
Optimization of sequential attractor-based movement for compact
behaviour generation

Marc Toussaint, Michael Gienger, and Christian Goerick

Abstract— In this paper, we propose a novel method to
generate optimal robot motion based on a sequence of
attractor dynamics in task space. This is motivated by the
biological evidence that movements in the motor cortex of
animals are encoded in a similar fashion [1], [2] – and by the
need for compact movement representations on which efficient
optimization can be performed. We represent the motion as
a sequence of attractor points acting in the task space of
the motion. Based on this compact and robust representa-
tion, we present a scheme to generate optimal movements.
Unlike traditional optimization techniques, this optimization
is performed on the low-dimensional representation of the
attractor points and includes the underlying control loop itself
as subject to optimization. We incorporate optimality criteria
such as e.g. the smoothness of the motion, collision distance
measures, or joint limit avoidance. The optimization problem is
solved efficiently employing the analytic equations of the overall
system. Due to the fast convergence, the method is suited for
dynamic environments, including the interaction with humans.
We will present the details of the optimization scheme, and give
a description of the chosen optimization criteria. Simulation
and experimental results on the humanoid robot ASIMO will
underline the potential of the proposed approach.

I. INTRODUCTION

In real world environments movements of robotic systems
have to fulfill many constraints such as collision avoidance,
joint limit avoidance, task constraints, and other optimality
criteria. When interacting with dynamic environments (e.g.,
a human user) the movement preparation process should be
as short as possible. One approach to circumvent expensive
trajectory planning in such dynamic environments is to use
reactive feed-forward controllers and include additional po-
tential functions to implement collision or joint limit avoid-
ance. However, the resulting movement of such controllers is
not optimal w.r.t. some global cost function. Further, reactive
controllers can easily get trapped in deadlocks, it is difficult
to avoid the limits that are imposed by the joint ranges and to
deal with collisions. Many relevant tasks can only be solved
when integrating some planning mechanism in the movement
generation procedure. A key to efficient movement planning
and optimization is an appropriate movement representation.

A. Trajectory planning and optimization

Standard trajectory planning or optimization approaches
can solve many problems. A direct representation of the

Marc Toussaint is with the Machine Learning group at Technical Uni-
versity Berlin, Franklinstr. 28/29, 10587 Berlin, Germany; Michael Gienger
and Christian Goerick are with the Honda Research Institute Europe, Carl-
Legien-Strasse 30, 63073 Offenbach/Main, Germany.
mtoussai@cs.tu-berlin.de
michael.gienger@honda-ri.de
christian.goerick@honda-ri.de

trajectory comprising the full robot state for each time slice
bears a very high dimensional problem. Hence, existing re-
search has focused, e.g., on using spline-encoding as a more
compact representation for optimization. This is particularly
the case in the field of industrial robot trajectory optimiza-
tion. Examples for such systems utilize cost functions that
are formulated in terms of dynamics [3], collision [4] or
minimum jerk [5]. The splines are usually not formulated
in the task space and the controller itself is left out of
the optimization procedure: the tracking of the trajectories
is realized with a different controller (see points (1) and
(2) below). Zhang and Knoll [6] propose a representation
based on subgoals. B-splines on joint level are optimized
between these subgoals in order to generate a collision-free
point-to-point motion. Nakamura and Hanafusa [7] propose
an optimization scheme in which the end effector tracks a
given path, while parameters for the redundant nullspace
movement are optimized. The optimization problem is for-
mulated as a 2 point boundary value problem. Other than
in the approach presented in this paper, the end effector
movement is pre-defined. General techniques like RRT [8],
or randomized road maps [9], have been shown to solve
difficult planning problems like the alpha puzzle, generating
a complex balanced reaching trajectory for a humanoid robot,
or plan footstep trajectories. These techniques consider a
direct representation of the trajectory and focus on finding
a feasible solution rather than optimizing the trajectory
w.r.t. additional criteria (like minimal joint space length or
maximal distance to joint limits).

