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Abstract— Generating a fluent motion of approaching, grasp- not prohibited by immediate obstacles directly opposing th
ing and lifting an object comprises a number of problems grasp. Still, the full reaching motion is neglected in thasyr
which are typically tackled separately. Some existing research g, /a1ation. A sampling-based movement planning approach
specializes on the optimization of the final grasp posture based b d ttractor d it has b din [7
on force closure criteria neglecting the motion necessary to ased on an attractor esqup lon has .een proposed In [ 1
approach this grasp. Other research specializes on motion opti- 1he authors focus on planning the reaching movement, while
mization including collision avoidance criteria, but typically not the grasp itself is neglected.
considering the subsequent grasp as part of the optimization  Qur approach is based on directly coupling the grasp choice

problem. In this paper we aim to combine existing techniques for ,5plem into the motion optimization procedure, and thgreb
grasp optimization, trajectory optimization, and attractor-based wina both led bl : intearatod f "
movement representation, into a comprehensive framework tha solving both coupled problems in an integrated framework.

allows us to efficiently compute a fluent approach and grasping |he model-based motion optimization is based on recent work
motion. The feasibility of the proposed approach is shown in which optimizes trajectories based on a sequence of taglespa
simulation studies and experiments with a humanoid robot. attractors [8]. A more probabilistic view on this is given[8].

I. INTRODUCTION If we could predefine a desired pregrasp posture as the

. . . . . . oal of the reaching movement, this optimization technique
In robotics, grasping objects in a daily environment pos

Buld readily compute optimal reaching motions. However
a lot of challenging questions. Many different criteria dee y P P g .

. . _since there is many different choices of pregrasps we need to
to be fulfilled to successfully reach for and grasp an objecatdapt the method y pregrasp
First, the t|n|t|a|l_| robot posturg tmaBI/ be faTI_fromfa feaSIbrI]_e A key pre-requisite for this is to learn object-specifask
grasp poslure. Hence we need o plan a coflision-iree rage lnaps which represent the set of feasible grasps for an object.
motion towards a feasible grasp. A classical solution teitha

. . : . This is similar to the approach in [10] where a robot-cerdere
motion planning technique towards a predefined goal pQStUE%Jresentation of the feasible workspace is learnt, anthdo t
j

lSec?nd, objscts.ﬂt]ypc)il.cf:fally (t:an be g;astpeq atTn;anl))/ iéffere ect-specific “valid grasp sets” in [6]. Once such a map
ocations and wi merent grasp stralegies. 'he besspgrgg learnt, it defines goal set in a certain task space of the

choice clearly _depends on the initial posture of the_ robat arl]eaching motion rather than an explicit goal position. Henc
the .O.bStaCleS n the enqunment. _Hence, pre(_jefmlng a grage generalize the motion optimization method to cope with
position and using a classical motion planner is a subopti neral goal sets in arbitrary task spaces

solutlor;]. !n ess((jance,h\{ve are t]_‘acedl W't.h m?pliﬁ. problem of The previous approaches to learning maps of the workspace
grasp choice and reaching motion pianning. In this paper We - ¢ te 55iple grasps are based on exhaustive sampling over

solve this problem by proposing an object representation éngrid. We build on previous work [11] and propose to use

terms of an object-speciiic task map which can be learnt frOélnmore efficient technique to learn task maps. It assumes a

data and, dutrlngt.mpvet.ment generation, efficiently coupieal | rough shape estimate of the object, which for instance can be
a movement optimization process. acquired by computer vision.
Most literature on grasp optimization focuses on the grasp

itself, isolated from the reaching movement. For instance,
[1] review the various literature on defining grasp quality
measures, [2] learn which grasp positions are feasible for Clustering in S Task map
various obijects, [3] efficiently compute good grasps dejpend disjoint regions sampling
on how the objects shall be manipulated, and [4] simplify Preprocessing
the grasp computation based on abstracting objects infwesha
primitives. The coupling to the problem of reaching motion
optimization is rarely addressed. In [5], reaching and gjras

