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mization of the expected future return in the time-unlimited MDP and likelihood maximization in a related
mixture of finite-time MDPs. This allows us to use expectation maximization (EM) for computing optimal
policies, using arbitrary inference techniques in the E-step. Unlike previous approaches we can show that
this actually optimizes the discounted expected future return for arbitrary reward functions and without
assuming an ad hoc finite total time.

We first develop the approach for standard MDPs and demonstrate it using exact inference on a discrete
maze and Gaussian belief state propagation in non-linear stochastic optimal control problems. Then we
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1 Introduction

The problems of planning in stochastic environments and inference in Markovian models are
closely related, in particular in view of the challenges both of them face: scaling to large state
spaces spanned by multiple state variables, or realizing planning (or inference) in continuous
state spaces. Both fields developed techniques to address these problems. For instance, in the
field of planning, they include work on Factored Markov Decision Processes (Boutilier et al. 1995;
Koller & Parr 1999; Guestrin et al. 2003; Kveton & Hauskrecht 2005), abstractions (Hauskrecht
et al. 1998), and relational models of the environment (Zettlemoyer et al. 2005). On the other
hand, recent advances on inference techniques show how structure can be exploited both for
exact inference as well as making efficient approximations. Examples are message passing al-
gorithms (loopy BP, Expectation Propagation), variational approaches, approximate belief repre-
sentations (particles, Assumed Density Filtering, Boyen-Koller) and arithmetic compilation (see,
e.g., Minka 2001; Murphy 2002; Chavira et al. 2006).

In view of these similarities one may ask whether existing techniques for probabilistic infer-
ence can directly be translated to solving MDPs or POMDPs. From a complexity theoretic point
of view, the equivalence between inference and planning is well-known (see, e.g., Littman et al.
2001). Bui, Venkatesh, & West (2002) have used inference on Abstract Hidden Markov Models for
policy recognition, i.e., for reasoning about executed behaviors, but do not address the problem
of computing optimal policies from such inference. Attias (2003) proposed a framework which
suggests a straight-forward way to translate the problem of planning to a problem of inference:
A Markovian state-action model is assumed, which is conditioned on a start state x0 and a goal
state xT . Here, however, the total time T has to be fixed ad hoc and the MAP action sequence that
is proposed as a solution is not optimal in the sense of maximizing an expected future reward.
Verma & Rao (2006) used inference to compute plans (considering the maximal probable expla-
nation (MPE) instead of the MAP action sequence) but again the total time has to be fixed and
the plan is not optimal in the expected return sense.

We provide a framework that translates the problem of maximizing the discounted expected
future return in the time-unlimited MDP (or general DBN) into a problem of likelihood maxi-
mization in a related mixture of finite-time MDPs. This allows us to use expectation maximiza-
tion (EM) for computing optimal policies, utilizing arbitrary inference techniques in the E-step.
Unlike previous approaches we can show that this actually optimizes the discounted expected
future return for arbitrary reward functions and without assuming an ad hoc finite total time.
The approach is generally applicable on any DBN-description of the problem whenever we have
efficient inference techniques for this structure. DBNs allow us to consider structured represen-
tations of the environment (the world state) as well as the agent (or multiple agents, in fact).

The next two sections will first introduce this new approach in the context of an unstructured
MDP. We establish the basic equivalence between maximizing expected future return and likeli-
hood maximization. Section 3.4 also explains the relation to Policy Iteration in the unstructured
MDP case. In section 4 we include some demonstrations of the basic approach using exact infer-
ence on a discrete maze and Gaussian belief state propagation in non-linear stochastic optimal
control problems.

Then, in sections 5 and 6, we consider a non-trivial DBN representation of a POMDP prob-
lem. We propose a certain model of an agent (similar to finite state controllers, FSCs) that uses an
internal memory variable as a sufficient representation of history which gates a reactive policy. In
section 7 we use this to learn sufficient memory representations (e.g., counting aisles) and primi-
tive reactive behaviors (e.g., aisle or wall following) in some partially observable maze problems.
This can be seen in analogy to the classical Machine Learning paradigm of learning latent vari-
able models of data for bootstrapping interesting internal representations (e.g., ICA) — but here
generalized to the learning of latent variable models of behavior. Sections 8 and 9 will conclude
with a more detailed discussion of our approach and related work.
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Figure 1: Dynamic Bayesian network for a MDP. The x states denote the state variables, a the
actions and r the rewards.

2 Markov Decision Processes and likelihood maximization

A stationary Markov Decision Process (MDP, (Kaelbling, Littman, & Moore 1996)) is defined by
the

initial state distribution P (x0 =x) =: Px ,

state transition P (xt+1 =x′ | at =a, xt =x) =: Px′ax ,

rewards P (rt =r | at =a, xt =x) =: Prax ,

policy P (at =a |xt =x;π) =: πax .

We consider Px, Px′ax, and Prax as known and call the expectation Rax = E {r | a, x} =
∑

r r Prax

the reward function. In model-based Reinforcement Learning approaches such probabilities are
estimated from experience (see, e.g., (Atkeson & Santamarı́a 1997)), but this is not addressed
here. The random variables xt and at can be discrete or continuous whereas the reward rt is
a real number. Figure 1 displays the dynamic Bayesian network for a time-unlimited Markov
Decision Process (MDP).

The free parameter of this DBN is the policy π with numbers πax ∈ [0, 1] normalized w.r.t. a.
The problem we address is solving the MDP:

Definition 2.1. Solving an MDP means to find a parameter π of the graphical model in Figure 1
that maximizes the expected future return V π = E {

∑∞
t=0 γt rt;π}, where γ ∈ [0, 1] is a discount

factor.

The classical approach to solving MDPs is anchored in Bellman’s equation, which simply
reflects the recursive property of the future discounted return

∞∑
t=0

γt rt = r0 + γ
[ ∞∑

t=1

γt rt

]
(1)

and consequently of its expectation conditioned on the current state,

V π(x) = E

{ ∞∑
t=0

γt rt

∣∣∣ x0 =x;π

}
=

∑
x′,a

Px′ax πax [Rax + γ V π(x′)] . (2)

Standard algorithms for computing value functions can be viewed as iterative schemes that con-
verge towards the Bellman equation or as directly solving this linear equation w.r.t. V by matrix
inversion.

Our general approach is to translate the problem of solving an MDP into a problem of like-
lihood maximization. There are different approaches for such a translation. One issue to be
considered is that the quantity we want to maximize (the expected future return) is a sum of ex-
pectations of every time slice, whereas the likelihood in Markovian models is usually the product
of observation likelihoods in each time slice. Equivalence could be achieved, e.g., by introduc-
ing exponentiated rewards as observation likelihoods. However, we follow a different approach
based on a mixture of finite-time MDPs. This mixture model is in some respects different to the
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Figure 2: Mixture of finite-time MDPs.

original MDP but – and this is the important point – the likelihood of “observing reward” in this
mixture model is proportional to the expected future return in the original MDP. The reasons for
this choice of approach are related to inference (performing a backward pass) without pre-fixing
a finite time horizon T , the handling of discounting rewards, and also to the resulting relations
to standard Policy Iteration, as it will later become more clear.

