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Abstract Recent and very accurate optical flow methods [3] use
local spatiotemporal information by means of a structure
We develop an optical flow estimation framework that tensor and combine it with global spatiotemporal smooth-
focuses on motion estimation over time formulated in a Dy- ness constraints on the flow field. Further on, robust penalty
namic Bayesian Network. It realizes a spatiotemporal in- functions or robust statistics [2] improve the estimations
tegration of motion information using a dynamic and ro- especially at motion discontinuities because they are less
bust prior that incorporates spatial and temporal coher- sensitive to outliers. In addition, there are some new at-
ence constraints on the flow field. The main contribution tempts to extract detailed scene-dependent prior knowledg
is the embedding of these particular assumptions on opti_about the underlying spatial statistics of optical flow that
cal flow evolution into the Bayesian propagation approach hold specific spatial relations between the velocity vector
that leads to a computationally feasible Two-Filter infer- of the flow field [10]. Mostly, spatial relations - whether
ence method and is applicable for on- and offline parame- they are learned from image data or given by the modeller -
ter optimization. We analyse the possibility to optimize im are incorporated into the models Wearkov Random Fields
posed Student's t-distributed model uncertainties, waieh  [5, 8, 10].
the camera noise and the transition noise. Experiments with  Image motion is a dynamic feature of an image sequence
synthetic sequences illustrate how the probabilistic #am and the longer the spatiotemporal process is observed the
work improves the optical flow estimation because it allows more precise and detailed we can estimate and predict the
for noisy data, motion ambiguities and motion discontinu- motion contained in an image sequence. Nevertheless, the
ities. majority of optical flow approaches calculate the motion es-
timations independently for each point in time and the free
parameters of the models are optimized anew to achieve the
best result dependent on that point in time. Except for [7],
the choice of the parameters is done by hand or by learning

The analysis of pixel movementin an image sequence al-the optimal prior knowledge for one specific flow pattern
lows to infer the motion of objects as well as the self-motion OF €ven one specific scene. In fact, the more accurate the
of the image capturing device. Usually, these movementsmethods are, the more specific prior knowledge about the
are estimated by processing spatial and temporal dergtiv SCene has been incorporated. But this is not necessarily a
of image values (like pixel intensities) which hold informa  general choice suitable to cover several groups of optical
tion about the movement of image structure. The observedflow patterns usually present in a changing scene,dike
image data from which image motion is inferred is noisy rotation and expansion, or at least several instances of one
and the model assumptions describe only approximationsgroup, likee.g expansion with different foci of expansion,
about the real physical relation between spatiotemporal im Put (more or less) only one specific instance.
age value changes and image motion caused by a moving Starting with the work of Simoncelét al. [11] a number
threedimensional environment or self-movement of the sys-of investigations have been undertaken to make allowance
tem within the environment. Technical approaches for the for motion uncertainties and to find proper velocity distri-
analysis of optical flow need to cope with 1) correspondencebutions that are able to represent any kind of motion un-
problems due to ambiguities.g periodicity or lack of tex-  certainty, especially multiple motions [14]. Burei al. [4]
ture) in the image structure, 2) camera noise, 3) spatial mo-are among the first to express continuous optical flow esti-
tion discontinuities, and 4) temporal movement changes. mation over time in terms of general Bayesian tracking. In

1. Introduction



[15] the focus is on the temporal dynamics of such velocity 3) b)

distributions in a hierarchical probabilistic network osi
ing the possibility to disambiguate uncertain visual motio 0 @ e @
estimates over time.

Both, the approaches that incorporate motion estimates
from previous timesteps [12, 2, 4, 15] and those that stick
to the measurements made at one point in time [3, 10, 11]
do not try to systematically optimize and adapt their param-
eters to a continuously observed data stream, which is on @ @ G @
major aspect of the following work.

