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Abstract— Generating a fluent motion of approaching, grasp-
ing and lifting an object comprises a number of problems
which are typically tackled separately. Some existing research
specializes on the optimization of the final grasp posture based
on force closure criteria neglecting the motion necessary to
approach this grasp. Other research specializes on motion opti-
mization including collision avoidance criteria, but typically not
considering the subsequent grasp as part of the optimization
problem. In this paper we aim to combine existing techniques for
grasp optimization, trajectory optimization, and attractor-based
movement representation, into a comprehensive framework that
allows us to efficiently compute a fluent approach and grasping
motion. The feasibility of the proposed approach is shown in
simulation studies and experiments with a humanoid robot.

I. I NTRODUCTION

In robotics, grasping objects in a daily environment poses
a lot of challenging questions. Many different criteria need
to be fulfilled to successfully reach for and grasp an object.
First, the initial robot posture may be far from a feasible
grasp posture. Hence we need to plan a collision-free reaching
motion towards a feasible grasp. A classical solution to this is a
motion planning technique towards a predefined goal posture.
Second, objects typically can be grasped at many different
locations and with different grasp strategies. The best grasp
choice clearly depends on the initial posture of the robot and
the obstacles in the environment. Hence, predefining a grasp
position and using a classical motion planner is a suboptimal
solution. In essence, we are faced with thecoupled problem of
grasp choice and reaching motion planning. In this paper we
solve this problem by proposing an object representation in
terms of an object-specific task map which can be learnt from
data and, during movement generation, efficiently coupled into
a movement optimization process.

Most literature on grasp optimization focuses on the grasp
itself, isolated from the reaching movement. For instance,
[1] review the various literature on defining grasp quality
measures, [2] learn which grasp positions are feasible for
various objects, [3] efficiently compute good grasps depending
on how the objects shall be manipulated, and [4] simplify
the grasp computation based on abstracting objects into shape
primitives. The coupling to the problem of reaching motion
optimization is rarely addressed. In [5], reaching and grasping
is realized by reactive control primitives. A recent approach
[6] makes a step towards solving the coupled problem by
including an “environment clearance score” in the grasp eval-
uation measure. In that way, grasps are preferred which are
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not prohibited by immediate obstacles directly opposing the
grasp. Still, the full reaching motion is neglected in the grasp
evaluation. A sampling-based movement planning approach
based on an attractor description has been proposed in [7].
The authors focus on planning the reaching movement, while
the grasp itself is neglected.

Our approach is based on directly coupling the grasp choice
problem into the motion optimization procedure, and thereby
solving both coupled problems in an integrated framework.
The model-based motion optimization is based on recent work
which optimizes trajectories based on a sequence of task space
attractors [8]. A more probabilistic view on this is given in[9].

If we could predefine a desired pregrasp posture as the
goal of the reaching movement, this optimization technique
could readily compute optimal reaching motions. However,
since there is many different choices of pregrasps we need to
adapt the method.

A key pre-requisite for this is to learn object-specifictask
maps which represent the set of feasible grasps for an object.
This is similar to the approach in [10] where a robot-centered
representation of the feasible workspace is learnt, and to the
object-specific “valid grasp sets” in [6]. Once such a map
is learnt, it defines agoal set in a certain task space of the
reaching motion rather than an explicit goal position. Hence,
we generalize the motion optimization method to cope with
general goal sets in arbitrary task spaces.

The previous approaches to learning maps of the workspace
or of feasible grasps are based on exhaustive sampling over
a grid. We build on previous work [11] and propose to use
a more efficient technique to learn task maps. It assumes a
rough shape estimate of the object, which for instance can be
acquired by computer vision.
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Figure 1:
Functional elements of the presented movement generation
scheme

The paper is organized according to Figure 1, which shows



the functional elements of our approach. Sampling and clus-
tering task maps can be performed offline in simulations or
experiments. The underlying methods will be explained in
Section II. Section III revisits briefly the motion generation
and optimization system, which is based on ASIMO’s whole
body motion control framework [12]. We will then introduce
mechanisms to incorporate acquired task maps into the motion
generation scheme. Section IV presents simulation studiesand
experimental results in a reach-grasp scenario. We find thatthe
resulting choice of grasp nicely depends on the efficiency of
the reaching motion towards the grasp from the initial robot
posture. To summarize, the key novelties of our approach are:

• We propose an efficient learning scheme of task maps to
rapidly explore the set of feasible grasps for an object.