We define each finite-time MDP as having the same probabilities Px, Px′ax and πax as the
original MDP but (i) it ends at a finite time T and (ii) it emits a single binary reward r̂ only at the
finial time step as given by

P (r̂=1 | aT =a, xT =x) =: R̂ax . (3)

Figure 2 displays graphical models of some finite-time MDPs. Let X = x0:T and A = a0:T denote
state and action trajectories of length T , then each finite-time MDP defines the joint

P (r̂, X,A |T ;π) =P (r̂ | aT , xT ) P (aT |xT ;π)
[ T−1∏

t=0

P (xt+1 | at, xt) P (at |xt;π)
]

P (x0) . (4)

Now let T be a random variable. The mixture of finite-time MDPs is given by the joint

P (r̂, X,A, T ;π) = P (r̂, X,A |T ;π) P (T ) . (5)

Here, P (T ) is a prior over the total time. Note that this gives a distribution over random variables
X and A of the space of variable length trajectories. We find

Theorem 2.1. When introducing binary rewards r̂ such that R̂ax ∝ Rax and choosing the discounting
time prior P (T ) = γT (1− γ), maximizing the likelihood

Lπ = P (r̂=1;π) (6)

of observing reward in the mixture of finite-time MDPs is equivalent to solving the original MDP.

Given the way we defined the mixture, the proof is straight-forward and illustrated in Figure
3.

3



P (r0:2, X, A)

a1 a2

x2x1x0

r0 r2r1

x0 x1

a1a0

x0 x1 x2

a2a1a0

x0

a0

r̂r̂r̂

P (r̂, X, A) =
P2

T=0 P (T ) P (r̂, X, A |T )

V =
P

t γt E {rt}L =
P

T P (T ) E {r̂ |T}

a0

Figure 3: Equivalence between the mixture and the original MDP.

Proof. Each finite-time MDP defines a likelihood

Lπ
T = P (r̂=1 |T ;π) = E {r̂ |T ;π} ,

and for the full mixture of MDPs we have

Lπ =
∑
T

P (T ) Lπ
T =

∑
T

P (T ) E {r̂ |T ;π} .

Since we chose R̂ax proportional to the reward function Rax the expectations E {r̂ |T ;π} here are
proportional to the reward expectations E {rt;π} at time slice t = T of the original MDP. (We are
taking the expectation w.r.t. a full probabilistic forward-sweep through the MDP, from time 0 to
time T , given the policy π; all MDPs share the same transition probabilities.) Hence

Lπ ∝
∑

t

P (t) E {rt;π} = (1− γ) V π

In appendix A the following points are discussed in some more details:

1. the interpretation of the mixture with death probabilities of the agent,

2. the difference between the models w.r.t. the correlation between rewards,

3. choosing the binary rewards such that R̂ax ∝ Rax for arbitrary reward functions,

4. and handling γ = 1.

3 EM-algorithm for unstructured MDPs

Formulating the objective function in terms of a likelihood allows us to apply expectation maxi-
mization (EM) to find optimal parameters π. All action and state variables are considered hidden
variables. The E-step will, for a given π, compute posteriors over state-action sequences as well
as T conditioned on “the data” r̂ = 1. The M-step then adapts the model parameters π to maxi-
mize the expected “data” log-likelihood (expectations then taken w.r.t. the posteriors calculated
in the E-step). Conceptually, inference in this Markovian model is straight-forward. However,
the special structure of the finite-time MDPs will allow for certain simplifications and spare us
from performing separate inference sweeps in each finite-time MDPs. In particular, we will not
have to pre-decide on a finite time horizon Tmax before starting inference but rather can decide on
a cutoff time on the fly, similar to deciding on a cutoff time during Policy Evaluation. For those
reasons we discuss the inference process in some more detail below.
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3.1 E-step

Forward-backward in all MDPs synchronously. In the E-step, we consider a fixed given policy
π and all the quantities we compute depend on π even if not explicitly annotated. Let Px′x =
P (xt+1 = x′ |xt = x;π) =

∑
a Px′ax πai. For a single MDP of finite time T the standard forward

and backward equations are

α0(x) = Px , αt(x′) = P (xt =x;π) =
∑

x

Px′x αt−1(x) , (7)

β̃T (x) =
∑

a

R̂ax πax , β̃t(x) = P (r̂=1 |xt =x;π) =
∑
x′

Px′x β̃t+1(x′) . (8)

We find that all the α-quantities do not depend on T in any way, i.e., they are valid for all MDPs
of any finite time T . This is not true for the β̃-quantities when defined as above. However, we can
use a simple trick, namely define the β’s to be indexed backward in time (with the ‘time-to-go’
τ ), and get

βτ (x) := P (r̂=1 |xT−τ =x;π) , β0(x) =
∑

a

R̂ax πax , βτ (x) =
∑
x′

Px′x βτ−1(x′) . (9)

Defined in that way, all β-quantities do indeed not depend on T . For a specific MDP of finite time
T , setting τ = T − t would allow us to retrieve the traditional forward-indexed β̃-quantities.

This means that we can perform the α- and β-propagation in parallel, incrementing t and τ
synchronously, and start both without pre-determining T or some Tmax. Although we introduce a
mixture of MDPs we only have to perform a single forward and backward sweep. This procedure
is, from the point of view of ordinary Hidden Markov Models, quite unusual—it is possible
because in our setup we only condition on the very last state (r̂ = 1). Apart from realizing the
additivity of V π and the discounting by means of time prior, this is the main reason for why we
considered the mixture of finite-time MDPs rather than the original time-unbounded MDP that
emits rewards at every time slice.

Time posterior and choosing the cutoff. Say we have propagated α’s forward for t iterations
and β’s backward for τ iterations. Then we can compute the T -conditioned likelihood for T =
t + τ

Lπ
t+τ = P (r̂=1 |T = t + τ ;π) =

∑
x

αt(x) βτ (x) (10)

For instance, if there is no overlap between the distributions αt(x) and βτ (x) we have Lπ
t+τ = 0

which means that there exists no trajectory of length T = t+τ from the initial start distribution Px

to rewards R̂ax. In practice we will propagate α’s and β’s synchronously and compute Lπ
2k after

each step (both propagated for k steps). Monitoring Lπ
2k on the fly allows us to decide on a cutoff

time: as long as Lπ
2k = 0 we need to continue propagation. When Lπ

2k is very small compared to
the previously collected likelihood mass, γ2k Lπ

2k �
∑2k

T=0 γT Lπ
T , we may choose to terminate

the inference process and decide that the horizon Tmax = 2k is sufficient to estimate posteriors.
Note that using Bayes rule we get the time posterior (which corresponds to model selection in
the mixture model)

P (T | r̂=1;π) =
P (r̂=1 |T ;π)

P (r̂=1;π)
P (T ) =

Lπ
T P (T )
Lπ

. (11)

Action, state, and state occupancy posteriors. Let

qtτ (a, x) = P (r̂=1 | at =a, xt =x, T = t + τ ;π) =
{ ∑

x′ Px′ax βτ−1(x′) τ > 1
R̂ax τ = 0

. (12)

5



As expected, this quantity is independent of t because we conditioned on xt and the history
before time t (including its length t) becomes irrelevant in the Markov chain. We may use the
simpler notation qτ (a, x) = qtτ (a, x). Multiplying with the time prior and eliminating the total
time we get the action-conditioned likelihood

P (r̂=1 | at =a, xt = i;π) =
1
C

∞∑
τ=0

P (T = t + τ) qτ (a, i) , (13)

where C =
∑

τ ′ P (T = t+τ ′), and which is for the discounted time prior independent of t because
P (t + τ) = γtP (τ) which is absorbed in the normalization. Further, with Bayes rule we get the
action posterior

P (at =a |xt =x, r̂=1;π) =
πax

C ′

∞∑
τ=0

P (T = t + τ) qτ (a, x) , (14)

where C ′ = P (r̂ = 1 |xt = x;π)
∑

τ ′ P (T = t + τ ′) can be computed from normalization, and
which is also independent of t.