In this paper we concentrate on 1) a motion estimation
model that continuously combines maotion information over

time with the aim to be the more accurate the more dataine generative model for such an image sequence as given
has been proc_essed by the system as long as the (_1ata holq@ﬁ/ the Dynamic Bayesian Network in Fig. 1 a). Heféjs

its movement like predicted by the model and 2) being able o grey value image at time sli¢evith entriesI’, that are

to cope with motion uncertainty, noisy data and continuous grey values at all pixel locationse X of the image.
temporal changes of pixel movement. Compared to recentgimijarly, '* is a flow field at time slice defined over the
approaches [10] that learn scene specific prior knowledgeimage range with entries, € 1 at each pixel location

and are therefore capable to incorporate detailed disconti ¢ e image.

nuity information, our prior assumptions are simpler only 145 4efine the model precisely we need to specify
imposing some degree of spatiotemporal coherence to CON1) the observation likelihood?(It+! | V*, It) of a pair

strain the optical flow. o _ _ of imagesI**! and I* and 2) the transition probability
For this reason we propose a probabilistic motion est|ma—P(Vt+1 |V*) of the flow field. To simplify the nota-

tion framework which is formulated asizynamic Bayesian  {jon we can introduce an alternative observation variable
Network[9] to deliver optical flow estimations continuously y-¢ _ (I*+1, I') that subsumes a pair of consecutive im-
over long image sequences. After derivation of a special ages. Since images are observed, the likelihdtd!)
Two-Filter [6] inference approach we optimize the free pa- i the term PV IY) P(IY) = P(IMY,IH| VY
rameters of the built-in uncertainty assumptions to maxi- ;g only a constant factor we can neglect. This leads to
mize the probability of the smoothed posterior using the P(I™1 |V It oc P(I*1, 1| V) = P(Y!|V?) and the
EM-algorithm. More specifically, we try to find the opti-  ¢,rresponding Dynamic Bayesian Network shown in Fig. 1

mal parameterization of the camera noise and the transitiono)_ For both the observation likelihode(Y* | V*) and the
noise represented by tieevariancesaassuming 1ptudent's 1/ _transition probability? (V1 | V) we assume that they
t-distributionswith fixed degrees of freedom and 2) the ¢ torize over the image w.rt/* andV**, i.e.

limit to infinity » — oo which results in @&5Gaussian distri-
bution ty . Lty t,t

We show that it is possible to optimize the uncertainties (V)= PEYTIVY I;IZ(Y [vz) @)
for different kinds of noise usin@Gaussiamoise to discuss
the robustness against camera noise@aitkPeppemoise PV V) = HP(UtJrl 1Vt . @)
to analyse the robustness against outliers. Further on, we - *
demonstrate the possibility to disambiguate motion uncer-
tainties because of correspondence problems,digethe
aperture problermand theblank wallproblem. In addition,
on andofflineoptimization are compared by 1) maximizing
the smoothed posterior gained from the two-filter inference L
for the offline case and 2) by maximizing the forward fil- 2.1. Observation likelihood

tered posterior for the online case which leads to an ongoing  we define the observation likelihod®(Y* | V) by as-

Figure 1. Dynamic Bayesian Network for motion estimation.

This allows us to maintain only factored beliefs ovéf
during inference, which makes the approach computation-
ally feasible.

adaptation of the uncertainties. suming that the likelihood factaf(Y*|+L) of a local ve-
) ) locity v! should be related to finding the same or simi-
2. Dynamic Bayesian Network Model lar image patch centered aroundat timet¢ + 1 that was

present at time but centered around — v At*. More rig-

To derive algorithms for d ic visual flow field esti-
O Gerive algoritims for dynamic visual Tow fietd est orously, letS(x, u, X, v) be the Student’s t-distribution and

mation using probabilistic filtering, smoothing and parame
ter learning methods we specify a complete data likelihood 1, the following, we neglect dimensions and &t = 1, sov!, At
of a sequencé”” of T+ 1 images. We do this by assuming getsot.




N(z,1,X) = lim,_o S(z, 1, 2, v) be the normal distri-
bution of a variable: with meany, covariance matrix and
the degrees of freedom In the following the covariance is
chosen to be isotropiE = o2 E (with identity matrix E).
We define

— It

s L

(Y |vg)

_U;,O'],V]) (3)

ZN(I/a €T, QI)S(Iij_l

ItJrl

/4ot

It

x’

O'I,V[).

ZN(SE’,I - U;, QI)S(

Here N (2/, z, or) implements a Gaussian weighting of lo-
cality centered around for I'** and aroundr — v’ for

I'. The parametes; defines the spatial range of this image
patch andr; the grey value variance. The univariate Stu-
dent’s t-distributionS(I:, 1! or,vr) realizes a ro-

y Tt —vt»

bust behaviour against large gray-value differences withi

image patches, which means these gray-values are treate

as outliers and are much less significant for the distriloutio

2.2. Transition probability

Similarly to equation (3), we define the transition prob-
ability P(V*1| V) by assuming that the flow field trans-
forms according to itself. To motivate the definition we as-
sume that the origin of a local flow vectof! at position
x was a previous flow vectar,, at some corresponding po-
sition 2/,

(4)

t+1 +1 ¢
vt~ S(Et ok oy, )

camera
noiseo

transition
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spatial
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Figure 2. Uncertainty assumptions for thetransitions and the
camera noise.