When dealing with robots with a large number of degrees
of freedom and low-level control of the order of a few
milliseconds, a direct representation of the trajectory in
this resolution is inefficient for optimization. However, also
more compact representations like splines do not address the
following issues: (1) Once an optimal trajectory was com-
puted a low-level controller must be designed to follow this
trajectory. This will inevitably lead to a deviation between
the planned and executed movement, which has however not
been considered as a part of the optimization problem. The
alternative is to optimize a cost function which evaluates the
trajectory that a given low-level controller actually generates
when trying to follow the targets, rather than a cost function
evaluating the target trajectory itself. (2) Many tasks can
be described in a lower-dimensional task space (endeffector
space). Performing optimization within this low-dimensional
space is another opportunity to make the representation
significantly more compact, especially for high-dimensional
robotic systems like humanoids. We will propose to perform



optimization within this lower-dimensional space, which
previous approaches have not yet addressed.

B. Motor primitives

An alternative view on efficient movement representation
is motivated from previous work on motor primitives in
animals [1], [2]. Inspired by these biological findings several
researchers have adopted the concept of motor primitives
to the realm of robotic movement generation. For instance,
Amit & Mataric [10] propose a model in which a reactive
controller is learnt. Its output is the attractor parameter of
an underlying motor primitive. Williams et al. [11] analyze
human handwriting data for motor primitives using a factored
Hidden Markov Model to represent multiple concurrent, but
non-reactive motor primitives. Ijspeert & Schaal et al. [12],
[13], [14], [15], [16] focus on non-linear attractors and
learning the non-linearities, e.g., in order to imitate observed
movements. These approaches optimize the parameters of
a single attractor system, e.g., such that this single motor
primitive imitates as best as possible a teacher’s movement.
Data generated from exploratory trials is used to train the
attractor dynamics. General optimization under redundancy
is not considered.

C. Series of attractor dynamics

In this paper we consider sequences of attractors in task
space as a compact movement representation. We select this
representation, since it is closely related to the biological
concept of motor primitives, and yields further advantages
like robustness against perturbations and dynamical environ-
ments [12]. Furthermore, attractor points only represent an
attracting point, whereas for splines, both initial and final
conditions have to be defined. This makes them particularly
suited in terms of their reuseability. Our approach may be
viewed as a combination of classical optimization approaches
with the idea of motor primitives which (1) optimizes a
sequence of attractors rather than a single attractor, (2)
bases the optimization on analytic robot kinematics rather
than exploration, and (3) derives an optimization scheme
which accounts for the redundant inverse kinematics used
in the control architecture and thereby allows us to define
arbitrary task spaces as a more compact representation of the
movement. Unlike with spline optimization this representa-
tion is equivalently used during optimization and movement
execution, i.e., the true movement generation process (the
control attractor) is considered as part of the representation
on which the optimization operates.

The outline of the paper is as follows. We first define the
movement generation process based on a series of control
attractors in section II. Based on this we derive in section III
the gradient of a global cost function w.r.t. arbitrary parame-
ters of these attractor. In this paper we focus on optimizing
the location of attractors. Section IV will define precisely
the global cost function we optimize, and section V explains
some implementation issues. Finally, in section VI we apply
our technique to several robotic movement problems under
collision and joint limit avoidance constraints.

II. MOVEMENT REPRESENTATION WITH A SEQUENCE OF
TASK SPACE ATTRACTORS

We first describe the movement generation process given
a sequence of control points x∗1:K , with x∗k ∈ Rm. This
is based on a previously presented whole body motion
architecture [17].

Let qt ∈ Rn be the robot’s joint configuration state. For
brevity we call the joint configuration state space the q-space.
We assume we have a task space definition as given by a
kinematic mapping φ : Rn → Rm. For instance, φ(qt) may
be the humanoid robot’s left hand position (for m = 3). In
our experiments we will consider also task spaces comprising
the right hand’s position and hand orientations.

If the duration of the total trajectory is T , each control
point in the sequence x∗1:K is active for a time interval
of length T/K. During this interval, the adjoining control
points x∗k and x∗k+1, with k = btK/T c, define some attractor
dynamics in task space with the attractor point x∗k+1. In
general, any kind of attractor dynamics is admissible. In our
implementation we use a non-oscillatory 2nd order dynamics
superposed with a continuous shift. Details are given in
appendix A.