We can also compute

γtτ (x) = P (xt =x | r̂=1, T = t + τ ;π) =
1

Lπ
t+τ

βτ (x) αt(x) , (15)

where the likelihood Lπ
t+τ plays the role of a normalization (as for standard HMMs). In the

experimental results we will display the posterior probability of visiting a certain state x within
a rewarded trajectory, the state occupancy, which is given as

P (x ∈ X | r̂=1;π) =
∑
T

P (T ) Lπ
T

Lπ

[
1−

T∏
t=0

[
1− γt,T−t(x)

]]
. (16)

3.2 M-step

The exact M-step in an EM-algorithm maximizes the expected complete data log-likelihood

Q(π, π∗) =
∑
T

∑
X,A

P (r̂=1, X,A, T ;π) log P (r̂=1, X,A, T ;π∗) (17)

w.r.t. the new parameters π∗, where expectations over the latent variables (T,X,A) are taken
w.r.t. the posterior given the old parameters π. Although the mixture of finite-time MDPs com-
plicates the derivation of the M-step, the result is in strong analogy to the standard HMM,

Theorem 3.1. In the MDP case, the exact M-step is to assign the new parameters to the posterior action
probability

π∗ax =
πax

C ′

∞∑
τ=0

P (T =τ) qτ (a, x) , (18)

Proof. From (5) in more compact notation the full joint reads

P (r̂=1, X,A, T ;π) = P (T )
[
R̂axπax

]
t=T

[ T−1∏
t=0

Px′ax πax

] [
Px

]
t=0

. (19)

6



where the brackets are to clarify the time indices, e.g., [Px′ax]t ≡ Pxt+1atxt
. We have

Q(π, π∗) = 〈terms indep. of π∗〉+
∞∑

T=0

∑
X,A

P (r̂=1, X,A, T ;π)
[ T∑

t=0

log π∗atxt

]

= · · ·+
∞∑

T=0

T∑
t=0

∑
ax

P (T ) P (r̂=1, at =a, xt =x |T,π) log π∗ax

= · · ·+
∑
ax

(
log π∗ax

) ∞∑
T=0

T∑
t=0

P (T ) qT−t(a, x) πax at(x) (20)

The time summations can be resolved as follows
∞∑

T=0

T∑
t=0

P (T ) qT−t(a, x) αt(x) =
∞∑

t=0

∞∑
T=t

(1− γ) γT qT−t(a, x) αt(x)

= (1− γ)
∞∑

t=0

∞∑
τ=0

γτ γt qτ (a, x) αt(x) =
1

1− γ

[ ∞∑
τ=0

P (τ) qτ (a, x)
] [ ∞∑

t=0

P (t) αt(x)
]

=:
1

1− γ
q̂(a, x) α̂(x) , (21)

which gives us

Q(θ, θ∗) = · · ·+ 1
1− γ

∑
ax

(
log π∗ax

)
πax q̂(a, x) α̂(x) . (22)

Since π∗ax must be a distribution over a (constrained to normalize over a), this is maximized by

π∗ax =
πax

C
q̂(a, x) (23)

for some normalization constant C. Note the independence on α̂(x) because one can maximize
for each x separately.

3.3 Greedy M-step

In the case of a plain unstructured MDP we can also derive a greedy and usually faster version
of the M-step. Note however that this does not generalize to arbitrarily structured DBNs. In fact,
in the POMDP case we will investigate later we are not aware of such a greedy version of the
M-step.

By integrating over the 0-th time slice we can write the likelihood as

P (r̂=1;π) =
∑
ax

P (r̂=1 | a0 =a, x0 =x;π) πax P (x0 =x;π)

=
∑
ax

q̂(a, x) πax Px . (24)

Following the EM idea, we can approximate P (r̂ = 1; π∗) by estimating q̂(a, x) with the old pa-
rameter π and maximize

∑
ax q̂(a, x) π∗ax Px w.r.t. the new parameter π∗. Again, maximization

separates for each x and is thereby independent of Px. We have

π∗ax = δ(a, a∗(x)) , a∗(x) = argmax
a

q̂(a, x) . (25)

Note that this update corresponds to a greedy version of the previous M-step. For instance,
if we would iterate (18) without recomputing q̂(a, x) each time (skipping intermediate E-steps)
we would converge to this greedy M-step. Further, as we know from Reinforcement Learning,
the greedy M-step can be thought of exploiting our knowledge that the optimal policy must be a
deterministic one.

7



3.4 Relation to Policy Iteration

So far we have developed our approach for a plain unstructured MDP. It turns out that in this case
the E- and M-step are very closely related to the policy evaluation and update steps in standard
Policy Iteration.

We introduced the mixture of MDPs in a way such that the likelihood is proportional to the ex-
pected future return. In standard forward-backward algorithms the backward propagated mes-
sages are likelihoods. For the unstructured MDP these are βτ (x) := P (r̂ =1 |xT−τ =x;π) which
is proportional to the expected reward in exactly τ time steps in the future (from “now”) condi-
tioned on the current state (the value function of the finite-time MDP of length τ ). Hence, the
mixture of β’s,

β̂(x) =
∑

τ

P (T =τ) βτ (x) = (1− γ) V π(x) , (26)

is proportional to the value function V π(x) of the original MDP. Analogously we defined qτ (a, x) =
P (r̂=1 | aT−τ =a, xT−τ =x;π) and we have

q̂(a, x) =
∑

τ

P (T =τ) qτ (a, x) = (1− γ) Qπ(a, x) , (27)

where Qπ(a, x) is the Q-function in the original MDP. Note that this is also the action-conditioned
likelihood (13) and, interestingly, the action posterior (14) is proportional to πax Qπ(a, x).

We conclude that the E-step in an unstructured MDP is a form of Policy Evaluation since it
also yields the value function (at least quantities from which we can retrieve the value function).
However, quite different to traditional Policy Evaluation, the E-step also computes α’s, i.e., prob-
abilities to visit states given the current policy, which may be compared to previous approaches
like Diverse Densities (in the context of subgoal analysis (McGovern & Barto 2001)) or Policy
Search by Density Estimation (Ng, Parr, & Koller 1999). The full E-step provides us with posteri-
ors over actions, states and the total time. In practice we can use the α’s in an efficient heuristic
for pruning computations during inference (see section 4.1 and appendix B). Further, the E-step
generalizes to arbitrarily structured DBNs and thereby goes beyond standard Policy Evaluation,
particularly when using approximate inference techniques like message passing or approximate
belief representations.