• We learn object-specific task maps as a representation of
a goal manifold in a task space, and cluster them into
qualitatively different solution spaces.

• We solve the coupled problem of grasp choice and
reaching motion optimization. This leads to a preference
of grasps which are easy to reach (reachable with little
cost) and thereby a disambiguation of grasp choice for
manifolds of feasible grasps.

• We apply the proposed methods in reach and grasp
experiments with a humanoid robot.

II. TASK MAPS

With the termtask map, we refer to a map that comprises
a set of sampled control parameters, each associated with a
scalar quality measure. In previous work [11], we proposed for
instance to represent a set of hand-object pregrasp poses with
respect to a failure/success criterion. These maps generally
replace the concept of one explicit reaching target by the
concept of a whole manifold of feasible targets in the task
space. This relaxes the constraints imposed on the subsequent
movement optimization process, which is particularly benefi-
cial to improve other criteria governing the movement. If the
chosen quality measure can be determined with the robot’s
sensors, it is further possible to build up or refine task maps
in real experiments.

In the following, we will focus on simple “power grasps”.
However, the approach is not limited to a certain grasp. It
is possible to represent different grasp types (e. g. precision
grasps etc.) in several task maps. The concept even holds for
bi-manual grasp strategies.

A. Task map acquisition with force closure quality measure

Learning a task map requires to explore many different
grasps on a specific object. The first question is how different
grasp trials are sampled. The second how each trial is eval-
uated. Previous approaches consider an exhaustive sampling
over a grid [6]. If the grasp space is high dimensional (e.g.,
6-dimensional if grasps are parameterized by the preshape po-
sition and orientation) a grid-based sampling approach is rather
inefficient. In [11] it was proposed to use Rapidly exploring
Random Trees for the sampling. While this technique is very
fast, it is hard to generate a very dense set of samples. Further,

when the set of feasible grasps separates into disjoint clusters,
RRTs typically only explore one of the clusters.

In this paper we combine some of the heuristics proposed
in [6] and [13] in a sampling based approach. We assume
that the robot can (visually) acquire a rough estimate of the
object volume. Using the approximate shape information we
can sample a random point from the volume and compute a
pregrasp posture. For this, we initialize the hand inside the
object volume. The hand is then retracted so as to get in
palm contact with the object. Subsequently the finger jointsare
closed until they contact the objects surface. For this grasp, we
collect the following data: (1) the hand position and orientation
in coordinates relative to the object frame – this 6D point
g ∈ R

6 will become the control parameters in the task space.
(2) The contact points, normals and penetration between the
finger segments and the object – this information is used to
compute a quality measure based on force closure, which is
a well-known measure determining the ability of a grasp to
resist external forces [14].

While this learning phase can be executed on a real robot,
we use realistic simulations to speed up the process. The force
closure is computed from simulated tactile sensors positions
and normals, excluding those that have zero pressure. In that
way we collect a data set consisting of control parameters in
R

6 and the corresponding force closure scalars.

Figure 2:
Disjoint clusters in sampled task map. Solutions with the
thumb and palm pointing upwards have been left out.

B. Clustering into contiguous regions

For many realistic objects, the task map will consist of
disjoint clusters which form qualitatively different solutions.
Consider for instance a simple basket with handle that can be
grasped on the top bar or on each of the side bars. The orienta-
tions and positions of feasible grasps change discontinuously
from bar to bar, such forming a set of clusters. We employ
an Euclidean distance based hierarchical clustering approach
to extract a set of qualitatively different solutions. The chosen



algorithm does not make an a priori assumption on the number
of clusters.

Figure 2 displays the extracted clusters for the given ex-
ample. Clusters are formed by grasps applied to the left,
right and top handle of the basket. In the figure, only the
position elements of the 6-dimensional task map parameters
are visualized. We only consider clusters of samples that have
a significant size, such eliminating outliers that compriseonly
a few samples.

