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Abstract

Existing formulations for optical flow estimation and image segmenta-
tion have used Bayesian Networks and Markov Random Field (MRF)
priors to impose smoothness of segmentation. These approaches typi-
cally focus on estimation in a single time slice based on two consecutive
images. We develop a motion segmentation framework for a continuous
stream of images using inference in a corresponding Dynamic Bayesian
Network (DBN) formulation. It realises a spatio-temporal integration
of optical flow and segmentation information using a transition prior
that incorporates spatial and temporal coherence constraints on the
flow field and segmentation evolution. The main contribution is the
embedding of these particular assumptions into a DBN formulation
and the derivation of a computationally efficient two-filter inference
method based on factored belief propagation (BP) that allows for on-
and offline parameter optimisation. The spatio-temporal coupling im-
plemented in the transition priors ensures smooth flow field and seg-
mentation estimates without using MRFs. The algorithm is tested on
synthetic and real image sequences.

1 Introduction

Optical flow estimation is a fundamental problem in image processing. The anal-
ysis of movement in the image allows one to infer the motion of objects in the
environment as well as the self-motion relative to the environment. As it is gen-
erally the case in information processing problems, the quality of the estimation
can be greatly enhanced when information from different sources is integrated. In
image sequences, an important source of information is prior knowledge about the
structure of optical scenes. One may assume that images are composed of segments
which refer to different physical objects. Each object induces a coherent flow field
in its segment reflecting its 3D motion. An elegant way to integrate structural



segmentation and flow field estimation is to formulate a generative probabilistic
model in terms of Bayesian Networks [13, 3, 11, 10]. These existing approaches
focus on a single time slice flow field coupled to two consecutive images and usually
implement smoothness of segmentation using Markov Random Field (MRF) priors
[4, 3, 5, 9]. This can be applied on continuous image sequences by applying the
technique on each time slice. However, this would neglect an additional source of
information: the temporal (Markovian) coupling of the flow field and segmentation
evolution. Further, when the application requires online motion and segmentation
filtering, the computational cost of MRF inference in each time step may be too
high [11]. Other approaches take the temporal coupling into account but do not
consider the segmentation problem [1, 2, 12].

Our focus is on the temporal coupling of the flow field and segmentation in im-
age sequences, and we avoid using intra-time slice MRF priors but instead achieve
smoothness with a proper spatio-temporal coupling. A crucial aspect is formulat-
ing appropriate transition probabilities for the flow field and segmentation evolu-
tion. We formulate transition probabilities that allow us to propagate information
across time slices but also imply a spatial smoothness of the flow field estimation
and segmentation. Hence, instead of iterating BP (during MRF inference) within
one time slice to impose spatial smoothness, we “unroll” this constraint and en-
code it in the spatio-temporal coupling such that BP along a temporal sequence
yields spatial smoothness after a few time steps. This approach is particularly
well-suited for online applications since the computational cost at each time step
is limited to a small and fixed number of message passings.

After we have formulated the DBN model and the corresponding transition
probabilities in section 2 we describe in section 3 our inference and parameter
learning algorithm. During inference we make several factorisation assumptions
and use a version of the Factored Frontier Algorithm [6]. For parameter training
using a batch or online EM-algorithm we use either a two-filter or a forward filter
approach to compute the flow field and segmentation posteriors. Based on the
computed posteriors we update parameters in an M-step. Section 4 discusses
experimental results and section 5 concludes the paper.

2 Dynamic Bayesian Network Model

We start by specifying a complete data likelihood of a sequence I0:T of T + 1
images. We do this by assuming the generative model for such an image sequence
as given by the DBN in Fig. 1A. Here, It is the grey value image at time slice t
with entries It

x that are the grey values at all pixel locations x ∈ X of the image.
Similarly, V t is a flow field at time slice t defined over the image range with entries
vt

x ∈ W at each pixel location x of the image. Throughout this paper we consider
discrete flow fields (W = Z2). Further, we assume that each image is composed by
a finite number of segments. Each segment has a shape and the discrete labelling
st

x ∈ {1, ..,K} of each pixel specifies which image pixels stem from which of K
possible segments. Since every segment has a typical vector field describing the
optical flow of its appearance, the segment labelling variable St is coupled to the
flow field variable V t.

To define the model precisely we need to specify (i) the observation likelihood
P (It+1 |V t, It) of a pair of images It+1 and It, (ii) the transition probability
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Figure 1: Dynamic Bayesian Network for motion estimation.

