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Abstract

Biological movement is built up of sub-blocks or motion primitives. Such
primitives provide a compact representation of movement which is also
desirable in robotic control applications. We analyse handwriting data to
gain a better understanding of primitives and their timings in biological
movements. Inference of the shape and the timing of primitives can be
done using a factorial HMM based model, allowing the handwriting to
be represented in primitive timing space. This representation provides a
distribution of spikes corresponding to the primitive activations, which can
also be modelled using HMM architectures. We show how the coupling of
the low level primitive model, and the higher level timing model during
inference can produce good reconstructions of handwriting, with shared
primitives for all characters modelled. This coupled model also captures
the variance profile of the dataset which is accounted for by spike timing
jitter. The timing code provides a compact representation of the movement
while generating a movement without an explicit timing model produces a
scribbling style of output.

1 Introduction

Movement planning and control is a very difficult problem in real-world applications. Cur-
rent robots have very good sensors and actuators, allowing accurate movement execution,
however the ability to organise complex sequences of movement is still far superior in bi-
ological organisms, despite being encumbered with noisy sensory feedback, and requiring
control of many non-linear and variable muscles. The underlying question is that of the
representation used to generate biological movement. There is much evidence to suggest
that biological movement generation is based upon motor primitives, with discrete muscle
synergies found in frog spines, (Bizzi et al., 1995; d’Avella & Bizzi, 2005; d’Avella et al.,
2003; Bizzi et al., 2002), evidence of primitives being locally fixed (Kargo & Giszter, 2000),
and modularity in human motor learning and adaption (Wolpert et al., 2001; Wolpert &
Kawato, 1998). Compact forms of representation for any biologically produced data should
therefore also be based upon primitive sub-blocks.
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(A) (B)

Figure 1: (A) A factorial HMM of a handwriting trajectory Yt. The parameters λ̄m
t indicate

the probability of triggering a primitive in the mth factor at time t and are learnt for one specific
character. (B) A hierarchical generative model of handwriting where the random variable c indicates
the currently written character and defines a distribution over random variables λm

t via a Markov
model over Gm.

There are several approaches to use this idea of motion primitives for more efficient robotic
movement control. (Ijspeert et al., 2003; Schaal et al., 2004) use non-linear attractor dy-
namics as a motion primitive and train them to generate motion that solves a specific task.
(Amit & Matarić, 2002) use a single attractor system and generate non-linear motion by
modulating the attractor point. These approaches define a primitive as a segment of move-
ment rather than understanding movement as a superposition of concurrent primitives. The
goal of analysing and better understanding biological data is to extract a generative model of
complex movement based on concurrent primitives which may serve as an efficient represen-
tation for robotic movement control. This is in contrast to previous studies of handwriting
which usually focus on the problem of character classification rather than generation (Singer
& Tishby, 1994; Hinton & Nair, 2005).

We investigate handwriting data and analyse whether it can be modelled as a superposition
of sparsely activated motion primitives. The approach we take can intuitively be compared
to a Piano Model (also called Piano roll model (Cemgil et al., 2006)). Just as piano music
can (approximately) be modelled as a superposition of the sounds emitted by each key we
follow the idea that biological movement is a superposition of pre-learnt motion primitives.
This implies that the whole movement can be compactly represented by the timing of each
primitive in analogy to a score of music. We formulate a probabilistic generative model that
reflects these assumptions. On the lower level a factorial Hidden Markov Model (fHMM,
Ghahramani & Jordan, 1997) is used to model the output as a combination of signals emitted
from independent primitives (each primitives corresponds to a factor in the fHMM). On the
higher level we formulate a model for the primitive timing dependent upon character class.
The same motion primitives are shared across characters, only their timings differ. We train
this model on handwriting data using an EM-algorithm and thereby infer the primitives and
the primitive timings inherent in this data. We find that the inferred timing posterior for a
specific character is indeed a compact representation for the specific character which allows
for a good reproduction of this character using the learnt primitives. Further, using the
timing model learnt on the higher level we can generate new movement – new samples of
characters (in the same writing style as the data), and also scribblings that exhibit local
similarity to written characters when the higher level timing control is omitted.

Section 2 will introduce the probabilistic generative model we propose. Section 3 briefly
describes the learning procedures which are variants of the EM-algorithm adapted to our
model. Finally in section 4 we present results on handwriting data recorded with a digi-
tisation tablet, show the primitives and timing code we extract, and demonstrate how the
learnt model can be used to generate new samples of characters.
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2 Model

Our analysis of primitives and primitive timings in handwriting is based on formulating a
corresponding probabilistic generative model. This model can be described on two levels.
On the lower level (Figure 1(A)) we consider a factorial Hidden Markov Model (fHMM)
where each factor produces the signal of a single primitive and the linear combination of
factors generates the observed movement Yt. This level is introduced in the next section
and was already considered in (Williams et al., 2006; Williams et al., 2007). It allows the
learning and identification of primitives in the data but does not include a model of their
timing. In this paper we introduce the full generative model (Figure 1(B)) which includes
a generative model for the primitive timing conditioned on the current character.

