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Abstract

We develop an optical flow estimation framework that
focuses on motion estimation over time formulated in a Dy-
namic Bayesian Network. It realizes a spatiotemporal in-
tegration of motion information using a dynamic and ro-
bust prior that incorporates spatial and temporal coher-
ence constraints on the flow field. The main contribution
is the embedding of these particular assumptions on opti-
cal flow evolution into the Bayesian propagation approach
that leads to a computationally feasible Two-Filter infer-
ence method and is applicable for on- and offline parame-
ter optimization. We analyse the possibility to optimize im-
posed Student’s t-distributed model uncertainties, whichare
the camera noise and the transition noise. Experiments with
synthetic sequences illustrate how the probabilistic frame-
work improves the optical flow estimation because it allows
for noisy data, motion ambiguities and motion discontinu-
ities.

1. Introduction

The analysis of pixel movement in an image sequence al-
lows to infer the motion of objects as well as the self-motion
of the image capturing device. Usually, these movements
are estimated by processing spatial and temporal derivatives
of image values (like pixel intensities) which hold informa-
tion about the movement of image structure. The observed
image data from which image motion is inferred is noisy
and the model assumptions describe only approximations
about the real physical relation between spatiotemporal im-
age value changes and image motion caused by a moving
threedimensional environment or self-movement of the sys-
tem within the environment. Technical approaches for the
analysis of optical flow need to cope with 1) correspondence
problems due to ambiguities (e.g. periodicity or lack of tex-
ture) in the image structure, 2) camera noise, 3) spatial mo-
tion discontinuities, and 4) temporal movement changes.

Recent and very accurate optical flow methods [3] use
local spatiotemporal information by means of a structure
tensor and combine it with global spatiotemporal smooth-
ness constraints on the flow field. Further on, robust penalty
functions or robust statistics [2] improve the estimations
especially at motion discontinuities because they are less
sensitive to outliers. In addition, there are some new at-
tempts to extract detailed scene-dependent prior knowledge
about the underlying spatial statistics of optical flow that
hold specific spatial relations between the velocity vectors
of the flow field [10]. Mostly, spatial relations - whether
they are learned from image data or given by the modeller -
are incorporated into the models viaMarkov Random Fields
[5, 8, 10].

Image motion is a dynamic feature of an image sequence
and the longer the spatiotemporal process is observed the
more precise and detailed we can estimate and predict the
motion contained in an image sequence. Nevertheless, the
majority of optical flow approaches calculate the motion es-
timations independently for each point in time and the free
parameters of the models are optimized anew to achieve the
best result dependent on that point in time. Except for [7],
the choice of the parameters is done by hand or by learning
the optimal prior knowledge for one specific flow pattern
or even one specific scene. In fact, the more accurate the
methods are, the more specific prior knowledge about the
scene has been incorporated. But this is not necessarily a
general choice suitable to cover several groups of optical
flow patterns usually present in a changing scene, likee.g.
rotation and expansion, or at least several instances of one
group, likee.g. expansion with different foci of expansion,
but (more or less) only one specific instance.

Starting with the work of Simoncelliet al. [11] a number
of investigations have been undertaken to make allowance
for motion uncertainties and to find proper velocity distri-
butions that are able to represent any kind of motion un-
certainty, especially multiple motions [14]. Burgiet al. [4]
are among the first to express continuous optical flow esti-
mation over time in terms of general Bayesian tracking. In



[15] the focus is on the temporal dynamics of such velocity
distributions in a hierarchical probabilistic network, show-
ing the possibility to disambiguate uncertain visual motion
estimates over time.

Both, the approaches that incorporate motion estimates
from previous timesteps [12, 2, 4, 15] and those that stick
to the measurements made at one point in time [3, 10, 11]
do not try to systematically optimize and adapt their param-
eters to a continuously observed data stream, which is one
major aspect of the following work.