P (V t+1 |St+1, V t) of the flow field depending on the segmentation, and (iii) the
transition probability P (St+1 |St) of the segmentation.

To simplify the notation we can introduce an alternative observation variable
Y t = (It+1, It) that subsumes a pair of consecutive images. Since images are
observed, the likelihood P (It) in the term P (It+1 |V t, It) P (It) = P (It+1, It |V t)
is only a constant factor we can neglect. This leads to the DBN shown in Fig. 1B
with observation likelihoods P (It+1 |V t, It) ∝ P (It+1, It |V t) = P (Y t |V t). For
all transition probabilities we assume that they factorise over the image as follows,

P (Y t |V t) =
∏
x

`(Y t | vt
x) , (1)

P (V t+1 |St+1, V t) =
∏
x

P (vt+1
x |St+1, V t) , (2)

P (St+1 |St) =
∏
x

P (st+1
x |St) . (3)

2.1 Observation likelihood

We define the observation likelihood P (Y t |V t) by assuming that the likelihood
`(Y t | vt

x) of a local velocity vt
x should be related to finding the same or similar

image patch It+1
x centred around x at time t+1 that was present at time t but cen-

tred around x−vt
x∆t. In the following, we neglect dimensions and set ∆t = 1. Let

S(x, µ,Σ, ν) be the Student’s t-distribution and N (x, µ,Σ) = limν→∞ S(x, µ,Σ, ν)
be the normal distribution of a variable x with mean µ, covariance matrix Σ and
the degrees of freedom ν. We define

`(Y t | vt
x) = S(It+1

x , It
x−vt

x
,

σ2
I

N (x, x′, %I)
, νI) . (4)

In this notation, the image patches can be regarded vectors and the covariance
matrix is a diagonal with entries σ2

I/N (x, x′, %I) that depend on the position x′ rel-
ative to the centre (i.e., a heteroskedastic variance). In effect, the term N (x, x′, %I)
implements a Gaussian weighting of locality centred around x for the patch It+1

x

and around x−vt
x for the patch It

x−vt
x
. The parameter %I defines the spatial range



of the image patches and σI the grey value variance. The univariate Student’s t-
distribution realises a robust behaviour against large grey-value differences within
image patches, which means the euclidean distance between the two patches is
treated as an outlier if it is too large.

2.2 Flow field transition probability

The definition of the flow field transition probability P (V t+1 |St+1, V t) includes
two factors. First, we assume that the flow field transforms according to itself. Sec-
ond, the segmentation imposes an additional factor on the transition probability
acting similarly to a prior over V t+1 depending on the segmentation.

Let us first discuss the first factor: We assume that the origin of a local flow
vector vt+1

x at position x was a previous flow vector vt
x′ at some corresponding

position x′,

vt+1
x ∼ S(vt+1

x , vt
x′ , σV , νV ) . (5)

So, we assume robust spatio-temporal coherence because evaluations on first deriva-
tive optical flow statistics [7] and on prior distributions that allow to imitate hu-
man speed discrimination tasks [8] provide strong indication that they resemble
heavy tailed distributions. Now, asking what the corresponding position x′ in the
previous image was, we assume that we can infer it from the flow field itself via

x′ ∼ N (x′, x− vt+1
x , %V ) . (6)

Note that here we use vt+1
x to retrieve the previous corresponding point. Combin-

ing both factors and integrating x′ we would get (still neglecting the coupling to
the segmentation)

vt+1
x |V t ∼

∑
x′

N (x′, x− vt+1
x , %V ) S(vt+1

x , vt
x′ , σV , νV ) . (7)

The parameter %V defines the spatial range of a flow-field patch, so we compare
velocity vectors within flow-field patches at different times t and t + 1.

We introduced new parameters %V and σV for the uncertainty in spatial identi-
fication between two images and the transition noise between V t and V t+1, respec-
tively. The robustness against outliers is controlled by νV , with smaller/larger νV

decreasing/increasing the influence of incoherently moving pixels within the ob-
served spatial range %V .

So far we have not discussed the coupling of the segmentation to the flow field
transition. Each segment corresponds to a typical flow pattern qs(V t). On its own
(i.e., within one time slice), a flow pattern qs corresponds to a prior over the flow
field,

qs(V t) =
∏
x

N (vx, Asx + ts, σs) . (8)

This is equivalent to assuming the world is approximately a set of planar objects
such that each of their movements are completely described by an affine parame-
terisation As and ts, with As being a 2× 2 matrix describing any combination of
rotation, divergence and shear, and ts being a 2× 1 translational vector.



