̄ = s̄−s the representa-
tional shift. The approximate nature of the representation is one obvious
source of representational shift: even when the lateral couplings are turned
off (η = 0), there might be small shifts because the map is course-grained. In
our case, most of such representation errors stem, again, from the borders.
Since there exist no units to represent positions beyond a border and since
the activations xi typically have a gaussian-like shape over the units i , the
represented stimulus s̄ for a stimulus s at the border will always have a
slight inward shift of the order of σ . The results we give will omit this effect
by discarding data from the border of the region.

We collected data for three different strength η ∈ {0, .2, .5} of lateral in-
teraction. The two measures we discuss are the norm,

RSN = |�s̄|, (6.2)

of the representational shift and the directional match RSD of the represen-
tational shift with the true change in stimulus �s(t) = s(t+1)−s(t) that occurs
due to the motor activations,

RSD = 〈�s̄,�s〉
|�s̄| |�s| ∈ [−1, 1]. (6.3)

The results are displayed in Figure 3. All numbers are the averages (and
standard deviations) over 2205 data points taken when the limb moves,
in random directions as described previously, in the central area of the
plane.

For η = 0, we find that the norm of the representational shift (RSN =
.015 ± .009) is, as expected, very small when compared to the kernel width
σ = .05. The shift direction is not correlated to the true stimulus change
(RSD = .0054 ± .7). Thus, for η = 0, the internally represented stimulus s̄
is fully dominated by the true stimulus s, and small representational shifts
stem from the approximate nature of the representation.

For η = .2 we find significantly larger shifts, RSN = .075 ± .042. More
important, though, we find a strong correlation in the direction of the
representational shift and the true future change of the stimulus, RSD =
.89 ± .27. For η = .5, both effects are even stronger: RSN = .20 ± .17 and
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Figure 3: The norm RSN of the representational shift and the correlation mea-
sure RSD between representational shift and the current change of stimulus,
for different strengths η of the lateral coupling in the sensorimotor map. With
nonzero lateral coupling, the represented stimulus is shifted in the same direc-
tion as the current true stimulus change.

RSD = .93 ± .21. For any η, the norm of the true stimulus change is
|�s| = 0.036 ± 0.017.

The results clearly show that the representational shift �s̄ encodes an
anticipation of the true change of stimulus, that is, the represented stimulus
s̄ is an anticipation of a future stimulus that will be perceived depending
on the current motor activations. The motor modulation of the lateral inter-
actions is able to direct the representational shift toward the direction that
corresponds to the motor signals.

This effect can be seen much better visually, watching the recordings1

of the activations on the sensorimotor map and the dynamics of the two
positions that correspond to s̄ and s (see also Figure 4). For η = 0, both s̄
and s move very coherently, almost always overlapping; only at the borders
there is a systematic inward shift. For η = .2, the activity peak of the field
x is always slightly ahead of the true stimulus; the represented position s̄
always runs ahead of the true limb position s. When the motor activations
change, s̄ sweeps in front of s toward the new movement bearing.

For η = .5 the situation becomes more dramatic. The lateral interaction
become dominating such that the field activations x actually run away from
the true stimulus, traveling self-sustained in the direction of the current
movement. This “wave” breaks down at the border of the sensorimotor
map, and the activation peak is recreated at the current stimulus. Thus, the
represented position s̄ travels quickly away from the true limb position s in
the movement direction until it hits the border and restarts from s.

1Access and watch the recordings online at www.marc-toussaint.net/projects.
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A B

Figure 4: Anticipation of future stimuli. (A) The forward excitation Si , which
encodes the true current stimulus s. The gray shading indicates the value of
Si ∈ [0, 1]; for better visibility, edges (i j) are shaded with the average value
(Si + Sj )/2. The black arrow indicates the direction encoded by the current
motor activations. (B) The activation field xi on the sensorimotor map. It exhibits
a significant shift in the direction of movement, thus encoding an anticipation
of future stimuli depending on the current motor activations. See also note 1.