III. O NLINE MOVEMENT GENERATION

In this section we refer to the lower part of Figure 1. Other
than the processing steps in Section II, the online movement
generation has to be computationally efficient in order to find
smooth and collision-free movements within interaction time.

The underlying robot control model is described in the
form of a tree structure. The individual links are connected
by degrees of freedom (joints) or fixed transformations. The
tree may also comprise objects from the environment, so that
task descriptors can also account for robot-object relations. We
define a task as the relative movement of two tree nodes1 and
such can compute the task velocity asẋtask = ẋef − ẋbase.
Indicesef andbase denote the effector body and its reference,
respectively.

A task can be described in different ways, for instance
as linear position, inclination, spherical and Euler angles,
etc. A task element may comprise just individual parts of
such a description, such as the vertical element of a 3-D
position. Based on this, we derive an augmented Jacobian
holding all controlled task elements (see also [12], [15]).The
underlying whole body motion control is based on the scheme
by Liegeois [16], the equations are given in Table I, eq. (A.2).
Redundancies are resolved by mapping the gradient of an
optimization criterion (joint limit avoidance, etc.) intothe null
space of the motion.

The trajectories are generated using a dynamical systems
approach. We apply the simple attractor system in eq. (A.4)
(see [12] for details) to the elements of the augmented task
vector. The same attractor dynamics are applied to other
controllers that are not related to the inverse kinematics,such
as “closing the fingers to a power grasp”, etc.

A. Optimization-based motion generation

To generate a joint-limit and collision free reaching motion,
we apply the attractor-based optimization scheme presented in
[8]. It incorporates the employed controller (eq. (A.2) ) into
the optimization process. The key idea is to optimize a scalar
cost function by finding an optimal sequence of task space
attractor vectors which determine the robots motion.

We consider an integral cost function over the movement in
the general form of eq. (A.1). Here,q ∈ R

n is the joint state
vector of then-DoF robot,x ∈ R

d is the task state vector in
the augmented task space,x∗

1:K ∈ R
d is a series of attractor

points, andr ∈ R
d an additional smoothing variable (see [8]

1There are other special cases for tasks, for instance the overall linear and
angular momentum, etc.

for details). The functiong subsumes cost criteria in theq-
space which depend on single time steps. It is suited to account
for costs that depend on the posture of the robot. We formulate
criteria to account for the distance of the final end-effector
state to a target, collisions and proximities between collidable
objects throughout the trajectory, and joint limit proximities.
The functionh subsumes costs for transitions inq-space and
depends on the current and the previous time steps. It is suited
to formulate criteria like the global length of the trajectory in
q-space and for the end effector velocity at the end of the
trajectory.

The movement generation process can be summarized by
equations (A.2) - (A.5). Since the dependencies between
attractor points and the task space trajectories are determined
by the attractor dynamics (Eqs. (A.13)-(A.17)) and the de-
pendencies between task and joint space is determined by the
whole body motion control, we can derive analytical gradients
to relate the attractor point location to the chosen cost function:

dC

dx∗
=

∑

childrenyi of x∗

∂yi

∂x∗

dC

dyi

. (1)

The partial derivatives are given in part d) of Table I.
The gradient computation is carried out in a forward and
a backward propagation step, for details see [8]. We use
an efficient gradient-based optimization method that provides
feasible solutions within the range of 0.5 to 2 seconds – which
is below the critical “patience” threshold for the interaction
with humans.

B. End-state comfort initialization

To find an appropriate initialization for the optimization
problem, the target posture at the end of the movement is
computed according to each cluster center, respectively. This
requires to solve the inverse kinematics for the respective
task vector, which can be done efficiently with regression
techniques.