In this paper we concentrate on 1) a motion estimation
model that continuously combines motion information over
time with the aim to be the more accurate the more data
has been processed by the system as long as the data holds
its movement like predicted by the model and 2) being able
to cope with motion uncertainty, noisy data and continuous
temporal changes of pixel movement. Compared to recent
approaches [10] that learn scene specific prior knowledge
and are therefore capable to incorporate detailed disconti-
nuity information, our prior assumptions are simpler only
imposing some degree of spatiotemporal coherence to con-
strain the optical flow.

For this reason we propose a probabilistic motion estima-
tion framework which is formulated as aDynamic Bayesian
Network[9] to deliver optical flow estimations continuously
over long image sequences. After derivation of a special
Two-Filter [6] inference approach we optimize the free pa-
rameters of the built-in uncertainty assumptions to maxi-
mize the probability of the smoothed posterior using the
EM-algorithm. More specifically, we try to find the opti-
mal parameterization of the camera noise and the transition
noise represented by thecovariancesassuming 1)Student’s
t-distributionswith fixed degrees of freedomν and 2) the
limit to infinity ν → ∞ which results in aGaussian distri-
bution.

We show that it is possible to optimize the uncertainties
for different kinds of noise usingGaussiannoise to discuss
the robustness against camera noise andSalt&Peppernoise
to analyse the robustness against outliers. Further on, we
demonstrate the possibility to disambiguate motion uncer-
tainties because of correspondence problems, likee.g. the
aperture problemand theblank wallproblem. In addition,
on- andofflineoptimization are compared by 1) maximizing
the smoothed posterior gained from the two-filter inference
for the offline case and 2) by maximizing the forward fil-
tered posterior for the online case which leads to an ongoing
adaptation of the uncertainties.

2. Dynamic Bayesian Network Model

To derive algorithms for dynamic visual flow field esti-
mation using probabilistic filtering, smoothing and parame-
ter learning methods we specify a complete data likelihood
of a sequenceI0:T of T +1 images. We do this by assuming
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Figure 1. Dynamic Bayesian Network for motion estimation.

the generative model for such an image sequence as given
by the Dynamic Bayesian Network in Fig. 1 a). Here,It is
the grey value image at time slicet with entriesIt

x that are
the grey values at all pixel locationsx ∈ X of the image.
Similarly, V t is a flow field at time slicet defined over the
image range with entriesvt

x ∈ W at each pixel locationx
of the image.

To define the model precisely we need to specify
1) the observation likelihoodP (It+1 |V t, It) of a pair
of imagesIt+1 and It and 2) the transition probability
P (V t+1 |V t) of the flow field. To simplify the nota-
tion we can introduce an alternative observation variable
Y t = (It+1, It) that subsumes a pair of consecutive im-
ages. Since images are observed, the likelihoodP (It)
in the term P (It+1 |V t, It) P (It) = P (It+1, It |V t)
is only a constant factor we can neglect. This leads to
P (It+1 |V t, It) ∝ P (It+1, It |V t) = P (Y t |V t) and the
corresponding Dynamic Bayesian Network shown in Fig. 1
b). For both the observation likelihoodP (Y t |V t) and the
V -transition probabilityP (V t+1 |V t) we assume that they
factorize over the image w.r.t.V t andV t+1, i.e.,

ζ(V t) := P (Y t |V t) =
∏

x

ℓ(Y t | vt
x) (1)

P (V t+1 |V t) =
∏

x

P (vt+1
x |V t) . (2)

This allows us to maintain only factored beliefs overV t

during inference, which makes the approach computation-
ally feasible.

2.1. Observation likelihood

We define the observation likelihoodP (Y t |V t) by as-
suming that the likelihood factorℓ(Y t | vt

x) of a local ve-
locity vt

x should be related to finding the same or simi-
lar image patch centered aroundx at time t + 1 that was
present at timet but centered aroundx− vt

x∆t1. More rig-
orously, letS(x, µ,Σ, ν) be the Student’s t-distribution and

1In the following, we neglect dimensions and set∆t = 1, sov
t
x∆t

getsvt
x.