The robustness against outliers is controlledupy with
smaller/largery decreasing/increasing the influence of in-
coherently moving pixels within the observed spatial range
ov. With vy — oo the uncertainty for the velocity gets
Gaussian distributed and (6) equals the transition probabi
ity formulated in [4] which expresses the belief that pixels
%re, on average, moving along a straight line with constant
velocity Therefore, our spatiotemporal transition model
can be seen as a generalization of the transition model pro-
posed by Burget al. [4].

2.3. Two-filter inference

For inference we need to propagate beliefs over the flow
field V. Storing a distribution over a whole flow field!
is infeasible if one does not make factorization assump-
tions. The factored observation likelihoods and transitio
probabilities we introduced ensure that the forward propa-
gated beliefs will remain factored. However, the standard

So, we assume robust spatiotemporal coherence becaudgackward messages do not exactly factor under this model.

evaluations on first derivative optical flow statistics [A0d

on prior distributions that allow to imitate human speed dis
crimination tasks [13] provide strong indication that they
resemble heavy tailed Student’s t-distributions. Now;,-ask
ing what the corresponding positian in the previous im-
age was, we assume that we can infer it from the flow field

itself via

t+1
T

¥ ~N@' iz —v (5)
Note that here we usé. ™! to retrieve the previous corre-
sponding point. Combining both factors and integrating

we get

7QV)-

t+1 ¢
x ’Uz/, oy

)
(6)

which is of similar form as (3). The parametey defines

the spatial range of a flow-field patch, so we compare veloc-
ity vectors within flow-field patches at different timeand

t + 1. The relations for the transition model are sketched
in Fig. 2. We introduced new parameters andoy for

the uncertainty in spatial identification between two immge
and the transition noise betwe®i andV**!, respectively.

Pt | V) o« ZN(x',x—vi'H, ov)S(v

2Due to shortage of spaeg, is omitted in some notations.

Hence we follow a two-filter approach [6] where the "back-
ward filter” is strictly symmetric to the forward filter.
The forward filtering equations read

aVh = PV Y =T]ew), @
a(vy) oo LY o (vt (8)
ot (i) o YO P@ITVH a(VY). ©)
Vt
By inserting (6) and (7) in (9) the right side of (9) is
SN @ =it ov)S(vit v, ov) [Ta(vl) =
Vvt x z
> Nz =it o) x
S Sy ks ov)ael) ¥ TT ofel)
vl Vi\u!, z#e’
(10)

Note that the summatiol_ ., x is summing over all
possible flow fields X is the pixel range), i.e. it represents
| X| summation$ ¢y 2 e ew Dozew - -+ Overeachlo-
cal flow field vector. We separated these into a summa-
tion}_,. over the flow field vector at’ and a summation

th\y; over all other flow field vectors at # z’. We can



usezvt\vi/ [ al) =10 2 a(vl) = Tand  with P(YtH1TY and P(Y'HT) being constant. If both the

the final forward f||ter|ng reduces to forward and backward filters are initialized wit{v?) =
Bl = P(vz) we can identify the unconditioned distri-
af (i) o Y N @ — ol oy) x bution P(v’,) with the prior P(v,,).

S St vt oy, ) aul) - (11) 3. Uncertainty Optimization

Based on the filter equations (11, 16, 17) we can apply
the EM-algorithm for an optimization of the free parameters
= {o;,0v}. Starting with an initial setting for the pa-
meterg° ("o0” for old) the offline E-stepis the evaluation
of the smoothed posterior(V*) using the two-filter infer-
ence as given by (17) keeping the old paramefierfxed.