7 The Dynamics of Planning

To organize goal-oriented behavior, we assume that, in parallel to the ac-
tivation dynamics of x, there exists a second dynamic process that can be
motivated from classical approaches to reinforcement learning (Bertsekas
& Tsitsiklis, 1996; Sutton & Barto, 1998). Recall the Bellman equation,

V∗
π (i) =

∑
a

π (a |i)
∑

j

P( j |i, a )[r ( j) + γ V∗
π ( j)], (7.1)

yielded by the expectation V∗(i) of the discounted future return R(t) =∑∞
τ=1 γ τ−1r (t+τ ) (for which R(t) = r (t+1) + γ R(t+1)). Here, i is a state

index, and γ is the discount factor. We presumed that the received rewards
r (t) actually depend on only the state and thus enter equation 7.1 only in
terms of the reward function r (i) (we neglect here that rewards may directly
depend on the action). Behavior is described by a stochastic policy π(a |i), the
probability of executing an action a in state i . Given the property 7.1 of V∗,
it is straightforward to define a recursion algorithm for an approximation V
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of V∗ such that V converges to V∗. This recursion algorithm is called value
iteration (Sutton & Barto, 1998) and reads

τv�Vπ (i) = −Vπ (i) +
∑

a

π (a |i)
∑

j

P( j |i, a )
[
r ( j) + γ Vπ ( j)

]
, (7.2)

with a “reciprocal learning rate” or time constant τv . Note that equation 7.1
is the fixed point equation of equation 7.2.

Equation 7.2 provides an iterative scheme to compute the state-value
function V based on only local information. The practical meaning of the
state-value function is that it quantifies how desirable and promising it
is to reach a state i , also accounting for future rewards to be expected. If
rewards are given only at a single goal state, V has its maximum at this
goal and is the higher the easier the goal can be reached from a given state.
Thus, if the current state is, i it is a simple and efficient rule of behavior to
choose an action a that will lead to the neighbor state j with maximal V( j)
(the greedy policy). In that sense, V(i) provides a smooth gradient toward
desirable goals. Note, though, that direct value iteration presumes that the
state and action spaces are known and finite and that the current state and
the world model P( j |i, a ) are known.

In transferring these classical ideas to our model, we assume that the
system is given a goal stimulus g, that is, it is given the command to reach a
state that corresponds to perceiving the stimulus g. Just as ordinary stimuli
induce an input Si to the field activations xi , we let the goal stimulus induce
a reward excitation,

Ri = 1
Z

exp
−(si − g)2

2σ 2
R

, (7.3)

for each unit i , where Z is chosen such that
∑

i Ri = 1. Besides the activations
xi , we introduce an additional field over the sensorimotor map, the value
field vi , which is in analogy to the state-value function V(i). The dynamics
are

τvv̇i = −vi + Ri + γ max
j

(w j iv j ), (7.4)

and well comparable to equation 7.2. One difference is that vi estimates
the “current-plus-future” reward r (t) + γ R(t) rather than the future re-
ward only. In the upper notation, this corresponds to the value iteration
τv�Vπ (i) = −Vπ (i) + r (i) + ∑

a π (a |i) ∑
j P( j |i, a )

[
γ Vπ ( j)

]
. As it is com-

monly done for value iteration, we assumed π to be the greedy policy.
More precisely, we considered only that action (i.e., that connection ( j i)) that
leads to the neighbor state j with maximal value w j iv j . In effect, the sum-
mations over a as well as over j can be replaced by a maximization over j .
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Finally, we replaced the probability factor P( j |i, a ) by w j i . In practice, the
value field will relax quickly to its fixed point v∗

i = Ri + γ max j (w j iv
∗
j ) and

stay there if the goal does not change.
The quasi-stationary value field vi together with the current (nonsta-

tionary) activations xi allow the system to generate motor excitations that
lead toward the goal. More precisely, the gradient v j − vi in the value field
indicates how desirable motor activations m j i are when the current “state”
is i . Goal-directed motor excitations can thus be generated as a weighted
average of the motor activations m j i that have been learned for the connec-
tions,

A = 1
Z

∑
i, j

xi w j i (v j − vi ) m j i , (7.5)

where Z is chosen to normalize |A| = 1. These excitations enter the
motor activation dynamics, equation 2.1. Hence, the signals flow between
the sensorimotor map, and the motor system is in both directions. In the
anticipation process, the signals flow from the motor layer to the sensorimo-
tor map: motor signals activate the corresponding connections and cause
lateral, predictive excitations. In the action selection process, the signals are
emitted from the sensorimotor map back to the motor layer to induce the
motor excitations that should turn predictions into reality.

7.1 Experiments. To demonstrate the planning capabilities of the sen-
sorimotor map, we consider a 2D maze. In the first phase, a sensorimotor
map is learned that represents the specific maze environment, using ran-
dom explorations as described in section 5. Figure 5A displays the topology
of the learned sensorimotor map after 100,000 iterations, now with a kernel
σS = .01.