2.1 Modelling primitives in data

Let M be the number of primitives we allow for. We describe a primitive as a strongly
constrained Markov process which remains in a zero state most of the time but with some
probability λ̄ ∈ [0, 1] enters the 1 state and then rigorously runs through all states 2, ..,K
before it enters the zero state again. While running though its states, this process emits a
fixed temporal signal. More rigorously, we have a fHMM composed of M factors. The state
of the mth factor at time t is Sm

t ∈ {0, ..,Km}, and the transition probabilities are

P (Sm
t =b |Sm

t−1 =a, λ̄m
t ) =


λ̄m

t for a = 0 and b = 1
1− λ̄m

t for a = 0 and b = 0
1 for a 6= 0 and b = (a + 1) mod Km

0 otherwise

. (1)

This process is parameterised by the onset probability λ̄m
t of the mth primitive at time t.

The M factors emit signals which are combined to produce the observed motion trajectory
Yt according to

P (Yt |S1:M
t ) = N (Yt,

M∑
m=1

Wm
Sm

t
, C) , (2)

where N (x, a, A) is the Gaussian density function over x with mean a and covariance matrix
A. This emission is parameterised by Wm

s which is constrained to Wm
0 = 0 (the zero state

does not contribute to the observed signal), and C is a stationary output covariance.

The vector Wm
1:Km

= (Wm
1 , ..,Wm

Km
) is what we call a primitive and – to stay in the analogy

– can be compared to the sound of a piano key. The parameters λ̄m
t ∈ [0, 1] could be

compared to the score of the music. We will describe below how we learn the primitives
Wm

s and also adapt the primitive lengths Km using an EM-algorithm.

2.2 A timing model

Considering the λ̄’s to be fixed parameters is not a suitable model of biological movement.
The usage and timing of primitives depends on the character that is written and the timing
varies from character to character. Also, the λ̄’s actually provide a rather high-dimensional
representation for the movement. Our model takes a different approach to parameterise
the primitive activations. For instance, if a primitive is activated twice in the course of the
movement we assume that there have been two signals (“spikes”) emitted from a higher
level process which encode the activation times. More formally, let c be a discrete random
variable indicating the character to be written, see Figure 1(B). We assume that for each
primitive we have another Markovian process which generates a length-L sequence of states
Gm

l ∈ {1, .., R, 0},

P (Gm
1:L | c) = P (Gm

1 | c)
L∏

l=2

P (Gm
l |Gm

l−1, c) . (3)

The states Gm
l encode which primitives are activated and how they are timed, as seen in

Figure 2(b). We now define λm
t to be a binary random variable that indicate the activation
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Figure 2: (a) Illustration of equation (4): The Markov process on the states Gm
l emits Gaussian

components to the onset probabilities P (λm
t = 1). (b) Scatter plot of the MAP onsets of a single

primitive for different samples of the same character ‘p’. Gaussian components can be fit to each
cluster.

of a primitive at time t, which we call a “spike”. For a zero-state Gm
l = 0 no spike is

emitted and thus the probability of λm = 1 is not increased. A non-zero state Gm
l = r adds

a Gaussian component to the probabilities of λm
t = 1 centred around a typical spike time

µm
r and with variance σm

r ,

P (λm
t =1 |Gm

1:Km
, c) =

L∑
l=1

δGm
l >0

∫ t+0.5

t−0.5

N (t, µm
Gm

l
, σm

Gm
l

) dt . (4)

Here, δGm
l >0 is zero for Gm

l = 0 and 1 otherwise, and the integral essentially discretises the
Gaussian density. Additionally, we restrict the Markovian process such that each Gaussian
component can emit at most one spike, i.e., we constrain P (Gm

l |Gm
l−1, c) to be a lower

triangular matrix. Given the λ’s, the state transitions in the fHMM factors are as in equation
(1), replacing λ̄ by λ.

To summarise, the spike probabilities of λm
t = 1 are a sum of at most L Gaussian components

centred around the means µm
l and with variances σm

l . Whether or not such a Gaussian
component is present is itself randomised and depends on the states Gm

l . We can observe at
most L spikes in one primitive, the spike times between different primitives are dependent,
but we have a Markovian dependency between the presence and timing of spikes within a
primitive. The whole process is parameterised by the initial state distribution P (Gm

1 | c),
the transition probabilities P (Gm

l |Gm
l−1, c), the spike means µm

r and the variances σm
r . All

these parameters will be learnt using an EM-algorithm.