The segmentation field St, which contains for every pixel a label st
x ∈ {1, ..,K},

specifies the correspondence of each pixel to each flow pattern. This segmentation
couples to the flow field transition probability as an additional factor. Combining
this with (7) we finally define the flow field transition probability as

P (vt+1
x |St+1, V t) ∝ qst+1

x
(vt+1

x )
∑
x′

N (x′, x− vt+1
x , %V ) S(vt+1

x , vt
x′ , σV , νV ) .

(9)

2.3 Segmentation transition probability

For the transition of the segmentation field itself we assume, following exactly the
same reasoning as previously for vt+1

x |V t in equation (7),

P (st+1
x |St) ∝

∑
x′

N (x′, x− q̄t+1
s,x , %S) Q(st+1

x , st
x′ , νS) , (10)

where q̄t+1
s,x is the mean of qst+1

x
at x, and Q(s, s′, νS) adds uniform noise on a

discrete random variable,

Q(s, s′, νS) =
{

1− νS(K − 1) for s’=s
νS otherwise . (11)

That is, we assume that the segmentation field transforms according to the flow
field priors qs as specified by the segmentation itself; when a pixel is labelled s we
expect that it transforms according to the flow field q̄s.

3 Factored frontier inference

The finite set of flow patterns qs is a basic mechanism to introduce global (w.r.t. the
image range, not the time horizon) structure to the prior over flow fields, similar
to a mixture of factored models. As a consequence, the exact belief over the
flow field (e.g., during filtering) and the segmentation will not decouple. Dealing
with a full joint distribution over the flow field V t and the segmentation St is
infeasible. Hence, we will use an approximate inference technique based on factored
belief propagation, which can be regarded as a factored frontier algorithm [6].
The factored observation likelihoods and transition probabilities we introduced
ensure that the forward propagated messages will remain factored as well. We will
describe the algorithm here in the jargon of loopy BP. Below we briefly restate the
factored frontier interpretation of the algorithm.

We start by assuming the belief over V t and St at time t to be factored,

P (V t, St |Y 1:t) = P (V t |Y 1:t) P (St |Y 1:t) =: α(V t) α(St) =
∏
x

α(vt
x) α(st

x) .

(12)

We first propagate a message forward from St to St+1, resulting in

α̃(St+1) =
∏
x

α̃(st+1
x ) , α̃(st+1

x ) ∝ µs→s′(st+1
x ) (13)



µs→s′(st+1
x ) ∝

∑
St∈{1,..,K}X

P (st+1
x |St) α(St)

=
∑
St

∑
x′

N (x′, x− q̄t+1
s,x , %S) Q(st+1

x , st
x′ , νS)

∏
z

α(st
z) (14)

=
∑
x′

N (x′, x− q̄t+1
s,x , %S)

∑
st

x′

Q(st+1
x , st

x′ , νS) α(st
x′)

∑
St\st

x′

∏
z 6=x′

α(st
z)︸ ︷︷ ︸

=1

.

Note that the summation
∑

St∈{1,..,K}X is summing over all possible segmentation
fields (X is the pixel range), i.e. it represents |X| summations

∑
st
1

∑
st
2

∑
st
3
· · ·

over each local segmentation label. We separated these into a summation
∑

st
x′

over the label at x′ and a summation
∑

St\st
x′

over all other labels at x 6= x′.
Hence we can use

∑
St\st

x′

∏
z 6=x′ α(st

z) =
∏

z 6=x′
∑

st
z
α(st

z) = 1.

Next we propagate forward from V t, St+1, and Y t+1 to V t+1 resulting in

α(V t+1) =
∏
x

α(vt+1
x ) , α(vt+1

x ) ∝ `(Y t+1 | vt+1
x ) µv→v′(vt+1

x ) µs→v(vt+1
x ) ,

µs→v(vt+1
x ) ∝

∑
st+1

x

qst+1
x

(vt+1
x ) α̃(st+1

x ) , (15)

µv→v′(vt+1
x ) ∝

∑
V t∈W X

∑
x′

N (x′, x− vt+1
x , %V ) S(vt+1

x , vt
x′ , σV , νV )

∏
z

α(vt
z)

=
∑
x′

N (x′, x− vt+1
x , %V )