Concerning the M-step, in the unstructured MDP the greedy M-step is identical to the policy
update in Policy Iteration. That means that one iteration of the EM will yield exactly the same
policy update as one iteration of Policy Iteration (provided one does exact inference and exact
value function computation without time horizon cutoffs). Again, the M-step goes beyond a
standard policy update in the generalized case. This becomes particularly apparent when in
structured DBNs (e.g. the POMDP case in section 5) the full posteriors computed via inference
(including forward propagated messages analogous to α’s) are necessary for the M-step. Only
computing backward propagated messages (like value functions or β’s) is not sufficient for the
M-step.

In summary,

Lemma 3.2. The EM-algorithm on an unstructured MDP using exact inference and the greedy M-step
is equivalent to Policy Iteration in terms of the policy updates performed.

Interestingly, this also means they are equivalent w.r.t. convergence. (Recall that Policy Itera-
tion is guaranteed to converge to the global optimum whereas EM-algorithms are only guaran-
teed to converge to local optima.) The computational costs of both methods may differ depend-
ing on the implementation (see experiment 4.1 and appendix B). On structured DBNs or using
approximate inference techniques or approximate belief representations the EM-algorithm goes
beyond Policy Iteration.
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(a) (b)

Figure 4: (a) State visiting probability calculated by EM for some start and goal state. The radii
of the dots are proportional to (16). (b) The probability of reaching the goal (for EM) and the
value calculated for the start state (PS) against the cost of the planning algorithms (measured by
evaluations of p(j|i, a)) for both start/goal configurations.

4 MDP experiments

4.1 Discrete maze examples

Efficiency. We tested the EM algorithm with greedy M-step on a discrete maze of size 100×100
and compared it to standard Value Iteration (VI) and Policy Iteration (PI). Walls of the maze are
considered to be trap states (leading to unsuccessful trials) and actions (north, south, east, west,
stay) are highly noisy in that with a probability of 0.2 they lead to random transitions. In the
experiment we chose a uniform time prior (discount factor γ = 1), initialized π uniformly, and
iterated the policy update k = 5 times. To increase computational efficiency we exploited that the
algorithm explicitly calculates posteriors which can be used to prune unnecessary computations
during inference as explained in appendix B. For policy evaluation in PI we performed 100
iterations of standard value function updates.

Figure 4(a) displays the posterior state visiting probabilities (Equation (16)) of the optimal
policy computed the EM for a problem where a reward of 1 is given when the goal state g is
reached and the agent is initialized at a start state s (i.e., Px = δ(x, s)). Computational costs are
measured by the number of evaluations of the environment Px′ax needed during the planning
procedure. Figure 4(b) displays the probability of reaching the goal P (r̂ = 1;π) against these
costs. Note that for EM (and PI) we can give this information only after a complete E- and M-step
cycle (policy evaluation and update) which are the discrete dots (triangles) in the graph. The
graph also displays the curve for VI, where the currently calculated value VA of the start state
(which converges to P (r̂ = 1) for the optimal policy) is plotted against how often VI evaluated
Px′ax.

In contrast to VI and PI, the EM algorithm takes considerable advantage of knowing the start
state in this planning scenario: the forward propagation allows for the pruning and the early
decision on cutoff times in the E-step as described in appendix B. It should thus not surprise
and not be overstated that the EM is more efficient in this specific scenario. Certainly, a simi-
lar kind forward propagations could also be introduced for VI or PI to achieve equal efficiency.
Nonetheless, our approach provides a principled way of pruning by exploiting the computation
of proper posteriors. The policies computed by all three methods are equal for states which have
significantly non-zero state visiting probabilities.

Multi-modal time posteriors. The total time T plays a special role as a random variable in our
mixture model. We use another simple experiment to illustrate this special role by considering
the total time posteriors. Modelling walls as trap states leads to interesting trade-offs between
staying away from walls in favor of security and choosing short paths. Figure 5 displays a 15x20
maze with three possible pathways from the start (bottom left) to the goal (bottom right) state.
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(a) k = 0
P=1.5e-5

(b) k = 1
P=0.17

(c) k = 2
P=0.44

(d) k = 3
P=0.48

(e) k = 4
P=0.61

(f)

(g)

Figure 5: (a-e) State visiting probabilities for various EM-iterations k. The start and goal states are
to the bottom left and right, respectively. The radii of the dots are proportional to P (x ∈ X | r̂=1).
The indicated P is P (r̂ = 1). (f) The different possible pathways lead to a multi-modal time
posterior P (T | r̂ =1). (g) The trade-off between the expected time to goal (mean of P (T | r̂ =1))
and the probability to reach the goal. The dots corresponds to k = 1, .., 4 (from left to right).

The direct pathway is a narrow aisle clinched between two walls and thus highly risky. The next
one up requires a step through a narrow doorway. The most top one is secure but longest. The
five Figures illustrate the state visiting probability P (x ∈ X | r̂=1) for random walks (k = 0) and
the policies calculated by EM for k = 1, .., 4 iterations. Also the success probability P (r̂ = 1) is
indicated. Figure 5(f) displays the corresponding time posteriors P (T | r̂=1) for the different k’s.
Interesting is the multi-modality of these time posteriors in that specific environment. The multi-
modality in some way reflects the topological properties of the environment: that there exists
multiple possible pathways from the start to the goal with different typical lengths (maxima
of the time posterior) and different success probabilities (area (integral) of a mode of the time
posterior). Already for k = 0 one can see that, besides the direct pathway (of typical length
≈ 15), there exist alternative, longer routes which comprise significant success probability. One
way to exploit this insight could be to choose a new time prior for the next inference iteration
that explicitly favors these longer routes. Figure 5(g) nicely exhibits the trade-off between the
expected time to goal and the probability to reach the goal.

4.2 Stochastic optimal control

Gaussian belief state propagation. Next we want to show that the framework naturally allows
to transfer other inference techniques to the problem of solving MDPs. We address the problem
of stochastic optimal control in the case of a continuous state and control space. A standard infer-
ence technique in continuous state spaces is to assume Gaussian belief states as representations
for α’s and β’s and propagate forward-backward and using the unscented transform to handle
also non-linear transition dynamics (see (Murphy 2002) for an overview on inference techniques
in DBNs). Note that using Gaussian belief states implies that the effective value function (section
3.4) becomes a mixture of Gaussians.
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All the equations we derived remain valid when reinterpreted for the continuous case (sum-
mations become integrations, etc) and the exact propagation equations (7) and (9) are replaced
by propagations of Gaussian belief states using the unscented transform. In more detail, let
N(x, a,A) be the normal distribution over x with mean a and covariance A and let N(x, a,A) be
the respective non-normalized Gaussian function with N(a, a,A) = 1. As a transition model we
assume

P (x′|u, x) = N(x′, φ(u, x), Q(u)) , Q(u) = C + (|u|/µ)2 I (28)

where φ(u, x) is an non-linear function, C is a constant noise covariance, and we introduced a pa-
rameter µ for an additional noise term that is squared in the control signal. With the parameteri-
zation αt(x) = N(x, at, At) and βτ (x) = N(x, bτ , Bτ ) (note that β’s always remain non-normalized
Gaussian likelihoods during propagation), forward and backward propagation read