In the planning phase, a goal stimulus is applied that corresponds to the
position indicated by a triangle in Figure 5B. This goal stimulus induces
reward excitations Ri on units that match the goal stimulus closely. The
value field dynamics, equation 7.4, quickly relaxes to its fixed point, which
is displayed in Figure 5C. The parameters we used are τu = 5, γ = .9, and
σR = σS/4. As expected, the value field activations are high for units rep-
resenting the proximity of the goal location and decay smoothly along the
connectivity of the sensorimotor map. Note that this value field is not a de-
caying function of the Euclidean distance to the goal, but approximately a
decaying function of the topological distance to the goal, that is, the shortest
path length with respect to the learned topology.

Figure 5B illustrates a trial where the limb is initially located in the
upper-right corner of the maze. The activation field xi represents this cur-
rent location. Together with the gradient of the value field at the current
location (see equation 7.5), motor excitations are induced that let the limb
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A B C

Figure 5: Experiments with a maze. (A) The topology of the sensorimotor map
learned. (B) The activation field xi on the sensorimotor at the start of the trajec-
tory. (C) The attractor state of the value field on the sensorimotor map, spreading
from the goal location in the lower right.

move toward the bottom left. As the limb moves, the sensorimotor activ-
ities xi follow its current position, and new motor excitations are induced
continuously, which leads to a movement trajectory ascending the gradient
of the value field until the goal is reached. In the experiment, once the goal
is reached, we switch the goal to a new random location, inducing new
reward excitations Ri . The value dynamics, equation 7.4, respond quickly
to this change and relax to a new fixed point, providing the gradient to the
new goal.

A standard quality measure for planning techniques is the required time
to goal. Figure 6 displays the time intervals between switching the goals,
which are the times needed to reach the new goal position from the previous
goal position. First, we see that the goal is always reached in finite time,
indicating that planning is always successful. Further, the graph compares
the time to reach the goal with the length of the shortest path. This shortest
path length was computed from a coarse (block-wise) discretization of the
maze with dynamic programming. The clear correlation between the time
to reach the goal and the shortest path length shows that the movement of
the limb indeed follows a planned shortest path trajectory from the initial
position to the goal.

Another indicator for successful action selection is whether the current
movement is in the direction of the value gradient. Figure 7A displays
the bearing of the local value gradient, �(

∑
i xi (v j − vi ) (s j − si )), and the

bearing of the current movement, �( ẏ), for the first 300 time steps of the
experiment. We observe a clear correlation between both bearings, though
with a systematic time delay. This time delay is approximately six time
steps, as can be read from Figure 7B, and corresponds to the timescale
of the motor dynamics, τm = 5. (See note 1 to access more recordings of
planning experiments).
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Figure 6: Times needed to move from a random start position to a random
goal position in the maze when the sensorimotor map plans and controls the
movement. The time is plotted against the length of the shortest path connection,
which was computed from a coarse (block-wise) discretization of the maze with
dynamic programming.

8 Extensions

We tried to keep the model introduced so far simple and focused on the key
mechanisms. This basic model can be extended in many straightforward
ways to realize other desired functionalities.

For instance, the path generated by the sensorimotor map in the previous
example (see Figure 5B) clearly hits the walls very often. This should be no
surprise since there is no mechanism of obstacle avoidance implicit in the
model so far. But is easy to apply a standard obstacle avoidance technique:
given distance signals di ∈ [0, 1] from 20 range sensors (in the 20 different
bearings ϕi ) around the limb, an inhibition (e.g., proportional to (1 − di )3)
can be directly coupled into the motor activations mi . Figure 8A displays a
trajectory generated with this obstacle avoidance switched on.

Perhaps more important is the question of whether the local lateral
weights wi j should be learned instead of fixed to 1 if a connection ex-
ists and 0 otherwise. In Toussaint (2004) we presented a learning scheme
for these weights based on the temporal Hebb rule. One of the main reasons
to consider the continuous plasticity of these lateral weights was that this
allows the model to adapt to change. We decided to keep the simpler al-
ternative where wi j ∈ {0, 1}. The adaptability can also be achieved with the
basic mechanism of adapting the topology to a change of the world, that is,
keep adding or deleting connections.
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A B

Figure 7: (A) The movement direction �( ẏ) and the direction of the value
gradient �(

∑
i xi (v j − vi ) (s j − si )) for the first 300 time steps. (B) Similar to

a convolution between both curves, we plot the average squared difference∑
t ‖h(t) − f (t + τ )‖2 between both curves when one of them is shifted by a

time delay τ . (We chose a norm ‖ · ‖2 that accounts for the cyclic metric in angle
space.) The typical time shift is τ ∗ = 6.