Figure 3: Goal postures according to task map clusters

The different target postures are then compared by anend-
state comfort value, motivated from psychological studies. It
is based on the joint limit cost (squared sum of the deviations
of joint angles from their zero position). The best solution
determines the target task vector to initialize the optimization
problem. The attractor vector sequence is linearly interpolated
between initial posture and the chosen goal task vector.



a) cost function:

C =
TX

t=0

g(qt) +

T−1X
t=0

h(qt, qt+1) , (A.1)

b) movement generation:

qt+1 = qt + J#
t (xt+1 − φ(qt)) − α (I−J#

t Jt) W−1 (∂qHt)
T (A.2)

xt+1 = xt + π(xt, xt−1, rt+1) (A.3)

π(xt, xt−1, rt+1) = a(rt+1 − xt) + b(xt − xt−1) (A.4)

rt = (1 − τ)x∗

k + τx∗

k+1 , k = ⌊tK/T ⌋ , τ =
t − kT/K

T/K
(A.5)

c) chain rules following (1):

dC

dqt

=
∂C

∂qt

+
∂qt+1

∂qt

dC

dqt+1

(A.6)

dC

dxt

=
∂qt

∂xt

∂C

∂qt

+
∂xt+1

∂xt

dC

dxt+1

+
∂xt+2

∂xt

dC

dxt+2

(A.7)

dC

drt

=
∂xt

∂rt

dC

dxt

(A.8)

dC

dx∗

l

=
X

t

∂rt

∂x∗

l

dC

drt

(A.9)

d) partial derivatives:

∂C

∂qt

= g′(qt) + h′1(qt, qt+1) + h′2(qt−1, qt) (A.10)

∂qt+1

∂qt

= I − J#
t Jt + (∂qJ#

t )(xt+1 − φ(qt))

− α (I−J#
t Jt) W−1 (∂2

q Ht)
T + α ∂q(J#

t Jt) W−1 (∂qHt)
T

(A.11)

∂qt

∂xt

= J#
t−1 (A.12)

∂xt+1

∂xt

= 1 + π′1(xt, xt−1, rt+1) (A.13)

∂xt+2

∂xt

= π′2(xt+1, xt, rt+2) (A.14)

π′1(xt, xt−1, rt+1) = −a + b , π′2(xt, xt−1, rt+1) = −b
(A.15)

∂xt

∂rt

= π′3(xt−1, xt−2, rt) (A.16)

∂rt

∂x∗

l

= (1−τ)δl=k + τδl=k+1 , τ andk depend ont as above

(A.17)

TABLE I

FUNCTIONAL NETWORK OF THE CONTROL ARCHITECTURE.

It should be noted that this procedure ignores the course
of the overall trajectory, but rather considers a ”snapshot” of
the final pose. It is therefore not guaranteed that the chosen
initialization will lead to the global optimum. However, it
considers the relative pose between robot and object. Further,
it yields an estimate of the approximate target pose, and
whether the target can be reached or not. Figure 3 illustrates
the initializations for a given location of the basket on the
table.

C. Integration into optimization procedure

In the following, we extend the optimization scheme to in-
corporate the learnt task maps seamlessly into the optimization
process. The key idea is to formulate criteria to account for
both the proximity to the nearest solution in the task map
manifold and the quality of the resulting grasp.

We therefore formulate two optimization criteria: Theprox-
imity criterion enforces a smooth and collision free movement
into the manifold of feasible grasps represented in the map.
It so to say “pulls” the final grasp towards the manifold of
valid preshape postures in the course of the optimization. The
quality criterion evaluates the quality of the final grasp. It is
based on the force-closure quality measure for each task map
sample and guides the movement towards a preshape posture
that leads to a high-quality grasp.

1) Proximity criterion: The proximity will replace the
distance of the target end-effector state and contribute tothe
cost functiong in eq. (A.1) during motion optimization. Given
the final task state at the last time step T (e.g., the hand position
and orientation relative to the object), we compute the nearest
elementxmap in the task map. Now we define a cost

gp = (xrel
t − xmap)

T Wmap(x
rel
t − xmap) (18)

The metricWmap accounts for the difference in the linear and
angular units. The nearest neighbor in the task map to the hand
is computed with the approximate nearest neighbor algorithm
described in [17]. For this, the hand position and orientation
xrel

t is represented in the reference frame of the object. The
gradient is

∂gp

∂xrel
t

= 2(xrel
t − xmap)

T Wmap (19)

2) Quality criterion: To account for the quality of the grasp
that has been determined with the force closure measure,
each sample of the task map is interpreted as a Gaussian
fi = |2πΣ−1

i |−
1

2 exp(− 1

2
dΣ,i) with a mean vectorµ and some

small neighborhooddΣ,i = (xi − µ)T Σi(xi − µ), determined
by covariance matrixΣ−1. The overall cost is computed
as a weighted mixture of Gaussians considering the quality
measure (force closure)wi associated with each sample:

gq =
1∑
|fi|

∑
wifi (20)