(at, At) = UTφ(at−1, AT−1)
(bτ , Bτ ) = UTφ−1(bτ−1, Bτ−1) ,

where UTφ(a,A) denotes the unscented transform of a mean and covariance under a non-linear
function. In brief, this transform deterministically considers 2n + 1 points (say with standard
deviation distance to the mean) representing the Gaussian. In the forward case (the backward
case) it maps each point forward using φ (backward using φ−1), associates a covariance Q(u) (a
covariance φ′−1 Q(u) φ′−1T , where φ′−1 is the local inverse linearization of φ at each point) with
each point, and returns the Gaussian that approximates this mixture of Gaussians. Further, for
any t and τ we have

Lπ
t+τ = N(at, bτ , At + Bτ )

γtτ (x) = N(x, ctτ , Ctτ ) , C−1
tτ = A−1

t + B−1
τ , ctτ = Ctτ (A−1

t at + B−1
τ bτ )

The policy and the M-step. In general, the policy is given as an arbitrary non-linear function
π : x 7→ u. Clearly, we cannot store such a function in memory. However, via the M-step the
policy can always be implicitly expressed in terms of the β-quantities of the previous E-step and
numerically evaluated at specific states x. This is particularly feasible in our case because the
unscented transform used in the belief propagation (of the next E-step) only needs to evaluate
the transition function (and thereby π) at some states; and we have the advantage of not needing
to approximate the function π in any way. For the M-step we need equation (12),

qτ (u, x) τ>1=
∫

x′
P (x′|u, x) N(x′, bτ−1, Bτ−1) = |2πBτ−1|1/2 N(bτ−1, φ(u, x), Bτ−1 + Q(u)) , (29)

and we maximize the mixture of Gaussians q̂(u, x) with a gradient ascent using

∂uqτ (u, x) = −qτ (u, x)
[

hT
(
∂uφ(u, x)

)
− u

1
µ2

(
tr(A−1)− hT h

)]
A := Bτ−1 + Q(u) , h := A−1 (φ(u, x)− b) (30)

Examples. Consider a simple 2-dimensional problem where the start state is distributed around
zero via α0(x) = N(x, (0, 0), .01I) and the goal region is determined by P (r̂=1 |x) = N(x, (1, 1),
diag(.0001, .1)). Note that this goal region around (1, 1) is heavily skewed in that rewards de-
pend more on the precision in the x−dimension than the y−dimension. The control law is simply
φ(u, x) = x + .1 u and the discount factor γ = 1. When choosing µ = 0 (no control-dependent
noise), the optimal control policy will try to jump directly to the goal (1, 1). Hence we first con-
sider the solution when manually constraining the norm of |u| to be small (effectively following
the gradient of P (r = 1 |ut = u, xt = x;π)). Figure 6(a,b) shows the learned control policy π
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Learned policies (left) and forward simulation (α’s) of these policies (right) for aspheric
Gaussian-shaped targets. (a,b) are for the case of restricted action amplitude (the walker model).
(c,d) are for unconstrained amplitude (the golfer model). And (e,f) are for the approach to a new
position under phase space dynamics.

and the forward simulation given this policy by displaying the covariance ellipses for α0:T (x)
after k = 3 iterations. What we find is a control policy that reduces errors in x−dimension more
strongly than in y−direction, leading to the tangential approach to the goal region. This is related
to studies on redundant control or the so-called uncontrolled manifold.

Next we can investigate what the effect of control-dependent noise is without a constraint
on the amplitude of u. Figure 6(c,d) displays results (after k = 3 iterations) for µ = 1 and no
additional constraints on u. The process actually resembles a golf player: the stronger the hit, the
more noise. The optimal strategy is to hit fairly hard in the beginning, hopefully coming closer
to the goal, such that later a number of smaller and more precise hits can be made. The reason
for the small control signals around the goal region is that small steps have much more accuracy
and reward expectation is already fairly large for just the x−coordinate being close to 1.

Finally we think of x being a phase space and consider the dynamics φ(u, x) = (x1 + .1x2, x2 +
.1u) where u is the 1-dimensional acceleration of the velocity x2, and x1 is a position. This time we

12



set the start and goal to (0, 0) and (1, 0) respectively, both with variance .001 and choose µ = 10.
Figure 6(e,f) display the result and show nicely how the learned control policy approaches the
new position on the x−axis by first gaining and then reducing velocity.

5 POMDPs and the policy model

A stationary, partially observable Markov decision process (POMDP, see e.g. (Kaelbling, Littman,
& Cassandra 1998)) is given by four time-independent probability functions,

the initial world state distribution P (x0 =x) =: Px

the world state transitions P (xt+1 =x′ | at =a, xt =x) =: Px′ax

the observation probabilities P (yt =y |xt =x) =: Pyx

the reward probabilities P (rt =r | at =a, xt =x) =: Prax .

These functions are considered known. We assume the world states, actions, and observations
(xt, yt, at) are discrete random variables while the reward rt is a real number

The POMDP only describes one “half” of the process to be described as a DBN — the other
half is the agent interacting with the environment. Our point of view is that the agent could use
an arbitrary “internal machinery” to decide on actions. FSCs are a simple example. However,
a general DBN formulation of the agent’s internal machinery allows us to consider much more
structured ways of behavior organization, including factorized and hierarchical internal repre-
sentations (see, e.g., Theocharous et al. 2004). In the remainder of this section we investigate a
policy model that is slightly different to finite state controllers but still rather simple. However,
the approach is generally applicable to any DBN formulation of the POMDP and the agent.

To solve a given POMDP challenge an agent needs to maintain some internal memory variable
(if not the full belief state) that represents information gained from previous observations and
actions. We assume that this variable is updated depending on the current observation and used
to gate reactive policies rather than to directly emit actions. More precisely, the dynamic Bayesian
network in Figure 7(a) captures the POMDP and the agent model which is defined by the

initial internal memory distribution P (b0 =b) =: νb

internal memory transition P (bt+1 =b′ | bt =b, yt =y) =: λb′by

reactive policies P (at =a | bt =b, yt =y) =: πaby .

Here we introduced bt as the agent’s internal memory variable. It is comparable to the “node
state” in finite state controllers (Figure 7(b)), but differs in that it does not directly emit actions
but rather gates reactive policies: for each internal memory state b the agent uses a different
“mapping” πaby (i.e. a different reactive policy) from observations to actions.

As for the MDP case, solving the POMDP in this approach means to find parameters θ =
(ν,λ,π) of the DBN in Figure 7 that maximize the expected future return V θ = E {

∑∞
t=0 γt rt; θ}

for a discount factor γ ∈ [0, 1].