N (x, µ,Σ) = limν→∞ S(x, µ,Σ, ν) be the normal distri-
bution of a variablex with meanµ, covariance matrixΣ and
the degrees of freedomν. In the following the covariance is
chosen to be isotropicΣ = σ2E (with identity matrixE).
We define

ℓ(Y t|vt
x) =

∑

x′

N (x′, x, ̺I)S(It+1

x′ , It
x′−vt

x

, σI , νI) (3)

=
∑

x′

N (x′, x− vt
x, ̺I)S(It+1

x′+vt
x

, It
x′ , σI , νI) .

Here,N (x′, x, ̺I) implements a Gaussian weighting of lo-
cality centered aroundx for It+1 and aroundx − vt

x for
It. The parameter̺I defines the spatial range of this image
patch andσI the grey value variance. The univariate Stu-
dent’s t-distributionS(It+1

x′ , It
x′−vt

x

, σI , νI) realizes a ro-
bust behaviour against large gray-value differences within
image patches, which means these gray-values are treated
as outliers and are much less significant for the distribution.

2.2. Transition probability

Similarly to equation (3), we define the transition prob-
ability P (V t+1 |V t) by assuming that the flow field trans-
forms according to itself. To motivate the definition we as-
sume that the origin of a local flow vectorvt+1

x at position
x was a previous flow vectorvt

x′ at some corresponding po-
sitionx′,

vt+1
x ∼ S(vt+1

x , vt
x′ , σV , νV ) . (4)

So, we assume robust spatiotemporal coherence because
evaluations on first derivative optical flow statistics [10]and
on prior distributions that allow to imitate human speed dis-
crimination tasks [13] provide strong indication that they
resemble heavy tailed Student’s t-distributions. Now, ask-
ing what the corresponding positionx′ in the previous im-
age was, we assume that we can infer it from the flow field
itself via

x′ ∼ N (x′, x− vt+1
x , ̺V ) . (5)

Note that here we usevt+1
x to retrieve the previous corre-

sponding point. Combining both factors and integratingx′

we get2

P (vt+1
x |V t) ∝

∑

x′

N (x′, x−vt+1
x , ̺V ) S(vt+1

x , vt
x′ , σV ) ,

(6)
which is of similar form as (3). The parameter̺V defines
the spatial range of a flow-field patch, so we compare veloc-
ity vectors within flow-field patches at different timest and
t + 1. The relations for the transition model are sketched
in Fig. 2. We introduced new parameters̺V andσV for
the uncertainty in spatial identification between two images
and the transition noise betweenV t andV t+1, respectively.

2Due to shortage of spaceνV is omitted in some notations.
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Figure 2. Uncertainty assumptions for theV -transitions and the
camera noise.

The robustness against outliers is controlled byνV , with
smaller/largerνV decreasing/increasing the influence of in-
coherently moving pixels within the observed spatial range
̺V . With νV → ∞ the uncertainty for the velocity gets
Gaussian distributed and (6) equals the transition probabil-
ity formulated in [4] which expresses the belief that pixels
are, on average, moving along a straight line with constant
velocity. Therefore, our spatiotemporal transition model
can be seen as a generalization of the transition model pro-
posed by Burgiet al. [4].

2.3. Two-filter inference

For inference we need to propagate beliefs over the flow
field V t. Storing a distribution over a whole flow fieldV t

is infeasible if one does not make factorization assump-
tions. The factored observation likelihoods and transition
probabilities we introduced ensure that the forward propa-
gated beliefs will remain factored. However, the standard
backward messages do not exactly factor under this model.
Hence we follow a two-filter approach [6] where the ”back-
ward filter” is strictly symmetric to the forward filter.

The forward filtering equations read

α(V t) := P (V t |Y 1:t) =
∏

x

α(vt
x) , (7)

α(vt+1
x ) ∝ ℓ(Y t+1 | vt+1

x ) α∗(vt+1
x ) , (8)

α∗(vt+1
x ) ∝

∑

V t

P (vt+1
x |V t) α(V t) . (9)

By inserting (6) and (7) in (9) the right side of (9) is
∑

V t

∑

x′

N (x′, x− vt+1
x , ̺V )S(vt+1

x , vt
x′ , σV )

∏

z

α(vt
z) =

∑

x′

N (x′, x− vt+1
x , ̺V ) ×

∑

vt

x′

S(vt+1
x , vt

x′ , σV )α(vt
x′)