This timing model is motivated from results with the fHMM-only model: When training
the fHMM on data of a single character and then computing the MAP spike times using
a Viterbi alignment for each data sample we find that the MAP spike times are roughly
Gaussian distributed around a number of means (see Figure 2(b)). This is why we used a
sum of Gaussian components to define the onset probabilities P (λ=1). However, the data
is more complicated than provided for by a simple Mixture of Gaussians. Not every sample
includes an activation for each cluster (which is a source of variation in the handwriting)
and there cannot be more than one spike in each cluster. Therefore we introduced the
constrained Markov process on the states Gm

l which may skip the emission of some spikes.

3 Inference and learning

In the experiments we will compare both the fHMM without the timing model (Figure 1(A))
and the full model including the timing model (Figure 1(B)).

In the fHMM-only model, inference in the fHMM is done using variational inference as
described in (Ghahramani & Jordan, 1997). Using a standard EM-algorithm we can train
the parameters W , C and λ̄. To prevent overfitting we assume the spike probabilities
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Figure 3: (a) Reconstruction of a character from a training dataset, using a subset of the primitives.
The thickness of the reconstruction represents the pressure of the pen tip, and the different colours
represent the activity of the different primitives, the onsets of which are labelled with an arrow.
The posterior probability of primitive onset is shown on the left, highlighting why a spike timing
representation is appropriate. (b) Plots of the 10 extracted primitives, as drawn on paper. (c)
Generative samples using a flat primitive onset prior, showing scribbling behaviour of uncoupled
model.

are stationary (λm
t constant over t) and learn only a single mean parameter λ̄m for each

primitive.

In the full model, inference is an iterative process of inference in the timing model and
inference in the fHMM. Note that variational inference in the fHMM is itself an iterative
process which recomputes the posteriors over Sm

t after adapting the variational parameters.
We couple this iteration to inference in the timing model in both directions: In each iteration,
the posterior over Sm

t defines observation likelihoods for inference in the Markov models Gm
l .

Inversely, the resulting posterior over Gm
l defines a new prior over λ’s (a message from Gm

l to
λm

t ) which enter the fHMM inference in the next iteration. Standard M-steps are then used
to train all parameters of the fHMM and the timing model. In addition, we use heuristics to
adapt the length Km of each primitive: we increase or decrease Km depending on whether
the learnt primitive is significantly different to zero in the last time steps. The number of
parameters used in the model therefore varies during learning, as the size of W depends
upon Km, and the size of G depends upon the number of inferred spikes.

In the experiments we will also investigate the reconstruction of data. By this we mean
that we take a trained model, use inference to compute the MAP spikes λ for a specific
data sample, then we use these λ’s and the definition of our generative model (including the
learnt primitives W ) to generate a trajectory which can be compared to the original data
sample. Such a reconstruction can be computed using both the fHMM-only model and the
full model.

4 Results

4.1 Primitive and timing analysis using the fHMM-only

We first consider a data set of 300 handwritten ‘p’s recorded using an INTUOS 3 WA-
COM digitisation tablet http://www.wacom.com/productinfo/9x12.cfm, providing trajec-
tory data at 200Hz. The trajectory Yt we model is the normalised first differential of the
data, so that the data mean was close to zero, providing the requirements for the zero
state assumption in the model constraints. Three dimensional data was used, x-position,
y-position, and pressure. The data collected were separated into samples, or characters,
allowing each sample to be separately normalised.

Our choice of parameter was M = 10 primitives and we initialised all Km = 20 and con-
strained them to be smaller than 100 throughout learning.

We trained the fHMM-only model on this dataset. Figure 3(a) shows the reconstruction of a
specific sample of this data set and the corresponding posterior over λ’s. This clean posterior
is the motivation for introducing a model of the spike timings as a compact representation
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Figure 4: (a) Reconstructions of ‘p’s using the full model. (b) Histogram of the reconstruction
error, which is 3-dimensional pen movement velocity space. These errors were produced using over
300 samples of a single character. (c) Generative samples using the full generative model (Figure
1(B)).

of the data. Equally the reconstruction (using the Viterbi aligned MAP spikes) shows the
sufficiency of the spike code to generate the character. Figure 3(b) shows the primitives Wm

(translated back into pen-space) that were learnt and implicitly used for the reconstruction
of the ‘p’. These primitives can be seen to represent typical parts of the ‘p’ character; the
arrows in the reconstruction indicate when they are activated.