6 EM-algorithm for the POMDP model

Let us consider briefly but explicitly how the previous EM-algorithm generalizes to the POMDP
case. Each finite-time model (Figure 8) of the infinite mixture is limited in time by T and emits
only a single reward r̂ at the final time step. Let zt = (xt, yt, bt, at) subsume all latent variables in
a time slices and Z = z0:T be its trajectory. Given R̂ax ∝ Rax the joint for a finite-time MDP reads

P (r̂, Z |T ; θ) =
[
R̂ax πaby Pyx

]
t=T

[ T−1∏
t=0

λb′by Px′ax πaby Pyx

] [
νb Px

]
t=0

, (31)
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Figure 7: (a) DBN of the POMDP and policy with internal memory bt; the time is unbounded
and rewards are emitted at every time step. (b) For comparison: the DBN of a POMDP with a
standard FSC, with “node state” nt.

r̂

y1

b1

a0

x0

y0

b0

a1

bT

yT

xT

aT

b2

x2

y2

x1

Figure 8: The finite-time model, where the reward is emitted only at the final state. The dotted
line captures a clique of the graphical model; the junctions are (bt, xt) for t = 1..T , on which the
E-steps are performed.

where again the brackets clarify the time indices ([Px′ax]t ≡ Pxt+1atxt
). The joint for the full

mixture of finite-time models is P (r̂, Z, T ; θ) = P (r̂, Z |T ; θ) P (T ). Each finite-time model defines
a likelihood Lθ

T = P (r̂=1 |T ; θ). Consequently, the mixture model defines the likelihood

Lθ = P (r̂=1; θ) =
∑
T

P (T ) P (r̂=1 |T ; θ) = (1− γ)
∑
T

γT E {r̂ |T ; θ} ∝ V θ . (32)

Concerning the E-step we perform exact inference by grouping random variables into cliques.
Figure 8 indicates a clique in the graphical model with junctions (b, x). Thus, forward-backward
propagation can most efficiently be realized on the reduced Markovian process on the (b, x)-state
with transitions

P (b′, x′ | b, x) =
∑
a,y

Px′ax λb′by πaby Pyx . (33)

Forward and backward propagation reads

αt(b′, x′) = P (xt =x′, bt =b′ |T ; θ) =
∑
b,x

P (b′, x′ | b, x) αt−1(b, x) (34)

βτ (b, x) = P (r̂=1 |xT−τ =x, bT−τ =b, T ; θ) =
∑
b′,x′

P (b′, x′ | b, x) βτ−1(b′, x′) , (35)

where β’s are again indexed backward in time (with the time-to-go τ ). They are initialized with

α0(b, x) = νb Px , β0(b, x) =
∑
a,y

R̂ax πaby Pyx . (36)

and we can synchronously propagate forward and backward. The result of the E-step are the
quantities

α̂(b, x) :=
∞∑

t=0

P (T = t) αt(b, x) , β̂(b, x) :=
∞∑

τ=0

P (T = τ) βτ (b, x) . (37)
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The M-step is derived from maximization of the expected complete log-likelihood

Q(θ, θ∗) =
∞∑

T=0

∑
Z

P (r̂=1, Z, T ; θ) log P (r̂=1, Z, T ; θ∗) , (38)

where expectation is taken w.r.t. the old parameters θ and we need to maximize w.r.t. the new
parameters θ∗. In Appendix C we derive the exact M-steps

π∗aby =
πaby

Cby

∑
x

[ γ

1− γ

∑
b′x′

β̂(b′, x′) λb′by Px′ax + R̂ax

]
Pyx α̂(b, x) , (39)

λ∗b′by =
λb′by

C ′
by

∑
x′,a,x

β̂(b′, x′) Px′ax πaby Pyx α̂(b, x) , (40)

ν∗b =
νb

C ′′
b

∑
x

β̂(b, x) P (x0 =x) , (41)

where Cby , C ′
by and C ′′

b are normalization constants. Note that in these updates the α’s (related to
state visiting probabilities) play a crucial role. Also we are not aware of a greedy version of these
updates that proved efficient (i.e. without immediate convergence to a local minimum).

Complexity

Let X, B,A and Y momentarily denote the cardinalities of random variables x, b, a, y, respec-
tively. The main computational cost accumulates during α- and β-propagation (34) and (35),
both of which have complexity O(Tmax B2 X2). Here and below, X2 scales with the number of
non-zero elements in the transition matrix P (x′|x) (assuming non-zero action probabilities). We
always use sparse matrix representations for transition matrices. The number of propagations
Tmax scales with the expected time of reward (for a simple start-goal scenario this is the expected
time to goal). Sparse vector representations of α’s and β’s ruther reduce the complexity depend-
ing on the topological dimensionality of P (x′|x). The computational complexity of the M-step
scales with O(AY B2X2); in total this adds to O((Tmax + AY )B2X2) for one EM-iteration.

For comparison, let N denote the number of nodes in a FSC. The computation of a policy
gradient w.r.t. a single parameter of a FSC scales with O((Tmax+AY )N2X2) (taken from (Meuleau
et al. 1999), top of page 7). A fully parameterized FSC has NA+N2Y parameters, bearing a total
complexity of O((Tmax + AY )N4X2Y ) to compute a full policy gradient.

For EM-learning as well as gradient ascent, the complexity additionally multiplies with the
number k of EM-iterations respectively gradient updates.

7 POMDP experiments

Scaling. The POMDP EM-algorithm has no free parameters except for the initializations of
λb′by , πaby , and νb. Roughly, we initialized νb and πaby approximately uniformly, while λb′by

was initialized in a way that favors not to switch the internal memory state, i.e., the diagonal of
the matrix λb′b· was initialized larger than the off-diagonal terms. More precisely, we first draw
non-normalized numbers

πaby ∼ 1 + 0.1 U([0, 1]) , λb′by ∼ 1 + 5 δb′b + 0.1 U([0, 1]) , νb = 1 (42)

where U([0, 1]) is the uniform distribution over [0, 1], and then normalize these parameters.
To start with, we test the scaling behavior of our EM-algorithm and compare it with that of

gradient ascent for a FSC (FSC-GA). We tried three options for coping with the problem that
the simple policy gradient in (Meuleau et al. 1999) ignores the normalization constraints of the
parameters: (1) projecting the gradient on the simplex, (2) using a step-size-adaptive gradient
ascent (RPROP) with added soft-constraint gradients towards the simplex, (3) using MATLAB’s
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(a) (b)

Figure 9: (a) A simple scalable maze from (Meuleau et al. 1999), here with 330 states. The start
(goal) position is marked gray (black). The robot has five actions (north, south, eat, west, stay)
and his observation is a 4 bit number encoding the presence of adjacent walls. (b) Running times
of EM-learning and FSC gradient ascent that show how both methods scale with the maze size.
The lines are medians, the errorbars min and max of 10 independent runs for each of the various
maze sizes. (For maze sizes beyond 1000 we display only 1 run).
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Figure 10: Further mazes considered in the experiments. (c): Top left is the maze with the start
(light gray), goal (bottom right) and drain-states (dark). The other three illustrations display the
internal memory state b (grey value∝ α̂(b, x) for b = 1, 2, 3) at different locations in the maze. (d):
Large maze with 1516 turtle states.

gradient-based constraint optimization method ‘fmincon’. The second option gave the best re-
sults and we refer to those in the following. Note that our algorithms does not have such prob-
lems: the M-step assigns correctly normalized parameters. Figure 9 displays the results for the
simple maze considered in (Meuleau et al. 1999) for various maze sizes. Our policy model needs
B = 2 internal memory states, the FSC N = 5 graph nodes to solve these problems. The discount
factor was chosen γ = .99. The results confirm the differences we noticed in the complexity
analysis.

Training the memory to gate primitive reactive behaviors. To exemplify the approach’s abil-
ity to learn an appropriate memory representation for a given task we investigate further maze
problems. We consider a turtle, which can move forward, turn right or left, or wait. With proba-
bility 1−ε this action is successful; with probability ε = .1 the turtle does not respond. The state
space is the cross product of positions and four possible orientations, and the observations are a
4 bit number encoding the presence of adjacent walls relative to the turtle’s orientation. Further,
whenever the agent reaches the goal (or a zero-reward drain state, see below) it is instantly reset
to the start position.