∑

V t\vt

x′

∏

z 6=x′

α(vt
z)

(10)
Note that the summation

∑

V t∈W X is summing over all
possible flow fields (X is the pixel range), i.e. it represents
|X | summations

∑

vt

1
∈W

∑

vt

2
∈W

∑

vt

3
∈W · · · over each lo-

cal flow field vector. We separated these into a summa-
tion

∑

vt

x′

over the flow field vector atx′ and a summation
∑

V t\vt

x′

over all other flow field vectors atx 6= x′. We can



use
∑

V t\vt

x′

∏

z 6=x′ α(vt
z) =

∏

z 6=x′

∑

vt
z

α(vt
z) = 1 and

the final forward filtering reduces to

α∗(vt+1
x ) ∝

∑

x′

N (x′, x− vt+1
x , ̺V )×

∑

vt

x′

S(vt+1
x , vt

x′ , σV , νV ) α(vt
x′) . (11)

If we have access to a batch of data (or a recent window
of data) we can compute smoothed posteriors as a basis for
an EM-algorithm and train the free parameters. In our two-
filter approach we derive the backward filter as a mirrored
version of the forward filter, but using

P (vt
x |V

t+1) ∝
∑

x′

N (x′, x + vt
x, ̺V ) S(vt

x, vt+1

x′ , σV )

(12)
instead of (6). This equation is motivated in exactly the
same way as we motivated (6): we assume thatvt

x ∼
S(vt+1

x′ , σV , νV ) for a corresponding positionx′ in the sub-
sequent image, and thatx′ ∼ N (x−vt

x, ̺V ) is itself defined
by vt

x. However, note that using this symmetry of argumen-
tation is actually an approximation to our model because
applying Bayes rule on (6) would lead to a different, non-
factoredP (V t |V t+1). What we gain by the approximation
P (V t |V t+1) ≈

∏

x P (vt
x |V

t+1) are factoredβ’s which
are feasible to maintain computationally. The backward fil-
ter equations read

β(V t) := P (V t |Y t+1:T ) =
∏

x

β(vt
x) , (13)

β∗(vt
x) ∝ ℓ(Y t | vt

x) β(vt
x) , (14)

β(vt
x) ∝

∑

V t+1

P (vt
x |V

t+1) β∗(V t+1) . (15)

In analogy to the derivations for the forward filtering (10)
we arrive at the final backward filtering equation

β(vt
x) ∝

∑

x′

N (x′, x + vt
x, ̺v) ×

∑

v
t+1

x′

S(vt
x, vt+1

x′ , σV , νV )β∗(vt+1

x′ ) . (16)

To derive the smoothed posterior we need to combine the
forward and backward filters. In the two-filter approach this
reads

γ(vt
x) := P (vt

x |Y
1:T ) =

P (Y t+1:T | vt
x) P (vt

x |Y
1:t)

P (Y 1:T )

=
P (vt

x |Y
t+1:T )P (Y t+1:T )P (vt

x |Y
1:t)

P (vt
x)P (Y 1:T )

∝ α(vt
x) β(vt

x)
1

P (vt
x)

, (17)

with P (Y t+1:T ) andP (Y 1:T ) being constant. If both the
forward and backward filters are initialized withα(v0

x) =
β(vT

x ) = P (vx) we can identify the unconditioned distri-
butionP (vt

x) with the priorP (vx).

3. Uncertainty Optimization

Based on the filter equations (11, 16, 17) we can apply
the EM-algorithm for an optimization of the free parameters
θ = {σI , σV }. Starting with an initial setting for the pa-
rametersθo (”o” for old) the offlineE-stepis the evaluation
of the smoothed posteriorγ(V t) using the two-filter infer-
ence as given by (17) keeping the old parametersθo fixed.
In case of online optimization the forward filtered posterior
α(V t) is evaluated as given by (8) and (11). If only the
observed likelihoodζ(V t) with its assumed gray-value un-
certaintyσI should be optimized no a priori preference for
the velocity is considered (which is equivalent to a time-
independent equally distributed priorα∗(vt

x) = |W |−1).
The exactM-stepdetermines the revised parameter estimate
θn (”n” for new) by maximizing the expected complete data
log-likelihood under the posterior distribution

θn = argmax
θ

∑

V t

P (V t|Y 1:T , θo) lnP (Y 1:T , V t|θ) .