The attractor dynamics generate a task space trajectory
xt ∈ Rm. The current task space point xt is translated to
a joint control command via redundant inverse kinematic
control,

qt+1= qt + J#
t (xt+1 − φ(qt))− α(I−J#

t Jt) W−1(∂qHt)T .
(1)

Here, Jt = ∂qφ(qt) is the task space Jacobian at the joint
configuration qt, and Ht is a potential function over the q-
space. This inverse kinematic control realizes a step in q-
space that (up to first order approximation) results in a step
(xt+1−φ(qt)) in task space and additionally adds movement
in the so-called nullspace following the gradient of Ht. We
use α = 1/∆t as the weighting of the nullspace movement,
where ∆t is the real time span between to steps t and t+1.

The generalized pseudo-inverse J# of a Matrix J is
defined as

J# = W−1JT (JW−1JT )−1 , (2)

and depends on a q-space metric W . In appendix B we
derive the derivative ∂qJ

# of the generalized pseudo-inverse
which we need during the optimization procedure.

III. EFFICIENT GRADIENT COMPUTATION

Since we want to find optimal solutions within only a few
seconds – a time frame within which a fluent interaction with
humans is possible – the key is a very efficient gradient-
based optimization technique on the compact representation.
In this section we derive an algorithm for the exact gradient
computation of the global cost function with complexity
O(T ). This primarily involves the propagation of gradient
through the dependencies similar to backprop in neural
networks.

The movement generation process can be summarized
by equations (28), (29), and (1). During online execution,



all these equations are iterated forwardly. To derive analytic
gradients, the whole movement generation process can be
captured in the diagram at the top of table I as a net-
work of functional (i.e., deterministic) dependencies between
variables. This is similar to a Bayesian network, but based
on deterministic rather than probabilistic dependencies. The
diagram tells us how to compute global gradients since the
chain rule implies that for any global functional C the total
derivative w.r.t. some arbitrary variable z is generally

dC

dz
=

∑
children yi of z

∂yi

∂z

dC

dyi
. (3)

For example, part c) in Table I lists all the chain rules for our
particular network. This implies that we can backpropagate
gradients through the whole control architecture using the
local partial derivatives in order to derive analytic gradients
for the control points x∗1:K .

Table I summarizes all equations necessary to specify the
controller and for the gradient computation. We assumed that
the cost C is a function of the resulting robot trajectory
q0:T , which we introduce in detail in section IV. The chain
rules following the network dependencies and equation (3)
are summarized in part c) of Table I. These involve partial
derivatives of the equations (A.1-A.5), which are summarized
in part d) of the Table.

Based on this, the analytic gradient of the global cost
function w.r.t. the control points x∗1:K can be computed with
linear time complexity as follows.

In the forward propagation step we start with a given set of
current control points x∗1:K , then compute the ramp trajectory
r0:T for these points, then compute the task trajectory x0:T ,
then the q0:T -trajectory, and finally the global cost C. All of
this is done internally (without executing the movement on
the robot).

In the backward propagation step we propagate the cost
function gradients backward through the network using the
chain rules. This involves first computing all the gradients
dC/dqt, then dC/dxt, then dC/drt, and finally dC/dx∗1:K .
Since all computations in the forward and backward propa-
gation are local, the overall complexity is O(T ).

IV. OPTIMALITY CRITERIA

We consider a cost function of the general form

C =
T∑

t=0

g(qt) +
T−1∑
t=0

h(qt, qt+1) . (18)

Here, g is some function that subsumes cost criteria in the
q-space such as collision or joint limit avoidance, and h is a
function that subsumes costs for transitions in q-space, e.g.,
for penalizing long movements. We describe these terms in
detail in the following.