∑
vt

x′

S(vt+1
x , vt

x′ , σV , νV ) α(vt
x′) , (16)

analogous to (14). Finally we pass back a message from V t+1 to St+1,

α(St+1) =
∏
x

α(st+1
x ) , α(st+1

x ) ∝ α̃(st+1
x ) µv→s(st

x) (17)

µv→s(st
x) ∝

∑
vt+1

x

qst+1
x

(vt+1
x )

α(vt+1
x )

µs→v(vt+1
x )

∝
∑
vt+1

x

qst+1
x

(vt+1
x ) `(Y t+1 | vt+1

x ) µv→v′(vt+1
x ) . (18)

This inference procedure can be interpreted as a Factor Frontier Algorithm
(FFA) as follows. We start with a factored frontier belief (12) over V t and St.
The FFA first adds the node St+1 to formulate the joint P (V t, St, St+1). For
this joint the marginals over V t and St+1 are computed and these define the
new factored frontier. In this step it turns out that the marginal over V t re-
mains unchanged whereas the marginal over St+1 is our α̃(St+1) we computed
in equation (13). To the new frontier, the node V t+1 is added to formulate
the joint over P (V t, St+1, V t+1) (including the new observation likelihood factor
P (Y t+1 |V t+1)). For this joint the marginals over St+1 and V t+1 are computed
to yield the new factored frontier. It turns out that these marginals are α(St+1)
and α(V t+1) as we computed them in (17) and (15).



3.1 Two-filter inference

If we have access to a batch of data (or a recent window of data) we can compute
smoothed posteriors as a basis for an EM-algorithm and train the free parameters.
In our two-filter approach we derive the backward filter as a mirrored version of
the forward filter, using

P (vt
x |St, V t+1) ∝ qst

x
(vt

x)
∑
x′

N (x′, x + vt
x, %V ) S(vt

x, vt+1
x′ , σV , νV ) (19)

P (st
x |St+1) ∝

∑
x′

N (x′, x + q̄t
s,x, %S) Q(st

x, st+1
x′ , νS) . (20)

instead of (9) and (10). These equations are motivated in exactly the same way
as we motivated (7): e.g., we assume that the vt

x ∼ S(vt
x, vt+1

x′ , σV , νV ) for a
corresponding position x′ in the subsequent image, and that x′ ∼ N (x′, x−vt

x, %V )
is itself defined by vt

x. However, note that using this symmetry of argumentation
is actually an approximation to our model because applying Bayes rule on (9) or
(10) would lead to a different, non-factored P (V t |St, V t+1). The backward filter
equations are exact mirrors of the forward equations. To derive the smoothed
posterior we need to combine the forward and backward filters. In the two-filter
approach this reads

γ(vt
x) := P (vt

x |Y 1:T ) =
P (Y t+1:T | vt

x) P (vt
x |Y 1:t)

P (Y 1:T )

=
P (vt

x |Y t+1:T )P (Y t+1:T )P (vt
x |Y 1:t)

P (vt
x)P (Y 1:T )

∝ α(vt
x) β(vt

x)
1

P (vt
x)

(21)

with P (Y t+1:T ) and P (Y 1:T ) being constant. If both the forward and backward
filters are initialised with α(v0

x) = β(vT
x ) = P (vx) we can identify the normalisa-

tion P (vt
x) with the prior P (vx). The same holds for the smoothed segmentation

estimate γ(st
x).

3.2 Parameter adaptation

This paper focuses on adapting the parameters that define each segment. These
are the 6 parameters As and ts and the variance σs associated with each of the
K segment models qs. Following the EM-algorithm we use inference on an im-
age sequence to derive posteriors γ(vt

x) and γ(st
x) over the latent variables V 1:T

and S1:T . The exact M-step would then compute parameters that maximise the
expected data log-likelihood, expectations taken by integrating over all latent vari-
ables. However, given the high-dimensionality of our latent variables a full integra-
tion is computationally too expensive. Thus, we use approximate M-steps based
on the MAP estimates of the latent variables.

More precisely, the estimation of As and ts are based on the MAP flow field
estimates v̂t

x = MAP (γ(vt
x)). Since qs is assumed to be Gaussian, parameter esti-

mates can be found by weighted linear regression of the MAP flow field. Further,
let wt

s,x = 1 if the pixel x at time t corresponds most likely to segment s, i.e. iff
ŝt

x = MAP (γ(st
x)) = s, and zero otherwise. Then we update the variance σs as

σs =

∑
x,t γ(v̂t

x) wt
s,x (v̂t

x − qt
s,x)2∑

x,t γ(v̂t
x) wt

s,x

. (22)
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Figure 2: Rotating disc example.