(18)

Now, instead of maximizing this expectation we use the
MAP approximation of the M-step, maximizing the log-
likelihood only for the flow fieldV̂ t which maximizes the
posterior distributionP (V̂ t|Y 1:T , θo). Taking advantage
of the assumed factorization of the posterior (7) and that
P (Y 1:T ) is constant, we get

θn = argmax
θ

∑

t,x

γ(v̂t
x, θo) ln γ(v̂t

x, θ) . (19)

After assignment of the new parametersθo ← θn the E- and
M-steps are evaluated anew until a convergence criterion
is fullfilled. The maximization of (19) for the arguments
σI , σV leads to the following M-step approximations:

σI =
1

Z

∑

t,x

γ(v̂t
x)(It

x − (T̂ ◦ It+1
x )x)2 , (20)

σV =
1

Z

∑

t,x

γ(v̂t
x)||v̂t

x − (T̂ ◦ v̂t+1
x )x||

2 , (21)

with Z =
∑

x,t γ(v̂t
x), v̂t

x = MAP (γ(vt
x)) being the maxi-

mum a posteriori estimate of the velocities that describe the
estimated flow-field̂V t and T̂ ◦ being the operator for the
reverse mapping of image featuresIt+1

x resp. v̂t+1
x using

the estimated flow field̂V t and bilinear interpolation.
Here, the degrees of freedomνI , νV which are used for

judging the robustness of the analyses are not optimized so



far (fixed during EM). Also the covariances̺I , ̺V that de-
fine to what spatiotemporal extent motion coherence is as-
sumed are specified.

The online M-steps are the same as the offline ones, but
with γ(vt

x) replaced byα(vt
x) and instead of summing over

t we update the parameters at each time step with a fixed
learning rate. Therefore, adaptation of the parameters over
time is possible which is dependent on whether movements
within the scene change over time or remain spatially sta-
tionary.

4. Evaluation

To evaluate the performance of the proposed Dynamic
Bayesian Network two measurements are used. The first
one is the well known error measure proposed by Barronet
al. [1] which is also utilized in [3, 10]. It shows the mean er-
ror between the estimated̂V t and the ground-trutȟV t flow-
field

eV =
1

|X |

∑

x

arccos
(

(v̂t
x)T

h (v̌t
x)h

)

, (22)

with (v̂t
x)h being the estimated velocity vector and(v̌t

x)h

the ground truth velocity vector both written in homoge-
neous coordinates. The second criterion has been proposed
by Burgiet al. [4] to evaluate the evolution of the flow-field
estimation over time. It is called thesharpnesss which
is the Kullback-Leibler divergencebetween the estimated
probability for a velocity vectorP (vt

x|Y
1:T ) and a uniform

distributionU . Usually, the higher the sharpness, the more
precise the velocity estimate [4], so we take the spatial mean
of the sharpnesss for the evaluation which is

s =
1

|X |

∑

x

∑

vt
x

P (vt
x|Y

1:T ) ln |W |P (vt
x|Y

1:T ) (23)

In our momentary implementation everyvt
x ∈W , W = Z

2,
is a pixel-wise discretized vector of signed integer veloci-
ties, which means, the MAP estimator cannot achieve sub-
pixel accuracy.

4.1. Robustness against noise and outliers

To judge the effect of camera noise on the quality of the
observed likelihoodζ(V t) we use a synthetic test sequence
I1:T consisting of a static background patternI1:T

b ∈
[0; 150] and a moving circular patternI1:T

o ∈ [200; 255]
with constant velocityvo = 2 pixels/∆t. In a first trial we
train the corresponding parameterσI for increasing ground-
truth Gaussian noisěσI added on the image gray values of
the test sequence and forν = 0.1 andν = ∞. The spatial
weighting of the patches remains fixed atρI = 5.