In our applications we will define the cost term h to
include

1) costs c1 =
∑T

t=1(qt − qt−1)T W (qt − qt−1) for the
global length of the trajectory in q-space,

r0 r1 r2

x0

r3 r4 r6r5

C

q0 q1 q2 q3 q4 q5 q6

x0 x1 x2 x3 x4 x5 x6

T = 6, K = 2

x∗1 x∗2

a) cost function:

C =
TX

t=0

g(qt) +

T−1X
t=0

h(qt, qt+1) , (A.1)

b) movement generation:

qt+1 = qt + J#
t (xt+1 − φ(qt))− α (I−J#

t Jt) W−1 (∂qHt)
T

(A.2)
xt+1 = xt + π(xt, xt−1, rt+1) (A.3)
π(xt, xt−1, rt+1) = a(rt+1 − xt) + b(xt − xt−1) (A.4)

rt = (1− τ)x∗k + τx∗k+1 , k = btK/T c , τ =
t− kT/K

T/K
(A.5)

c) chain rules following (3):
dC

dqt
=

∂C

∂qt
+

∂qt+1

∂qt

dC

dqt+1
(A.6)

dC

dxt
=

∂qt

∂xt

∂C

∂qt
+

∂xt+1

∂xt

dC

dxt+1
+

∂xt+2

∂xt

dC

dxt+2
(A.7)

dC

drt
=

∂xt

∂rt

dC

dxt
(A.8)

dC

dx∗l
=

X
t

∂rt

∂x∗l

dC

drt
(A.9)

d) partial derivatives:
∂C

∂qt
= g′(qt) + h′1(qt, qt+1) + h′2(qt−1, qt) (A.10)

∂qt+1

∂qt
= I − J#

t Jt + (∂qJ#
t )(xt+1 − φ(qt))

− α (I−J#
t Jt) W−1 (∂2

q Ht)
T + α ∂q(J#

t Jt) W−1 (∂qHt)
T

(A.11)
∂qt

∂xt
= J#

t−1 (A.12)

∂xt+1

∂xt
= 1 + π′1(xt, xt−1, rt+1) (A.13)

∂xt+2

∂xt
= π′2(xt+1, xt, rt+2) (A.14)

π′1(xt, xt−1, rt+1) = −a + b , π′2(xt, xt−1, rt+1) = −b
(A.15)

∂xt

∂rt
= π′3(xt−1, xt−2, rt) (A.16)

∂rt

∂x∗l
= (1−τ)δl=k + τδl=k+1 , τ and k depend on t as above

(A.17)

TABLE I
FUNCTIONAL NETWORK OF THE CONTROL ARCHITECTURE.



2) costs c2 = |φ̃(qT ) − φ̃(qT−1)|2 for the endeffector
velocity at the end of the trajectory.

Further, we will define the cost term g to include

3) costs c3 = |φ̃(qT ) − x̂|2 for the offset of the final
endeffector state to a target x̂,

4) costs c4 =
∑T

t=0 Q(qt) for collisions and proximities
between collidable objects throughout the trajectory,

5) costs c5 =
∑T

t=0 H(qt) for joint limit proximities.

Note that again W plays the role of a metric in q-space
in the first cost term. Both, W and H , play a double
(but consistent) role as part of the low-level controller (1)
and as part of the global cost function. The “endeffector
kinematics” φ̃ that enters the cost terms 2 and 3 may by only
a subspace of the task space defined by φ. This is clarified
for each experiment. The global cost function C is the linear
combination of these terms, C =

∑5
i=1 ci. In the following

we will more precisely define the collision cost function Q(q)
and the joint limit potential H(q).

A. Collision avoidance

To obtain the collision cost and gradient, we loop through
all collision-relevant pairs of bodies and sum their cost
contributions. Each body is represented as a rigid primitive
shape. Currently we use capped cylinders and sphere swept
rectangles [18].

b

b

Fig. 1. Collision description

1) Collision cost: The cost associated with a pair of
bodies is composed of two terms, one related to the distance
between the closest points dp = |p1 − p2| and one related
to the distance between their centers dc = |b1 − b2|, see
Figure 1.