4 Examples

We first test the algorithm on a scene composed of a rotating disc on a rotating
background. Fig. 2A shows an image with a circular random pattern in the centre
of the image rotating with constant angular velocity of ω = −π/30∆t and a
random background pattern rotating with ω = π/60∆t. The sequence contains 5
images. Fig. 2B displays the MAP flow field after 5 EM iterations using two-filter
inference on the sequence batch. The pair of Figures 2C&D shows the mean of
the random initialisation of qs for both segments, while the pair of Figures 2E&F
displays qs for both segments after the 5 EM iterations. The two flow patterns qs

nicely specialised to model either the left or right rotating fields (the right rotation
with double velocity). Finally, 2G displays the initial random segmentation of the
image while 2H shows the final MAP segmentation after 5 EM iterations, which
is close to the best possible pixel-based accuracy.

Next we tested the algorithm on the Flower Garden sequence. Fig. 3A displays
the 15th image of the original sequence. In a first experiment we allowed for 4
different segments (K = 4) and initialised all (As, ts) randomly and σs large. We
first used only 2 EM-iterations on the whole sequence to train the parameters.
Fig. 3B shows the result in terms of the MAP segmentation. The σs’s became
smaller and two flow field segments are dominating, which correspond to the tree
and the background. Then, after 8 iterations of the EM-algorithm, the σs’s further
decreased and three segments are detected (Fig. 3C), which correspond to the tree,
the flower garden and back branches, and the house and background. Note the
smoothness of segmentation achieved based on the spatio-temporal coupling. Fig.
3D also displays the probabilistic segmentation: The forward filtered belief α(St)
(in the 8th EM iteration) for the four different segments s = 1, .., 4 are displayed.
Compared to the MAP segmentation the probabilistic segmentation is smoother
and captures more detailed information.

The last experiment tests a pure online segmentation using only forward filter-
ing and an online EM which adapts the parameters at each time step. This targets
towards real-time segmentation that does not rely on batch processing. Since in
the flower garden sequence the local flow field measurement is rather precise we
pre-specified a low variance σs = 0.25 for all s. We allowed for 3 segments (K = 3)
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Figure 3: Flower Garden test using two-filter inference.

t = 1 t = 2 t = 3 t = 4 t = 10 t = 20 t = 29

Figure 4: Flower Garden test using an online forward filter and learning

and initialised one of them to zero As = 0, ts = 0 (a prior that there are regions
of low velocity) and the other two randomly. Fig. 4 displays the MAP segmenta-
tion for the online EM-filter after t = 1, 2, 3, 4, 10, 20, 29 time steps. In the first
iteration the segmentation already distinguishes between the tree stem, the flower
garden and branches, and the house and background. Initially this segmentation
is rather noisy. During the online EM filter the segmentation becomes refined and
also spatially more smooth due to the spatio-temporal priors that are build up
during filtering.

5 Conclusion

Our approach focuses on exploiting spatio-temporal coherence in the flow field and
segmentation evolution by formulating a Dynamic Bayesian Network framework
as a basis for online filtering and inference over an image sequence. The core
ingredients are the particular assumptions implied by our transition priors of the
flow field (9) and the segmentation (10), and the efficient inference technique
based on propagating factored beliefs over the flow field and segmentation forward
and backward. Further, using the Student’s t-distributions (4, 7) increases the
robustness against outliers.

Both experiments have shown how the algorithm can extract a smooth seg-
mentation of a sequence of images starting with a random initialisation of the
segments’ flow field and variance parameters. The smoothness is a result of the
assumed transition prior rather than an additional MRF prior. This reduces the
computational costs per time step considerably and is particularly interesting in
view of online filtering problems as demonstrated by the last example. Here, an
online parameter adaptation (online EM) can be based only on forward propagated
beliefs with rather small computational cost per time step.

The second example also demonstrated the interesting effect of adapting the



variance associated to each segment. Large initialised σS ’s have the effect that all
segments qs try to learn similar global flow patterns. The resulting flat segmen-
tation posterior has only minor influence on the flow field estimation. During the
EM the σS ’s decrease (to increase the overall data likelihood), the segments start
to specialise on certain spatial regions and the segmentation becomes more and
more detailed.
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