The fHMM-only model can be used to reconstruct a specific data sample using the MAP λ’s
of that sample, but it can not ‘autonomously’ produce characters since it lacks a model of
the timing. To show the importance of this spike timing information, we can demonstrate
the effects of removing it. When using the fHMM-only model as a generative model with
the learnt stationary spike probabilities λ̄m the result is a form of primitive babbling, as can
be seen in Figure 3(c). Since these scribblings are generated by random expression of the
learnt primitives they locally resemble parts of the ‘p’ character.

The primitives generalise to other characters if the training dataset contained sufficient
variation. Further investigation has shown that 20 primitives learnt from 12 character types
are sufficiently generalised to represent all remaining novel character types without further
learning, by using a single E-step to fit the pre-learnt parameters to a novel dataset.

4.2 Generating new characters using the full generative model

Next we trained the full model on the same ‘p’-dataset. Figure 4(a) shows the reconstruc-
tions of some samples of the data set. To the right we see the reconstruction errors in
velocity space showing at many time points a perfect reconstruction was attained. Since
the full model includes a timing model it can also be run autonomously as a generative
model for new character samples. Figure 4(c) displays such new samples of the character
‘p’ generated by the learnt model.

As a more challenging problem we collected a data set of over 450 character samples of
the letters a, b and c. The full model includes the written character class as a random
variable and can thus be trained on multi-character data sets. Note that we restrict the
total number of primitives to M = 10 which will require a sharing of primitives across
characters. Figure 5(a) shows samples of the training data set while Figure 5(b) shows
reconstructions of the same samples using the MAP λ’s in the full model. Generally, the
reconstructions using the full model are better than using the fHMM-only model. This can
be understood investigating the distribution of the MAP λ’s across different samples under
the fHMM-only and the full model, see Figure 6. Coupling the timing and the primitive
model during learning has the effect of trying to learn primitives from data that are usually in
the same place. Thus, using the full model the inferred spikes are more compactly clustered
at the Gaussian components due to the prior imposed from the timing model (the thick
black lines correspond to Equation (4)).
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Figure 5: (a) Training dataset, showing 3 character types, and variation. (b) Reconstruction of
dataset using 10 primitives learnt from the dataset in (a). (c) Generative samples using the full
generative model (Figure 1(B)).
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Figure 6: (a) Scatter plot of primitive onset spikes for a single character type across all samples
and primitives, showing the clustering of certain primitives in particular parts of a character. The
horizontal bars separate the results for different primitives. (b) Scatter plot of spikes from same
dataset, with a coupled model, showing suppression of outlying spikes and tightening of clusters.
The thick black lines displays the prior over λ’s imposed from the timing model via Equation (4).

Finally, we run the full model autonomously to generate new character samples, see Figure
5(c). Here the character class, c is first sampled uniform randomly and then all learnt
parameters are used to eventually sample a trajectory Yt. The generative samples show
interesting variation while still being readably a character.

5 Conclusions

In this paper we have shown that it is possible to represent handwriting using a primitive
based model. The model consists of a superposition of several arbitrary fixed functions.
These functions are time-extended, of variable length (during learning), and are superim-
posed with learnt offsets. The timing of activations is crucial to the accurate reproduction of
the character. With a small amount of timing variation, a distorted version of the original
character is reproduced, whilst large (and coordinated) differences in the timing pattern
produce different character types.

The spike code provides a compact representation of movement, unlike that which has pre-
viously been explored in the domain of robotic control. We have proposed to use Markov
processes conditioned on the character as a model for these spike emissions. Besides con-
tributing to a better understanding of biological movement, we hope that such models will
inspire applications also in robotic control, e.g., for movement optimisation based on spike
codings.
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An assumption made in this work is that the primitives are learnt velocity profiles. We have
not included any feedback control systems in the primitive production, however the presence
of low-level feedback, such as in a spring system (Hinton & Nair, 2005) or dynamic motor
primitives (Ijspeert et al., 2003; Schaal et al., 2004), would be interesting to incorporate into
the model, and could perhaps be done by changing the outputs of the fHMM to parameterise
the spring systems rather than be Gaussian distributions of velocities.

We make no assumptions about how the primitives are learnt in biology. It would be
interesting to study the evolution of the primitives during human learning of a new character
set. As humans become more confident at writing a character, the reproduction becomes
faster, and more repeatable. This could be related to a more accurate and efficient use
of primitives already available. However, it might also be the case that new primitives
are learnt, or old ones adapted. More research needs to be done to examine these various
possibilities of how humans learn new motor skills.
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