To compute the closest point cost gp, we set up three
zones that are defined by the closest point distance dp =
|p1 − p2| between two collision primitives. Figure 2 shows
the linear, the parabolic and the zero cost zones, respectively.
More formally, the closest point cost is

gp =


sdB(dB − 2dp) for dp < 0
s(dp − dB)2 for 0 ≤ dp ≤ dB

0 for dp > dB

(19)

with s defining the inclination of the gradient when penetrat-
ing. Similarly, the center point cost gc shall only be active
if the link distance has dropped below the distance dB . The
cost function will continuously be scaled with a factor being

dB
dp

gp

Fig. 2. Zones for the collision cost function determination.

zero at dp = dB and one if dp = 0.

gc =


e−dc for dp < 0(
1− dp

dB

)
e−dc for 0 ≤ dp ≤ dB

0 for dp > dB

(20)

The overall collision cost function is

Q(q) =
pairs∑

i

gp(dp,i) + gc(dp,i, dc,i) (21)

2) Distance gradient: Let us derive the gradient of the
distance dp = |p1 − p2| w.r.t. the joint configuration q.
Differentiating the distance dp =

√
(p2 − p1)T (p2 − p1)

with respect to the closest points p1 and p2 leads to
∂dp

∂p1
= − 1

dp
(p2 − p1)T ∂dp

∂p2
=

1
dp

(p2 − p1)T . (22)

If the collidable object is fixed to the environment, the partial
derivative of the points with respect to the state is a 3 × n
zero matrix. If it corresponds to a body part or is attached to
the robot’s body (e.g. held in the hand), we use the closest
point Jacobians ∂p1

∂q = Jp1 and ∂p2
∂q = Jp2 . With (22) we get

∂dp

∂q
=

1
d
(p2 − p1)T (Jp2 − Jp1) . (23)

Analogously we can compute the gradient of dc = |b1− b2|.
3) Closest point gradient: Differentiating eq. (19) with

respect to the distance dp, and inserting the distance gradient
(23) leads to„

∂gp

∂q

«T

=

8><>:
−2sdB(Jp2 − Jp1)

T (p2 − p1) for dp < 0

0 for dp > dB

2s(dp − dB)(Jp2 − Jp1)
T (p2 − p1) else

(24)

4) Center point gradient: Since the cost function gc

depends on the distance of the body centers dc and on the
closest point distance dp, we need to apply the chain rule to
get the gradient:

∂gc

∂q
=

∂gc

∂dc

∂dc

∂q
+

∂gc

∂dp

∂dp

∂q
(25)

where
∂gc

∂dc
= −dB − dp

dB
e−dc

∂gc

∂dp
= − 1

dB
e−dc (26)

and the respective distance gradient is given in eq. (23).



B. Joint limit avoidance

The joint limit avoidance cost function penalizes the
weighted squared sum of the deviations of the joint angles
q from their center position q0.

H(q) =
1
2

dof∑
i=1

wi(qi − q0,i)2 (27)

The weighting factors wi are chosen such that the contribu-
tions of each individual joint is normalized with respect to
its joint range.

V. IMPLEMENTATION DECISIONS

We tested Conjugate Gradient, Levenberg-Marquard, and
Rprop [19] optimization algorithms. Rprop turned out to be
faster than Conjugate Gradient and Levenberg-Marquard,
and therefore was used in the experiments.

Further, the control points x∗1:K are initialized as linear in-
terpolation between the start position and the target position.
In all our experiments, this initialization produces colliding
movements.

The software is implemented in C/C++. All optimizations
were carried out on a standard PC (Intel P4, 2.0GHz). After
convergence, the control points were commanded to the
humanoid robot ASIMO as a time-synchronized sequence.
The real-time onboard controller generates the task-level
trajectory with the identical attractor-based approach as
utilized in the optimization. The Inverse Kinematics was
implemented according to eq. (1), so that the resulting robot
motion should be identical to the motion resulting from
the optimization. Minor differences are due to the following
points:

• To obtain faster convergence, the sampling time interval
within the optimization procedure is selected somewhat
larger than the sampling time on the real-time controller.
The resulting discretization errors were negligible.

• The robot’s upper body lateral position has been as-
sumed to be constant, while the real robot uses these
degrees of freedom to compensate momentum effects.

• The timing of the control point commands is not
absolutely accurate, since they are transmitted over a
network.