In Fig. 3 the calculated mean errorseV for ν = 0.1 (�)
andν → ∞ (∗) for Gaussian noise starting with standard
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Figure 3. Mean optical flow errorseV for increasing Gaussian
noiseσ̌I and Salt&Pepper Noised for different degrees of free-
domνI .
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Figure 4. Estimated standard deviationsσ̂I for increasing Gaus-
sian noisěσI on the gray-values of the imagesI .

deviationσ̌I = 0 up to σ̌I = 50 and in Fig. 4 the cor-
responding optimized standard deviationsσ̂I after 10 EM-
iterations are shown. Comparing the two solid lines in Fig.
3, for Gaussian camera noise up toσ̌I = 15 the increase of
robustness forν = 0.1 can clearly be seen. This is because
at the motion boundaries along the edge of the moving cir-
cular pattern better velocity estimates can be achieved. With
increasing Gaussian noise the assumption that the noise is
distributed like a Student’s t-distribution with heavy tails
is no longer sufficient and noisy gray value differences be-
tween corresponding image points are increasingly mis-
taken as outliers. For stronger Gaussian camera noise (start-
ing from σ̌I = 15) the limit ν → ∞ which is equivalent
to a Gaussian distribution gives better estimation results.
This is obvious because Gaussian noise was added to the
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Figure 5. Mean erroreV and estimated transition uncertaintyσV

for increasing motion discontinuities along the border of amoving
object in front of a differently moving background.

synthetic scene and the errors at the motion boundaries no
longer carry weight for the mean erroreV . The optimiza-
tion of the standard deviation̂σI works nicely and reflects
the ground-truth Gaussian noiseσ̌I up to a bias (see Fig.
4) which arises because of numerical errors in the warping
procedure (If no Gaussian noise is addedσ̌I = 0 and the
imageIt+1 is warped with the ground truth flow fielďV t

to getIt using the M-step (20) withγ(v̌t
x) = 1 we get an

estimated uncertainty of̂σI = 9.59).
To evaluate the robustness properties of the Student’s t-

distribution further, the same procedure but for Salt&Pepper
noise is also shown in Fig. 3. Here, the mean error for
increasing densityd ∈ [0; 0.25] of Salt&Pepper noise is
plotted. Comparing the two dotted lines in Fig. 3, up to
a density ofd = 0.25 the mean erroreV is not affected for
ν = 0.1. Forν →∞ the performance deteriorates with in-
creasing noise because the Gaussian noise assumption does
not hold anymore for Salt&Pepper noise.

With a second example the behavior at motion discon-
tinuities is evaluated. Here, a random patternI1:T

o ∈
[200; 255] moves with constant velocityvo = 2 pixels/∆t
in front of a moving backgroundI1:T

b ∈ [0; 150] that
changes its velocityvb ∈ [−2 pixels/∆t; 2 pixels/∆t] in
every trial. The more different the velocity of the back-
groundvb compared to the object motionvo the stronger
motion discontinuities are along the object borders and the
more the assumption for the flow field evolution is violated
that the pixels move coherently within the spatial region
ρV = 5. Fig. 5 shows the mean erroreV for robust (�)
and quadratic (∗) penalisation of differences between ve-
locity vectors within flow-field patches. If background and
object move totally coherent then the erroreV and also the
uncertaintiesσI , σV tend to zero. For the quadratic penali-
sation the stronger the motion discontinuities get the higher
the error is. But for the robust penalisation the error satu-

rates and even reduces for very large discontinuities. This
means if the ratio of the numbers of differently moving pix-
els within a flow patch differs to a certain degree from one
then the pixels that belong to the lower number are treated
as outliers.