In case of online optimization the forward filtered posterio

a(V?) is evaluated as given by (8) and (11). If only the
P(v; [ V) ZN @',z + vy, 0v) S(ug, v ov) ol()sezved likelihood (V*) with its assumed gray-value un-
(12) certaintyo; should be optimized no a priori preference for

instead of (6). This equation is motivated in exactly the the velocity is considered (which is equivalent to a time-

If we have access to a batch of data (or a recent window
of data) we can compute smoothed posteriors as a basis fofa
an EM-algorithm and train the free parameters. In our two-
filter approach we derive the backward filter as a mirrored
version of the forward filter, but using

same way as we motivated (6): we assume tat~ independent equally distributed priar (V) = |W|*1)_.
S, oy, vy) fora corresponding positiart in the sub- The exacM-stepdetermines the revised parameter estimate

sequentimage, and thatt~ A/(z—vt, oy ) is itself defined 0™ ("n” for new) by maximizing the expected complete data
by v!. However, note that using this symmetry of argumen- log-likelihood under the posterior distribution
tation is actually an approximation to our model because LT o A
applying Bayes rule on (6) would lead to a different, non-  ¢" = afgmaxzp VIY™,6%) In P(Y5, VE6) .
factoredP(V! | Vi+1). What we gain by the approximation v

P(VH VY = ], P(vl | V! are factored?'s which
are feasible to maintain computationally. The backward fil-
ter equations read

(18)

Now, instead of maximizing this expectation we use the
MAP approximation of the M-step, maximizing the log-

. A LT . likelihood only for the flow fieldV’* which maximizes the
pVY = PVY )= Hﬁ(”r) , (19) posterior distributionP (VY 5T ¢°). Taking advantage
. - . of the assumed factorization of the posterior (7) and that
Br(vg) o LY |vy) Bluz) (14)  p(y*T)is constant, we get
Bluy) o P(ug |V pr(VIFY) L (15)
‘;1 = argmaxzw 0% In~(oL,0) .  (19)
In analogy to the derivations for the forward filtering (10)
we arrive at the final backward filtering equation After assignment of the new parametéts— 0" the E- and
M-steps are evaluated anew until a convergence criterion
Blvy) ZN (@' 2 +vg, 00) X is fullfilled. The maximization of (19) for the arguments

or, oy leads to the following M-step approximations:

ZS Vi v, )8 (05 L (16)

o afzzzv WL~ (ToI ). (20)
To derive the smoothed posterior we need to combine the - N Sy (12
forward and backward filters. In the two-filter approach this 7 27 v —(Tova Rl (1)
reads
P(yt-‘rl:T | ’Ut) P(’Ut | Yl:t) with Z = Zm,t 7({};)' f}; = MAP(’Y(U;)) being the maxi-
y@t) = POL|YYT) = ST mum a posteriori estimate of the velocities that descrike th
P(YT) estimated flow-field’* and7 o being the operator for the
_ P YR PYHET) Pl [V reverse mapping of image featurgs ! resp. ¢! using
B P(t)P(YLT) the estimated flow field’* and bilinear |nterpolat|on
. 1 Here, the degrees of freedam, v, which are used for

(17) judging the robustness of the analyses are not optimized so



far (fixed during EM). Also the covariances, oy that de-
fine to what spatiotemporal extent motion coherence is as-
sumed are specified.

The online M-steps are the same as the offline ones, but
with v(v!) replaced byy(v!) and instead of summing over
t we update the parameters at each time step with a fixec
learning rate. Therefore, adaptation of the parametens ove
time is possible which is dependent on whether movements
within the scene change over time or remain spatially sta-
tionary.

4. Evaluation

To evaluate the performance of the proposed Dynamic
Bayesian Network two measurements are used. The firsi
one is the well known error measure proposed by Baeton
al. [1] which is also utilized in [3, 10]. It shows the mean er-
ror between the estimatéd and the ground-trutir* flow-
field

ey = W1| Z arccos ((@i)f(f;;)h) , (22)

with (9%);, being the estimated velocity vector aggl, ),
the ground truth velocity vector both written in homoge-

neous coordinates. The second criterion has been proposed IS

by Burgiet al. [4] to evaluate the evolution of the flow-field
estimation over time. It is called theharpnesss which

is the Kullback-Leibler divergencéetween the estimated
probability for a velocity vectoP (v’ |Y':T) and a uniform
distributionU. Usually, the higher the sharpness, the more
precise the velocity estimate [4], so we take the spatialmea
of the sharpnessfor the evaluation which is

T o 2 2 P W WP (29

In our momentary implementation evary ¢ W, W = 72,

is a pixel-wise discretized vector of signed integer veloci
ties, which means, the MAP estimator cannot achieve sub-
pixel accuracy.