VI. EXPERIMENTS

We considered three scenarios in the experiments. All of
these involve the generation of movement where a reactive
feed-forward controller would fail. Video recordings of the
experiments accompany this paper. For all experiments we
analyze the optimization performance by monitoring the cost
decay during optimization. Figures 4, 6, and 8 display the
cost decays for all weighted cost contributions and the total
cost (which is the sum of all contributions). For further
evaluation of the technique we analyze the time to find a first
feasible (i.e., collision free and low proximity cost) solution,
and the time to final convergence of the optimization w.r.t.
the total cost C, see Figure 10. Table II summarizes the
parameter settings used in the experiments.

Settings for experiments A B C
K 8 8 4

steps 40 80 80
T 4sec 3sec 3sec

Collision avoidance cost 0.1 0.1 0.2
q-space path length cost 100 100 100

Joint limit avoidance cost 0.1 0.1 0.1
Target reaching cost 1000 1000 1000
Target velocity cost 10000 10000 10000

TABLE II
PARAMETER SETTINGS

A. Bimanual coordination

Fig. 3. Scenario of experiment A.

Fig. 4. Optimization performance in experiment A.

In the first experiment the robot holds a “bottle” in the
left hand and a “box” (or tablet with very high rim) in the
right hand, see Figure 3. The initial position of the bottle is
low and of the box is high. The target is to place the bottle
into the box, which involves moving both, the bottle and the
box, in a coordinated way without collision. The solution
found by the robot is to move the bottle in an arc upwards
and into the box while at the same time moving the box
with the right hand downwards below the bottle. A snapshot
sequence of the motion is given in Figure 9, middle row,
and a recording can be found in the accompanying video.
The video also includes real time screen captures of the
optimization procedure. The green points in the simulation
environment illustrate the control points (only positions, not
orientations). Initially they form a linear interpolation in



target space from the start position to the target. The way
they move reflects their adaptation during the optimization
procedure.

The task space φ (= φ̃) in this experiment was defined 10-
dimensional, comprising the positions of the left and right
hand and the 2D polar orientation of the hand aligned axis
for both hands.

Figure 4 displays the cost decay during optimization. From
table 10 we see that a first solution is found already after 0.52
seconds.

B. Reaching over a wall

In the second experiment the robot has to reach for a
balloon on a table hidden behind a front wall, see Figure 5.
The initial position of the robot is such that the hands are low
beside the body. In order to reach the balloon the robot must
lift the arms above the wall and lower them again behind
it, avoiding collision with the wall. A snapshot sequence of
the motion is given in the bottom row of Figure 9, and a
recording is found in the accompanying video.

Fig. 5. Scenario of experiment B.

Fig. 6. Optimization performance in experiment B.

The task space φ was defined to be 10D as above.
However, the target costs were only assigned to the final hand
positions, not their orientations. That is, φ̃ only comprises
the 6D space of both hand positions. Figure 6 displays the
cost decay during optimization and table 10 the performance
times.

C. Reaching through a hole

In the third experiment we build a wall with a hole in
it. The hole was low such that the robot has to lower its
upper body in order to reach through the hole. The task
was to reach a balloon placed behind the hole with the left
hand, see Figure 7. A snapshot sequence of the motion is
given in the top row of Figure 9. Interestingly, in the early
phase of the movement the role of the control points is to
impose attractors on the left hand that let the robot lower
its body. Only the last two control points induce the forward
movement through the hole.

Fig. 7. Scenario of experiment C.

Fig. 8. Optimization performance in experiment C.

The task space φ was defined as 5D, comprising the
position and orientation of the left hand. Including the orien-
tation in the task space allows the control points to impose
attractors to align the hand relative to the hole. However,
the final hand orientation was not included in the target cost
term (φ̃ was 3D comprising only the hand position). Figure
8 displays the cost decay during optimization and table 10
the performance times.