4.2. Disambiguation of motion uncertainties

Next the properties of the forward- and backward-priors
α∗(V t), β(V t) and in particular the effects of the spa-
tiotemporal coherence assumption for the flow-field patches
are discussed. For this purpose, a black squareI1:T

o = 0
is moved in front of a static background patternI1:T

b ∈
[200; 255] with constant velocityvo = 2 pixels/∆t for
T = 40 frames, fixed spatial extensionsρI = 5, ρV = 35,
and an equally distributed initialisation of the posteriors
α(v0

x) = β∗(v41
x ) = |W |−1. This synthetic sequence is

strongly confronted with the aperture problem along the
edges of the square and with the blank wall problem be-
cause of the untextured surface of the square. In addition,
pixels from the background appear and disappear along the
motion boundaries. In Fig. 6 the flow fields for different
points in time estimated from the forward filtered poste-
rior α(V t), the backward filtered posteriorβ∗(V t), and the
two-filter smoothed posteriorγ(V t) are shown. At the be-
ginning of forwardα(V 1) and backwardβ∗(V 40) filtering
only at the corners of the square the correct velocity can be
estimated. With ongoing filtering the motion ambiguities
along the edges and within the square are resolved and the
square is continuously filled-in with improved velocity es-
timates. The combination of both inγ(V t) leads to even
better results because at every timestep the optical flow is
inferred from ”having the whole image sequence in mind”
with the best result forγ(V 20) because both filtering and
smoothing have seen an equal amount of images (which is
20 images). This result is also reflected in Fig. 7 with the
mean sharpnessst plotted for the likelihoodζ(V t), the for-
ward filtered posteriorα(V t), the backward filtered poste-
rior β∗(V t) and the two-filter smoothed posteriorγ(V t).
Therefore, the most peaked distributions are gained from
two-filter smoothing.

As a first proof of principle for theonline filtering ca-
pabilities of the framework the same sequence is used with
Gaussian noise of̌σI = 10 added. In Fig. 8 the mean error
et

V and the sharpnessst
α are plotted over time. It can be

seen that the error continuously reduces and the sharpness
increases.

Also for the Yosemite benchmark [1], as shown in Fig. 9,
a continuous reduction of the optical flow errors over time
can be achieved with the proposed probabilistic method. To
be able to extract subpixel accuracy the MMSE estimator
instead of the MAP estimator is applied. Although, a very
simple region-based matching measurement (3) is used that
exploits the SSD only for signed integer velocities, the rel-
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Figure 6. Snapshots of the forward and backward optical flow estimations at different points in time for the complete observed data of 40
images of a sequence. The nice filling-in properties of the model for the regions that lack of texture (solution to the blank wall problem)
and the disambiguation at moving edges (solution to the aperture problem) can clearly be noticed.

ative improvement of the flow-field estimate over time is
quite good. For the online case the error reduces about
69.6%, frome1

α = 39.5◦ to e13
α = 12.1◦, and for the offline

case about73.4%, from e1
α = 39.5◦ to e7

γ = 10.5◦. Recent
gradient-based optical flow techniques [3, 10] achieve bet-
ter accuracy on the Yosemite sequence but are not suited for
image sequences where numerical differentiation is imprac-
tical [1]. Our resulte7

γ = 10.53◦ compares quite favorably
with other region-based matching methods described in [1]
with the lowest mean error ofeV = 13.16◦ for Singh’s
method. Future work will investigate propagating beliefs
over a continuous flow-field domainW = R

2 to achieve
better sub-pixel accuracy.

5. Conclusions and Future Work

We have presented a robust two-filter inference approach
to continuously estimate the optical flow of image se-
quences. It allows for the optimization of uncertainties that
reflect the momentary transition noise of the scene move-
ment and the momentary camera noise on the pixel in-
tensities. Although the transition probability holds onlya
simple spatiotemporal smoothness constraint the system is
able to resolve ambiguous local motion measurements and
demonstrates robust behavior at motion discontinuities. No
learned scene-specific prior knowledge is incorporated, but
an adaptation to the scene by optimizing uncertainty param-
eters is realized. Because of the linear prediction assump-
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tion rapidly changing movements corrupt the estimation re-
sults. As long as the scene movement does not change (or
only slightly changes), the optical flow estimation improves
over time. Future investigations will include the replace-
ment of the measurement method for the observation likeli-
hood with more accurate gradient-based methods that allow
for a continuous flow-field domain and the adaptation of
further parameters, like the robustness parameterν.
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