We skip the gradient for brevity. This model has been chosen
to account for the noise associated with the chosen force
closure value. The noise is mainly due to the discontinuous
number of contacts, the determination of the contact points



and some other aspects. The mixture model smoothens the
criterion in a local region, such assuring a smooth gradient.
This is illustrated in Figure 4, where we plot the grasp quality
over a rotation angle of the hand with respect to a basket
handle.
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Figure 4:
Raw and smoothened force closure. The force closure is
negative for stable grasps.

While the proximity criterion tries to pull the final hand
posture towards the task map manifold, the quality criterion
only becomes active when the final hand posture is close to
the manifolds proximity. It tries to level the target pose toward
the best force closure. Figure 5 shows the two cost terms over
the time course of a trajectory. The proximity cost decreases
towards converging to the task manifold, the quality cost only
shows activity when getting close to its proximity.
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Figure 5:
Proximity and quality costs over a trajectory. During optimiza-
tion, they are evaluated in the last time step of the movement.

To account for the formulated criteria during optimization,
their gradient has to be derived with respect to the state vector

according to termg′ in eq. (A.10). For this, we can rewrite
the differential kinematics as

∂gmap

∂qt

=
∂(gp + gq)

∂xrel
t

∂xrel
t

∂qt

=
∂(gp + gq)

∂xrel
t

Jrel (21)

with Jrel being the Jacobian of the task vector relating to the
relative hand-object coordinates of the task map. This means
that the task map can be represented in different coordinates
than we chose to control the system. We can for instance
represent the task map in relative hand-object coordinatesand
control the movement in global coordinates.

Both quality and proximity terms are only evaluated in the
last time stept = T of the trajectory, since this corresponds
to the hands final grasp pose. Their effect is back-propagated
in time and on the attractor point locations with eqs. (A.11)
ff. The nearest neighbor query only needs to be carried out
once in each optimization iteration which is advantageous in
terms of computational efficiency.

IV. EXPERIMENTS

We have set up the control model according to the ex-
periments shown in Figure 7. It comprises a model of the
humanoid robot ASIMO, a table and a basket with a U-
shaped handle. The robots upper body has the 6 rigid body
degrees of freedom. Each leg is modeled with 6, and each
arm with 5 dofs. The head has 2 dofs (pan and tilt). For the
fingers, we introduced a one degree of freedom controller that
drives the finger joints according to the coupled spring-tendon
mechanism of ASIMO’s hand.

In addition to theproximity and quality criteria described
in Section III, we employ analytical gradients for joint limit
avoidance, the overall length of the trajectory in joint space,
the difference to a zero-velocity at the end of the movement,
and a detailed collision model: The collisions are considered
with a computationally efficient shape primitive model [18]
of the respective segments. They are incorporated into the
optimization with a distance-to-collision gradient presented in
[8]. We consider collisions for the hand and finger segments,
the lower arms, the body, the thighs and the environment
objects table and basket. In our implementation, we can assign
a distance threshold for each object pair. The self-collisions
between the robot segments as well as the collisions between
the robot and the table are penalized if they get closer than
0.1 m. The collisions between hand, fingers and basket are
penalized if they get closer than 2 mm. The overall collision
model comprises 30 body pairs.

The following task variables are subject to the optimiza-
tion: Right hand position and orientation (2D, polar angles)
between hand and basket. Further, we constrained the hor-
izontal components of the center of gravity and the foot
transformations. Another constraint has been added to the gaze
direction vector: It will continuously travel towards the center
of the top basket handle. Overall, the dimensionality of the
task is 21. The employed task map has been sampled with
1000 valid grasps. The best initialization of the trajectory is
determined according to Section III-B. Figure 3 illustrates the



three potential target postures that correspond to the respective
cluster. The movement is initialized with a sequence of 12
21-dimensional attractor task vectors. The initial attractor
sequence is interpolated linearly between the robots initial
posture and the task state associated with the mean of the
selected cluster. The movement shall be completed within 3
seconds.