Figures 10(a) and 10(b) display two small mazes with two specific difficulties: The interior
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Figure 11: Learning curves for the maze in Figure 10(d). The expected reward interval (see foot-
note) is given over the number of EM-iterations. Solid: median over 100 independent trial runs
(with noisy initializations (42)), dashed and dotted: 2.5, 25, 75 and 97.5 percentiles, dotted base-
line: shortest path to the goal in the respective environment which were possible in the noise-free
case. The optimal controller in our stochastic case is necessarily above this baseline.

states and also the entries and exits (cross-shaded) of halls in 10(a) all have the same observation
0000 and are highly susceptible for the agent to get lost. For B = 2, the turtle learns a wall-
following strategy as a basic reactive behavior, while the internal memory is used only at the
exists and entrances to halls: for observation b = 1 and y = 0000 the turtle turns left and switches
to b = 2, while for b = 2 and y = 0000 the turtle goes straight and switches back to b = 1. The
maze in Figure 10(b) is a binary-decision maze and poses the problem of remembering how many
junctions have passed already: To reach the goal, the turtle has to follow aisles and at T-junctions
make decisions [left, right, right, left]. For B = 3 the algorithm finds the obvious solution:
Each internal memory state is associated with simple reactive behaviors that follows aisles and,
depending on b, turn left or right at a T-junction. A finite state controller would certainly find
a very similar solution. However, in our case this solution generalizes to situations when the
corridors are not straight: Figure 10(c, top left) displays a maze with 30 locations (number of
states is 480), where the start state is in the top left corner and the goal state in the bottom right.
Again, the turtle has to make decisions [left, right, right, left] at T-junctions to reach the goal, but
additionally has to follow complex aisles in between. Unlike with FSCs, our turtle needs again
only B = 3 internal memory states to represent the current corridor. The shading in Figure 10(c)
displays the probability of visiting a location on a trajectory while being in memory state b = 1, 2
or 3.

Finally, we investigate the maze in Figure 10(d) with 379 locations (1516 turtle states). The
maze is a complex combination of corridors, rooms and junctions. On this maze we also tested a
normal robot (north, south, west, east actions with noise ε = .1), learning curves for B = 3 for the
left and right most goals are given in Figure 11(a,b) and exhibit reliable convergence.1 We also
investigated single runs in the turtle case for the left most goal (Figure 11(c)) and the second left
goal (Figure 11(d) dashed line). Again, the turtle utilizes that aisle following can be implemented
with a simple reactive behavior; the internal memory is only used for decision making in halls
and at junctions. Since the aisle following behavior can well be generalized to all goal settings
we performed another experiment: we took the final policy πaby learned for the left most goal as
an initialization for the task of finding the second left goal. Note that the start-to-goal paths are
largely disjoint. Still, the algorithm converges, particularly in the beginning, much faster (Figure
11(d) solid line), showing that such generalization is indeed possible.

To conclude these experiments, we can summarize that the agent learned internal memory

1As a performance measure we define the expected reward interval which is directly linked to P (r̂ = 1). Con-
sider a cyclic process that receives a reward of 1 every d time steps; the expected future reward of this process is

P (r̂=1) =
P∞

T=1 P (d T ) = (1− γ)
P∞

T=1 γd T =
γd (1−γ)

1−γd .

Inverting this relation, we translate a given expected future reward into an expected reward interval via
d =

log P (r̂=1)−log(P (r̂=1)+1−γ)
log γ

.

This measure is rather intuitive: The performance can directly be compared with the shortest path length to the goal. Note
though that in stochastic environment even an optimal policy has an expected reward interval larger than the shortest
path to goal.
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representations to switch between reactive behaviors. In the experiments they mainly turned out
to represent different corridors. Generalization of the reactive behaviors to new goal situations
is possible. Further, memorization is not time bounded, e.g., independent of the length of an
aisle the turtle agent can sustain the current internal memory while executing the reactive aisle
following behavior.

8 Related work

Let us briefly draw links to related work that goes beyond what was mentioned in the introduc-
tion:

McGovern & Barto (2001) introduced Diverse Densities as a means to discover subgoals in RL.
These densities are closely related the state occupancy distribution (16). In fact, if we imagined
a typical office environment and average (16) over randomly chosen goals (for uniform Px), this
will peak at doorways (see also Figure 4).

Ng, Parr, & Koller (1999) introduced a method based on density estimation for a more efficient
gradient-based policy search. The estimated density is basically the forward propagated α’s in
our inference approach, but used for estimating the policy gradient.

Wiegerinck, van den Broek, & Kappen (2006) proposed an approach for solving multi-agent
problems using path integral methods based on a formulation of the objective function as a par-
tition function. This seems related to our approach since we know that the EM-algorithm can be
interpreted as a minimization of free energy. They do not address optimality w.r.t. discounted
future return. Future research should investigate more into these relations.

Finally, maybe surprisingly, this work had its origin in considering how neural systems could
implement planning. In (Toussaint 2006) we proposed a simple neural architecture to effectively
represent an MDP that realizes anticipation and planning on the basis of neural activation dy-
namics. This approach relies on representing a neural activation field (a value function) on an
explicit, non-distributed state representation. Extending this to distributed (factored) represen-
tations in the line of (Guestrin et al. 2003) seems biologically implausible. However, recent ex-
periments with rats in a maze environment showed evidence for periodically traveling waves of
neural activation in the hippocampus during decision making, which, given the place field map-
ping, correspond to a forward propagation through the spatial topology of the maze (Johnson &
Redish 2006). These neural dynamics are stunningly similar to inference processes. In particu-
lar the special role of time in these processes (the fact that there are traveling waves) allows for
coping with distributed representations in a similar ways as inference on factored DBNs does.

9 Conclusion

We introduced a framework for solving (PO)MDPs by translating the problem of maximizing
expected future return into a problem of likelihood maximization. One ingredient for this ap-
proach is the mixture of finite-time models we introduced in section 2. We have shown that this
approach establishes equivalence for arbitrary reward functions, allows for an efficient inference
procedure, propagating synchronously forward and backward without pre-fixing a finite time
horizon T , and allows for the handling of discounting rewards. We also showed that in the case
of an unstructured MDP the resulting EM-algorithm using exact inference and a greedy M-step
is closely related to standard Policy Iteration.

However, unlike Policy Iteration, the EM-algorithm generalizes to arbitrary DBNs and the
aim of this approach is to transfer the full variety of existing inference techniques to the problem
of solving (PO)MDPs. This refers especially to structured problems, where DBNs allow us to
consider structured representations of the environment (the world state, e.g. factorization or hi-
erarchies) as well as the agent (e.g. hierarchical policies or multiple agents). Inference techniques
like variational approaches, message-passing algorithms, or approximate belief representations
in DBNs can now be used to exploit such structure in (PO)MDPs.
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We exemplified the approach for exact inference on unstructured MDPs, using Gaussian be-
lief state propagation on a non-linear stochastic optimal control problem, and on a more complex
DBN formulation of a POMDP problem. An application to a robotics planning problems is pre-
sented in (Toussaint & Goerick 2007, submitted work) where we use loopy Gaussian BP in a factor
graph representation. The 13D joint angle state of the robot, the 3D end-effector state, and the
binary collision variable constitute the three random variables of the DBN description, while the
robot’s kinematics define their non-linear coupling. Conditioning the model to non-collision and
a final target end-effector state, we can efficiently solve the typical redundant control problem
under collision constraints. A natural extension of this approach to more complex domains is to
use particle representations for multi-modal beliefs. Another interesting issue for future research
is to consider max-product BP (a generalization of Viterbi) in the context of planning.