A
S

G

B

S

B

A

G C

Figure 8: Results of three different extensions of the sensorimotor map. (A) A
trajectory with obstacle avoidance. (B) A trajectory from start S to goal G when
the paths were blocked at A and B. (C) A sensorimotor map learned from range
sensors. See section 8 for details.

Recall our rule to delete connections. As for growing neural gas (Fritzke,
1995), we associate an “age” ai j with every connection and delete the con-
nections when it exceeds a threshold amax. The difference from Fritzke is that
we increase all connections’ ages by an amount of Mi j φ(xj ) at every time. As
a result, if during execution of a planned trajectory, an anticipated transition
to a new stimulus does not occur, then the connections that contribute to this
anticipation (for which Mi j φ(xj ) is high) will eventually be deleted. This
adaptation of the topology has a crucial influence on the dynamics of the
value field. If all connections of a specific pathway are deleted, the attractor
of the value field rearranges to guide a way around this blocked pathway.
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Figure 8B displays such an interesting trajectory, generated for amax = 10:
the limb is initially located at S and the goal location is G. The system
has learned a representation of the original maze, as given in Figure 5A.
But the maze has now been modified by blocking the pathways at A and B.
The system first tries to follow a direct path, which is blocked at A. When the
limb hits this barrier and continuously activates the connections crossing A
(in terms of Mi j φ(xj )), they are eventually deleted, which makes the value
field rearrange and guide along another path crossing B. Now the limb hits
the barrier at B and connections are deleted, which finally leads to a path
that allows the limb to reach the goal. (See note 1 to access recordings of
these experiments.)

Finally, since the stimulus kernel (see equation 4.2) was chosen as a gaus-
sian, the stimulus can be also given in representations other than directly as
the location yof the limb. For instance, Figure 8C displays the sensorimotor
map learned for the plane when the input was given as a 40-dimensional
range vector (d1, . . . , d40), each di ∈ [0, 1] for 40 different bearings. The only
difference with the setup in section 5 was the choice of the kernel width:
now we used σS = 1. The learned topology is slightly more dense close to
the borders. This stems from the fact that the range vector changes more
dramatically close to a wall since the visual angle under which the wall
is seen (and thus the number of entries of the range vector affected by the
wall) varies more. Anticipation and planning equally work for this stimulus
representation. However, the model is not sufficient to handle ambiguous
(partially observable) stimuli. For example, in the maze, there exist many
positions with very similar range sensor profile. The sensorimotor map
learned of the maze with only range sensor data would lead to an incorrect
topology (cf. section 10).

9 Discussion

A key mechanism of the sensorimotor map is that motor activations modu-
late the lateral connection strengths and thereby induce anticipatory shifts
of the activity peak on the sensorimotor map. This modulatory sensorimo-
tor coupling encodes a model of the change of stimuli depending on the
current motor activities. The mechanism attributes a specific role to the lat-
eral connectivity, namely, motor-modulated anticipatory excitation, which
differs significantly from previously proposed roles for lateral connections.
However, we believe that the different views on the roles of lateral connec-
tions do not compete but complement each other; lateral connections may
play different roles depending on the context and function of the respective
neural representation. For instance, the role of lateral connections has been
extensively discussed in the context of pure sensor representations, in par-
ticular, for the visual cortex (Miikkulainen, Bednar, Choe, & Sirosh, 2005).
In such sensor representations, the function of lateral connections could be
subsumed as either enforcing coherence or competition between laterally
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connected units. The formation of topographic maps, columnar structure,
or patterns of orientation-selective receptive fields can be explained on
this basis (e.g., Bednar et al., 2002). Also the stabilization of noisy or oc-
cluded stimuli, or the disambiguation between contradicting stimuli can
be modeled—for example, with standard neural field dynamics involv-
ing local excitatory and global inhibitory lateral connections (Erlhagen &
Schöner, 2002). In the context of temporal signal representations, the func-
tion of lateral connections is to induce specific temporal dynamics, learned,
for example, with a temporal Hebb rule (spike-time dependent plastic-
ity; Dayan & Abbott, 2001). Self-organized temporal map models (Euliano
& Principe, 1999; Somervuo, 1999; Wiemer, 2003; Varsta, 2002; Klemm &
Alstrom, 2002) can learn to anticipate stimuli, for example, when a stimu-
lus B always follows a stimulus A. The role we attributed to lateral connec-
tions naturally differs from these models since we consider a sensorimotor
representation where anticipation needs to depend on the current motor ac-
tivities and for which we proposed the modulatory sensorimotor coupling.