VII. CONCLUSION

We introduced a representation of movements based on
a sequence of attractor dynamics providing a compact and
efficient representation for movement optimization and ex-
ecution. This approach is inspired by biological findings in
the field of motor primitives. The attractor dynamics act on
the low-dimensional task space and are defined by a series



Fig. 9. Top row: Reaching through a hole (C). Middle row: Putting a bottle into a box (A). Bottom row: Reaching over a wall (B).

experiment time to feasi-
ble solution

time to con-
vergence

A 0.52 sec 1.47 sec
B 1.04 sec 6.73 sec
C 2.04 sec 5.07 sec

Fig. 10. Times for finding the first feasible (i.e., collision free and low
proximity cost) solution and for final convergence (±.1) of the optimization
w.r.t. the total cost C.

of control points in task space. Based on this description, we
developed an optimization scheme that

• allows us to combine multiple criteria like collision
avoidance, joint limit avoidance, trajectory length, and
goal constraints in a global cost function,

• allows us to compose the task vector in a very flexible
way, ranging from single handed tasks to coordinated
bi-manual movements,

• finds feasible solutions within the range of 0.5 to 2 sec-
onds – which is below the critical “patience” threshold
for the interaction with humans, and

• incorporates the reactive control law into the optimiza-
tion scheme.

The result is a sequence of attractor points in task space that
lead to a robot movement accounting for the incorporated
criteria in an optimal way.

The method is particularly useful for human-robot inter-
action in complex environments, e.g. when the robot has to
reach around an obstacle that the human has just placed on
the table. It is such scenarios that we are aiming for in future
research.

Unlike previous approaches, the outcome of optimization
is not a trajectory which needs an additional controller to be
followed, but a series of control points which directly defines
the reactive controller generating the movement on the real
system. Since the underlying control law is incorporated into
the optimization process, the resulting movement is always
realizeable. This is different in many classical approaches,
where optimized trajectories not necessarily can be tracked.
The origin of this approach was the idea to combine previous
work on motor primitives as model of reactive movement
representation in animals with traditional optimization ap-
proaches.

The experiments corroborate the efficiency of the approach
for movement generation on the humanoid robot ASIMO. In
the considered problems a standard feed-forward controller
would get trapped due to the collision constraints.

Finally, the current system has to two limitations: The
number K of control points has to be fixed in advance
and their timing is constrained to equal time intervals. Both
points can be addressed using heuristics, e.g., for the addition



x∗k

rt
xt

x∗k+1

t

Fig. 11. Step response of the attractor system

of a new control point during the optimization procedure at
intermediate time points. Future research will address these
issues.

VIII. ACKNOWLEDGMENTS

MT is grateful to Honda RI Europe for their hospitality
as a guest scientist. MT also acknowledges support by
the German Research Foundation (DFG), Emmy Noether
fellowship TO 409/1-3.

APPENDIX

A. 2nd order attractor dynamics

Given two adjoining control points x∗k and x∗k+1 we shift
the attractor point continuously from one to the other. This
is captured by the linear interpolated trajectory rt ∈ Rm,

rt = (1− τ)x∗k + τx∗k+1 , k = btK/T c , τ =
t− kT/K

T/K
.

(28)

In Figure 11 this is illustrated by the dashed line.
Point rt is taken as attractor point to a second order

dynamics which generates the task trajectory xt ∈ Rm,

xt+1 = xt + π(xt, xt−1, rt+1) (29)
π(xt, xt−1, rt+1) = a(rt+1 − xt) + b(xt − xt−1) . (30)

The step response of the scheme is depicted as solid line in
Figure 11. We choose the coefficients a and b according to

a =
∆t2

T 2
mc + 2Tmc∆tξ + ∆t2

b =
T 2

mc

T 2
mc + 2Tmc∆tξ + ∆t2

(31)

with the relaxation time scale Tmc = 0.2sec, the oscillation
parameter ξ = 1, and the time span ∆t = Treal/T between
two steps t and t+1. This leads to a smooth non-overshooting
approach.