Figure 6: Cost terms during optimization run

The progression of the cost terms during the simulation run
is depicted in Figure 6. The costs massively decrease in the
beginning, since the initial trajectory leads to many collisions,
violates some joint limits and doesn’t exactly reach the task
map manifold. After a few iterations, it rapidly converges to a
minimum. The enlarged subimage image in the figure shows
that 1) the target task manifold is exactly reached after approx.
15 iterations (red line) and 2) the grasp quality converges after
approx. 25 iterations (light blue line).

Figure 5 shows the proximity and quality cost over the
optimal trajectory. It can be seen that initially, the hand moves
away from the table edge, and then moves upward in an arc
around the table. The finally chosen grasp position is on the
left side of the basket handle, which seems to lead to lower
costs than to grasp the handle at its center.

Due to the local character of the chosen gradient-based
optimization scheme and its parametrization, it turned outthat
the visually realistic modeling of objects is not always suitable
for the collision avoidance mechanism. It should rather be
avoided to shape attractor and repeller “sinks”. In such cases,
the solution sometimes gets stuck in local minima, or “tunnels”
through objects, leading to unrealistic results. One example is
the collision model of the basket, depicted in the top part of
Figure 5. We had to insert a repelling object, since in some
cases the hand got trapped under the handle.

We devised a set of experiments applying the scheme to
reach for and grasp a basket at different locations on the table.
In order to autonomously grasp the basket handle, the robot’s
fingers have been equipped with tactile sensors based on a

force resistive measurement principle (FSR sensors). It turned
out to be difficult to sense the initial contact between hand and
object. This is due to the sensor response characteristics.It is
necessary to exceed a minimum pressure threshold in order
to get a signal. This is difficult when touching lightweight
objects. We therefore integrated an additional proximity sensor
based on a capacitive measurement principle on the palm.
It already reacts shortly before the contact, which makes it
possible to close the fingers without hitting the object. The
proximity measurement depends on the material of the sensed
object. We adjusted it to react to the basket at a distance of
approx. 1.5 cm. When the basket is sensed, the fingers are
automatically closed.

Figure 7 shows three representative movement sequences.
In the upper row of the figure, the robot reaches and grasps for
the inner handle of the basket. During reaching, it avoids tohit
the other handles and finally shifts its hand to the lower part
of the handle before closing the fingers. In the middle row, the
basket has been moved away in frontal direction. The optimal
pregrasp was found on the right end of the baskets top handle.
In further experiments, it turned out that the top handle was
preferably grasped when the basket was located farther away
in front of the robot. In the lower row, the basket was moved
to the left side. In this location, the movement optimization
was initialized with the right handle. In this case, the handdid
not have to move under the top handle, which resulted in a
more “relaxed” movement.

V. CONCLUSION

We presented a framework for fluent reaching and grasping
of objects with a humanoid robot. The coupled problem
of reaching and grasping is solved by incorporating object-
specific task maps directly into the movement optimization
process. These maps represent a functional characterization of
objects in terms of their grasp affordances, i. e. a manifoldof
feasible pregrasp poses.

We proposed a method to efficiently sample such maps in
simulations, and to preprocess them to extract qualitatively
different pregrasp postures. The proposed task maps contain
both information about the proximity to a valid solution
manifold and the quality of the grasp, represented by its force
closure. Since the map parameters are computed from values
that can be extracted by sensor data, this permits to generate
or refine task maps also in real experiments.

The task map concept has been integrated in an online whole
body motion control and optimization framework. It efficiently
couples collision-free reaching with grasping, leading toa
preference for grasps which are easy to reach and exhibit
a high quality. A selection mechanism chooses the most
appropriate initialization for the movement optimization, such
adding a more global perspective.

Future work will focus on integrating computer vision and
tactile feedback. Further, we plan to extend the methods to
account for additional criteria (e. g. manipulability indices),
more complex grasping strategies and bimanual grasping.
Since the framework allows to generate movements within



Figure 7: Movements for different basket locations

interaction time, we will also focus on extending the scheme
to dynamic scenes with moving objects, walking and human
interaction.
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Rep. IOC-DT-P 2006-10, Universitat Politècnica de Catalunya, Institut
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