4.1. Robustness against noise and outliers

To judge the effect of camera noise on the quality of the
observed likelihood (V'*) we use a synthetic test sequence
I%T consisting of a static background pattefi” €
[0;150] and a moving circular patterfi::” € [200; 255
with constant velocity, = 2 pixels/At. In a first trial we
train the corresponding parametgrfor increasing ground-
truth Gaussian nois¢; added on the image gray values of
the test sequence and fer= 0.1 andv = co. The spatial
weighting of the patches remains fixedoat= 5.

In Fig. 3 the calculated mean errarg for v = 0.1 ()
andr — oo () for Gaussian noise starting with standard

d
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Figure 3. Mean optical flow errorgy for increasing Gaussian
noises; and Salt&Pepper Noisé for different degrees of free-
domuy.
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Figure 4. Estimated standard deviatiansfor increasing Gaus-
sian noiser; on the gray-values of the imagés

deviationg; = 0 up tog; = 50 and in Fig. 4 the cor-
responding optimized standard deviatiégnsafter 10 EM-
iterations are shown. Comparing the two solid lines in Fig.
3, for Gaussian camera noise upsto= 15 the increase of
robustness for = 0.1 can clearly be seen. This is because
at the motion boundaries along the edge of the moving cir-
cular pattern better velocity estimates can be achieveth Wi
increasing Gaussian noise the assumption that the noise is
distributed like a Student’s t-distribution with heavylsai

is no longer sufficient and noisy gray value differences be-
tween corresponding image points are increasingly mis-
taken as outliers. For stronger Gaussian camera noise (star
ing from ; = 15) the limit v — oo which is equivalent

to a Gaussian distribution gives better estimation results
This is obvious because Gaussian noise was added to the



rates and even reduces for very large discontinuities. This

v v means if the ratio of the numbers of differently moving pix-
* vy — o0 . . . .
O v =01 els within a flow patch differs to a certain degree from one
oV then the pixels that belong to the lower number are treated
1° b ey ] 1 0.01 as outliers.
test sequence 4.2. Disambiguation of motion uncertainties
0.5% 1 1 0-005 Next the properties of the forward- and backward-priors
— a*(V), B(V?) and in particular the effects of the spa-
tiotemporal coherence assumption for the flow-field patches
0° 10 are discussed. For this purpose, a black squi&fe = 0
e T T = v is moved in front of a static background patteffi’ €
— - = : - - W [200; 255] with constant velocityv, = 2 pixels/At for
Figure 5. Mean errogy and estimated transition uncertainty T = 40 frames, fixed spatial extensiopg = 5, py = 35,
for increasing motion discontinuities along the border ofaving and an equally distributed initialisation of the postesior
object in front of a differently moving background. a(vg) = g*(v;ﬂ) = |W|’1. This synthetic sequence is

strongly confronted with the aperture problem along the

edges of the square and with the blank wall problem be-
synthetic scene and the errors at the motion boundaries ngayse of the untextured surface of the square. In addition,
longer carry weight for the mean errey. The optimiza-  pixels from the background appear and disappear along the
tion of the standard deviatiof; works nicely and reflects  motion boundaries. In Fig. 6 the flow fields for different
the ground-truth Gaussian noisg up to a bias (see Fig.  points in time estimated from the forward filtered poste-
4) which arises because of numerical errors in the warpingrior o (V'*), the backward filtered posterigi(V*), and the
procedure (If no Gaussian noise is addgd= 0 and the  two-filter smoothed posterioy(V*) are shown. At the be-

image /""" is warped with the ground truth flow fiefd*  ginning of forwarda(V'!) and backwargs* (V4°) filtering
to get!" using the M-step (20) with(v,) = 1 we getan  only at the corners of the square the correct velocity can be
estimated uncertainty af; = 9.59). estimated. With ongoing filtering the motion ambiguities

To evaluate the robustness properties of the Student’s t-along the edges and within the square are resolved and the
distribution further, the same procedure but for Salt&Repp square is continuously filled-in with improved velocity es-
noise is also shown in Fig. 3. Here, the mean error for timates. The combination of both in(V?) leads to even
increasing densityl € [0;0.25] of Salt&Pepper noise is  better results because at every timestep the optical flow is
plotted. Comparing the two dotted lines in Fig. 3, up to inferred from "having the whole image sequence in mind”
a density ofd = 0.25 the mean errogy is not affected for  with the best result for/(V2°) because both filtering and
v = 0.1. Forv — oo the performance deteriorates with in- smoothing have seen an equal amount of images (which is
creasing noise because the Gaussian noise assumption dogg images). This result is also reflected in Fig. 7 with the

not hold anymore for Salt&Pepper noise. mean sharpness plotted for the likelihood; (V'?), the for-
With a second example the behavior at motion discon- ward filtered posterion(V*), the backward filtered poste-

tinuities is evaluated. Here, a random pattdfl < rior 5*(V*) and the two-filter smoothed posterigtV'*).