B. Derivative of the pseudo-inverse

Using the matrix identity ∂q(A−1) = −A−1(∂qA)A−1,
the partial derivative of the pseudo-inverse is

∂qJ
# = W−1(∂qJ

T )(JW−1JT )−1

+ W−1JT
h
− (JW−1JT )−1

“
(∂qJ)W−1JT · · ·

+ JW−1(∂qJ
T )

”
(JW−1JT )−1

i

= W−1(∂qJ
T )(JW−1JT )−1 − J#(∂qJ)J#

− J#JW−1(∂qJ
T )(JW−1JT )−1

= −J#(∂qJ)J# + (1 − J#J) W−1(∂qJ
T ) (JW−1JT )−1

(32)

REFERENCES

[1] F. A. Mussa-Ivaldi, S. F. Giszter, and E. Bizzi, “Linear combinations
of primitives in vertebrate motor control,” Neurobiology, vol. 91, pp.
7534–7538, 1994.

[2] E. Bizzi, A. d’Avella, P. Saltiel, and M. Tresch, “Modular organization
of spinal motors systems,” The Neuroscientist, vol. 8, pp. 437–442,
2002.

[3] A. Heim and O. v. Stryk, “Trajectory optimization of industrial robots
with application to computer-aided robotics and robot controllers,”
Optimization, vol. 47, pp. 407–420, 1999.

[4] K. Schlemmer and G. Gruebel, “Real-time collision-free trajectory
optimization of robot manipulators via semi-infinite parameter opti-
mization,” International Journal of Robotics Research, vol. 17, no. 9,
pp. 1013–1021, 1998.

[5] K. Abdel-Malek, Z. Mi, J. Yang, and K. Nebel, “Optimization-based
trajectory planning of the human upper body,” Robotica, vol. 24, no. 6,
pp. 683–696, 2006.

[6] J. Zhang and A. Knoll, “An enhanced optimization approach for
generating smooth robot trajectories in the presence of obstacles,” in
Proc. of the 1995 European Chinese Automation Conference, London,
1995, pp. 263–268.

[7] Y. Nakamura and H. Hanafusa, “Optimal redundancy control of robot
manipulators,” International Journal of Robotics Research, vol. 6,
1987.

[8] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proc. of IEEE Int’l Conf. on
Robotics and Automation, 2000.

[9] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, pp. 566–580,
1996.

[10] R. Amit and M. J. Matarić, “Parametric primitives for motor rep-
resentation and control,” in Proc. of the Int. Conf. on Robotics and
Automation (ICRA), 2002, pp. 863–868.

[11] B. Williams, M. Toussaint, and A. Storkey, “A primitive based gener-
ative model to infer timing information in unpartitioned handwriting
data,” in Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), 2007.

[12] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation, 2002.

[13] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor
landscapes for learning motor primitives,” in Advances in Neural
Information Processing Systems, vol. 15. MIT Press, Cambridge,
2003, pp. 1523–1530.

[14] S. Schaal, “Movement planning and imitation by shaping nonlinear
attractors,” in Proc. of the 12th Yale Workshop on Adaptive and
Learning Systems, Yale University, New Haven, CT, 2003.

[15] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Control, planning,
learning, and imitation with dynamic movement primitives,” in Work-
shop on Bilateral Paradigms on Humans and Humanoids, IEEE Int.
Conf. on Intelligent Robots and Systems, Las Vegas, NV, 2003.

[16] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and K. M.,
“Learning from demonstration and adaptation of biped locomotion
with dynamical movement primitives,” in Workshop on Robot Learning
by Demonstration, IEEE Int. Conf. on Intelligent Robots and Systems,
2003.

[17] M. Gienger, H. Janssen, and C. Goerick, “Task-oriented whole body
motion for humanoid robots,” in Proceedings of the 2005 5th IEEE-
RAS International Conference on Humanoid Robots, Los Angeles,
USA, 2005, pp. 238–244.

[18] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick, “Real-time self
collision avoidance for humanoids by means of nullspace criteria and
task intervals,” in Proceedings of the 2006 5th IEEE-RAS International
Conference on Humanoid Robots, Genova, Italy, 2006, pp. 575–580.

[19] C. Igel and M. Hüsken, “Empirical evaluation of the improved Rprop
learning algorithm,” Neurocomputing, vol. 50(C),, pp. 105–123, 2003.