In the POMDP context there are even more aspects to consider: Can we use inference tech-
niques also to estimate the number of internal states we need to solve a problem (cf. Infinite Hid-
den Markov models (Beal, Ghahramani, & Rasmussen 2002) as a method to learn the number of
hidden states needed to model the data)? Or are there efficient heuristics to add hidden states
in a DBN, e.g., analogous to how new nodes are added to FSCs in the Bounded FSCs approach
(Poupart & Boutilier 2003)?
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A Remarks

(i) The mixture of finite-time MDPs may be compared to a classical interpretation of reward
discounting: Assume the agent has a probability (1 − γ) of dying after each time step. Then the
distribution over his life span is the geometric distribution P (T ) = γT (1 − γ). In our mixture
of finite-time MDPs we treat each possible life-span T separately. From the agent’s perspective,
he knows that he has a finite life span T but he does not know what it is – he lives in a mixture
of possible worlds. Each finite life span is terminated by a single binary reward (say, going to
heaven or hell). The agent’s behavior must reflect his uncertainty about his life span and act by
accounting for the probability that he might die now or later on, i.e., he must “average” over the
mixture of possible worlds he might live in.

(ii) In the original MDP, the rewards at two different time slices, say rt and rt+1, are strongly
correlated. The mixture of finite-time MDPs does not include such correlations because the ob-
servations of reward at T = t and T = t + 1 are treated by separate finite-time MDPs. However,
since the expected future return V π is merely a sum of reward expectations at different time slices
such correlations are irrelevant for solving the MDP and computing optimal policies.

(iii) When the original reward function Rax has values between 0 and 1 we can set the binary
reward probability R̂ax = P (r̂ |x, a) equal to Rax. When we have rewards outside the range [0, 1]
we can linearly rescale them by R̂ax = (Rax −Rmin)/(Rmax −Rmin).

(iv) The non-discounting case γ = 1 leads to a zero time prior P (T ) = 0. We handle such cases
simply by setting P (T ) = 1/C for T < C and P (T ) = 0 for T ≥ C for some very large constant C
(larger than we could possibly propagate forward-backward).

B Pruning computations

Consider a finite state space and assume that we fixed the maximum allowed time T by some
upper limit TM (e.g., by deciding on a cutoff time based on the time posterior computed on the
fly, see below). Then there are potentially large regions of the state space on which we may
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Figure 12: Only the envelopes emanating from the start distribution (Px) and rewards (Rax) con-
tribute to the propagation. They are chopped where they do not overlap with the other envelope
after TM/2 iterations.

prune computations, i.e., states x for which the posterior γtτ (x) = 0 for any t and τ with t + τ ≤
TM . Figure 12 illustrates the idea. Let us consider the α-propagation first (all statements apply
conversely for the β-propagation). For iteration time t we define a set of states

Xα(t) = {x |αt(x) 6= 0 ∧ (t < TM/2 ∨ βTM−t(x) 6= 0)} .

Further, given βτ (x)=0 ⇒ ∀τ ′≤τ :βτ ′(x) = 0, it follows

i ∈ Xα(t) ⇐ αt(x) 6= 0 ∧ βTM−t(x) 6= 0
⇐ ∃τ≤TM−t : αt(x) 6= 0 ∧ βτ (x) 6= 0
⇐⇒ ∃τ≤TM−t : γtτ (x) 6= 0 (43)

Thus, every state that is potentially visited at time t (for which ∃τ :t+τ≤TM
: γtτ (x) 6= 0) is included

in Xα(t). We will exclude all states x 6∈ Xα(t) from the α-propagation procedure and not deliver
their messages. The constraint t < TM/2 concerning the β’s was inserted in the definition of
Xα(t) only because of the feasibility of computing Xα(t) at iteration time t. Initializing Xα(0) =
{x |Px 6=0}, we can compute Xα(t) recursively via

Xα(t) =

{
Xα(t−1) ∪OUT(Xα(t−1)) for t < TM/2[
Xα(t−1) ∪OUT(Xα(t−1))

]
∩ {x |βTM−t(x) 6=0} for t ≥ TM/2 ,

where OUT(Xα(t−1)) is the set of states which have non-zero probability transitions from states
in Xα(t−1). Analogously, the book keeping for states that participate in the β-propagation is

Xβ(0) ={x |Rax 6=0} (44)

Xβ(τ) =

{
Xβ(τ−1) ∪ IN(Xβ(τ−1)) for τ < TM/2[
Xβ(τ−1) ∪ IN(Xβ(τ−1))

]
∩ {x |αTM−τ (x) 6=0} for τ ≥ TM/2 . (45)

For the discount prior, we can use a time cutoff TM for which we expect further contributions
to be insignificant. The choice of this cutoff involves a payoff between computational cost and
accuracy of the E-step. Let T0 be the minimum time for which Lπ

T0
6= 0. It is clear that the cutoff

needs to be greater than T0. In the experiment in section 4.1 we used an increasing schedule for
the cutoff time, TM = (1 + 0.2 k) T0, depending on the iteration k of the EM-algorithm to ensure
that with each iteratin we become more accurate.

C Derivations of the POMDP M-steps

All M-steps are of the same form: maximize Q(θ, θ∗) =
∑

z f(z, θ) log θ∗z subject to some normal-
ization constraints, such that the M-step is θ∗z ∝ f(z, θ). Given Q(θ, θ∗) from (38) and in analogy
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to the M-step in the MDP case, we derive the update (39) for πaby as

Q(θ, θ∗) = 〈terms indep. of π∗〉+
∞∑

T=0

T∑
t=0

∑
aby

(
log π∗aby

)
P (r̂=1, at =a, bt =b, yt =y |T, θ) P (T )

= · · ·+
∑
aby

(
log π∗aby

) ∞∑
T=0

P (T )
[ ∑

x

R̂ax πaby Pyx αT (b, x)

+
T−1∑
t=0

∑
b′x′x

βT−t−1(b′, x′) λb′by Px′ax πaby Pyx αt(b, x)
]

= · · ·+
∑
aby

(
log π∗aby

)
πaby

∑
x

Pyx α̂(b, x)
[
R̂ax +

γ

1− γ

∑
b′x′

β̂(b′, x′) λb′by Px′ax

]
(46)

The updates for λbby and νb follow similarly. The last equality simplified time summations as
follows:

∞∑
T=0

T−1∑
t=0

P (T ) βT−t−1(b′, x′) αt(b, x) =
∞∑

t=0

∞∑
T=t+1

(1− γ) γT βT−t−1(b′, x′) αt(b, x)

= (1− γ)
∞∑

t=0

∞∑
τ=0

γτ γt+1 βτ (b′, x′) αt(b, x) =
γ

1− γ

[ ∞∑
τ=0

P (τ) βτ (b′, x′)
] [ ∞∑

t=0

P (t) αt(b, x)
]

=
γ

1− γ
β̂(b′, x′) α̂(b, x) (47)
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