Long-term prediction, for example, path integration (see Etienne & Jef-
fery, 2004, for a review), is clearly related to the sensorimotor anticipation
that we addressed with our model. Some existing models of path integration
are based on one- or two-dimensional representational maps of position or
head direction, and anticipation is realized by a motor-dependent transla-
tion of the activity pattern. For instance, in Hartmann and Wehner (1995)
and Song and Wang (2005), the translational shift on a one-dimensional
head direction representation is realized with two additional layers of in-
hibitory neurons—one for right and one for left movements—that are cou-
pled to the motor system. Zhang (1996) achieves an exact translation of
the activity pattern by coupling a derivative term in the dynamics, while
Stringer, Rolls, Trappenberg, and Araujo (2002) induce translational shifts
on a two-dimensional place field representation with a complex coupling
of head direction units and forward velocity units into the lateral place field
dynamics, in effect similar to our approach. None of these approaches ad-
dresses the problem of planning or the emission of motor signals based on
the learned forward model. Although our model implements sensorimotor
anticipation, it is in its current form limited with regard to the task of exact
path integration: only the direction but not the magnitude of anticipatory
shifts is guaranteed to be correlated with the true movement, as the exper-
iments in section 6 demonstrate. However, future extensions of the model
might solve this problem, for example, by a precise tuning of the parameter
η that allows us to calibrate the magnitude of the anticipatory shift (see
Figure 3).

In the context of machine learning, predictive forward models are typ-
ically learned as a function, for example, with a neural network (Jordan
& Rumelhart, 1992; Wolpert, Ghahramani, & Jordan, 1995; Ghahramani,
Wolpert, & Jordan, 1997; Wolpert, Ghahramani, & Flanagan, 2001). It is
assumed that a goal trajectory is readily available such that the learned
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function allows them to compute the motor signals necessary to follow this
trajectory. A representational map of the state space is not formed. In con-
trast, some model-based reinforcement learning systems have addressed
the self-organization of state space representations (Kröse & Eecen, 1994;
Zimmer, 1996; Appl, 2000), for example, by using discrete fuzzy represen-
tations (e.g., the Fuzzy-ARTMAPs; Carpenter et al., 1992). However, these
approaches do not propose a direct coupling of motor activities into a sen-
sorimotor representation to realize anticipation and planning by neural dy-
namics on this representation; instead, they use the learned representation
as an input to separate, standard reinforcement learning architectures.

10 Conclusion

The sensorimotor map we describe in this letter proposes a new mechanism
of how motor signals can jointly be coupled with sensor signals on a senso-
rimotor representation. The immediate function of this sensorimotor map
and the proposed modulatory sensorimotor coupling is the anticipation of
the change of stimuli depending on the current motor activity.

Anticipation on its own is a fundamental ingredient of sensorimotor
control, for example, to consolidate noisy sensorial information by fusing
it with the temporal prediction or to bridge the inherent time lag of senso-
rial information. However, the ability to anticipate also provides the basic
ingredient for planning. The forward model implicitly encoded by the sen-
sorimotor map can be used to realize planning. We considered standard
reinforcement learning techniques as a starting point and proposed a value
dynamics on the sensorimotor map the performs basically the same compu-
tations as value iteration. For this to work in a neural systems framework,
it is crucial that there exists a neural representation of the state space. The
sensorimotor map provides such a representation.

The self-organization and learning processes that develop the sensori-
motor map do not set principled constraints on the type of sensor and
motor representations coupled to the map. However, a more general prob-
lem was not solved and remains a limiting factor. Also in our model,
the self-organization of the sensorimotor representation is mainly sensor
driven. This leads to problems, as when different states induce the same
stimulus (partial observability, stimulus ambiguity), since the current self-
organization process will not be able to grow separate units for the same
stimulus. The self-sustaining and anticipatory dynamics of the sensorimo-
tor map are able to disambiguate such states depending on the temporal
context. But a prerequisite is the existence of multiple units associated with
the same stimulus.

This leads us back to the challenge of understanding higher-level cog-
nitive processes like internal simulation and planning, as mentioned in
the context of Köhler’s classic monkey experiments. The basic mecha-
nisms of anticipation and planning proposed in this letter, in particular, the
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action-dependent modulation of lateral interactions, might be transferable
to such higher-level representations. An open question is how animals
and humans are able to organize such higher-level abstract representations,
which clearly are not purely sensor based but state abstractions that capture
both the sensor context and its relevance for behavior.
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