[200; 255] moves with constant velocity, = 2 pixels/At Therefore, the most peaked distributions are gained from

in front of a moving background}” € [0;150] that two-filter smoothing.

changes its velocity, € [—2 pixels/At; 2 pixels/At] in As a first proof of principle for thenline filtering ca-

every trial. The more different the velocity of the back- pabilities of the framework the same sequence is used with
groundwv, compared to the object motion, the stronger  Gaussian noise af; = 10 added. In Fig. 8 the mean error
motion discontinuities are along the object borders and thee}, and the sharpness, are plotted over time. It can be
more the assumption for the flow field evolution is violated seen that the error continuously reduces and the sharpness
that the pixels move coherently within the spatial region increases.

py = 5. Fig. 5 shows the mean erray, for robust (J) Also for the Yosemite benchmark[1], as shown in Fig. 9,
and quadratic«) penalisation of differences between ve- a continuous reduction of the optical flow errors over time
locity vectors within flow-field patches. If background and can be achieved with the proposed probabilistic method. To
object move totally coherent then the erggr and also the  be able to extract subpixel accuracy the MMSE estimator
uncertaintiesr;, oy tend to zero. For the quadratic penali- instead of the MAP estimator is applied. Although, a very
sation the stronger the motion discontinuities get thedrigh simple region-based matching measurement (3) is used that
the error is. But for the robust penalisation the error satu- exploits the SSD only for signed integer velocities, the rel
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Figure 6. Snapshots of the forward and backward optical fitimations at different points in time for the complete olisd data of 40
images of a sequence. The nice filling-in properties of theehtor the regions that lack of texture (solution to the klarall problem)
and the disambiguation at moving edges (solution to thetaggeproblem) can clearly be noticed.

ative improvement of the flow-field estimate over time is 5. Conclusions and Future Work
quite good. For the online case the error reduces about
69.6%, frome’ = 39.5° toe.? = 12.1°, and for the offline
case about3.4%, frome), = 39.5° toe] = 10.5°. Recent
gradient-based optical flow techniques [3, 10] achieve bet-
ter accuracy on the Yosemite sequence but are not suited fo
image sequences where numerical differentiation is imprac
tical [1]. Our resultéz = 10.53° compares quite favorably
with other region-based matching methods described in [1]
with the lowest mean error afyy = 13.16° for Singh’s
method. Future work will investigate propagating beliefs
over a continuous flow-field domaii = R? to achieve
better sub-pixel accuracy.

We have presented a robust two-filter inference approach
to continuously estimate the optical flow of image se-
guences. It allows for the optimization of uncertaintiestth
Feflect the momentary transition noise of the scene move-
ment and the momentary camera noise on the pixel in-
tensities. Although the transition probability holds omly
simple spatiotemporal smoothness constraint the system is
able to resolve ambiguous local motion measurements and
demonstrates robust behavior at motion discontinuities. N
learned scene-specific prior knowledge is incorporated, bu
an adaptation to the scene by optimizing uncertainty param-
eters is realized. Because of the linear prediction assump-



tion rapidly changing movements corrupt the estimation re-

st sults. As long as the scene movement does not change (or
i eetitreaas 1 only slightly changes), the optical flow estimation impreve
*********H ”******ﬂé over time. Future investigations will include the replace-
2.6 *““DDDDDDDDDD Ooooooooooooo . ment of the measurement method for the observation likeli-
| DD“Zgg@ggzoo | hood with more accurate gradient-based methods that allow
,00°%° for a continuous flow-field domain and the adaptation of
24 Oooooo " 5’% DDDDDDD ] further parameters, like the robustness parameter
0’ ° i’ fo AcknowledgementsMarc Toussaint was supported by
i ° % 1 the German Research Foundation (DFG), Emmy Noether
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