is realized by reactive control primitives. A recent apmtoa

[6] makes a step towards solving the coupled problem by
including an “environment clearance score” in the grasg-eva
uation measure. In that way, grasps are preferred which are
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the functional elements of our approach. Sampling and clushen the set of feasible grasps separates into disjointeciys
tering task maps can be performed offline in simulations &RTs typically only explore one of the clusters.
experiments. The underlying methods will be explained in In this paper we combine some of the heuristics proposed
Section Il. Section Il revisits briefly the motion genecati in [6] and [13] in a sampling based approach. We assume
and optimization system, which is based on ASIMO’s wholthat the robot can (visually) acquire a rough estimate of the
body motion control framework [12]. We will then introduceobject volume. Using the approximate shape information we
mechanisms to incorporate acquired task maps into the motiman sample a random point from the volume and compute a
generation scheme. Section IV presents simulation stadids pregrasp posture. For this, we initialize the hand inside th
experimental results in a reach-grasp scenario. We findtieat object volume. The hand is then retracted so as to get in
resulting choice of grasp nicely depends on the efficiency palm contact with the object. Subsequently the finger jaings
the reaching motion towards the grasp from the initial robatosed until they contact the objects surface. For thisgras
posture. To summarize, the key novelties of our approach acellect the following data: (1) the hand position and orégian
« We propose an efficient learning scheme of task mapsifb coordinates relative to the object frame — this 6D point
rapidly explore the set of feasible grasps for an objectg € RS will become the control parameters in the task space.
« We learn object-specific task maps as a representation(éf The contact points, normals and penetration between the
a goal manifold in a task space, and cluster them infthger segments and the object — this information is used to
qualitatively different solution spaces. compute a quality measure based on force closure, which is
« We solve the coupled problem of grasp choice ar@l Well-known measure determining the ability of a grasp to
reaching motion optimization. This leads to a preferendésist external forces [14].
of grasps which are easy to reach (reachable with little While this learning phase can be executed on a real robot,
cost) and thereby a disambiguation of grasp choice fofe use realistic simulations to speed up the process. The for

manifolds of feasible grasps. closure is computed from simulated tactile sensors pasitio
« We apply the proposed methods in reach and gragpd normals, excluding those that have zero pressure. tn tha
experiments with a humanoid robot. way we collect a data set consisting of control parameters in

RS and the corresponding force closure scalars.
Il. TASK MAPS

With the termtask map, we refer to a map that comprises
a set of sampled control parameters, each associated with a
scalar quality measure. In previous work [11], we proposed f s
instance to represent a set of hand-object pregrasp poses wi ..
respect to a failure/success criterion. These maps géneral
replace the concept of one explicit reaching target by the
concept of a whole manifold of feasible targets in the task
space. This relaxes the constraints imposed on the subdeque
movement optimization process, which is particularly bene
cial to improve other criteria governing the movement. ¥ th
chosen quality measure can be determined with the robot's
sensors, it is further possible to build up or refine task maps
in real experiments.

In the following, we will focus on simple “power grasps”.
However, the approach is not limited to a certain grasp. It
is possible to represent different grasp types (e. g. pogcis

- Figure 2:
grasps etc.) in several task maps. The concept even holds fobisjoint clusters in sampled task map. Solutions with the

bi-manual grasp strategies. thumb and palm pointing upwards have been left out.

A. Task map acquisition with force closure quality measure

Learning a task map requires to explore many different
grasps on a specific object. The first question is how differelt
grasp trials are sampled. The second how each trial is evalfor many realistic objects, the task map will consist of
uated. Previous approaches consider an exhaustive sgmptiisjoint clusters which form qualitatively different stilns.
over a grid [6]. If the grasp space is high dimensional (e.gconsider for instance a simple basket with handle that can be
6-dimensional if grasps are parameterized by the preshape grasped on the top bar or on each of the side bars. The orienta-
sition and orientation) a grid-based sampling approacatiser tions and positions of feasible grasps change discontsiyou
inefficient. In [11] it was proposed to use Rapidly exploringfrom bar to bar, such forming a set of clusters. We employ
Random Trees for the sampling. While this technique is vean Euclidean distance based hierarchical clustering appro
fast, it is hard to generate a very dense set of samples.gfurtio extract a set of qualitatively different solutions. THesen

Clustering into contiguous regions



algorithm does not make an a priori assumption on the number details). The functiory subsumes cost criteria in the
of clusters. space which depend on single time steps. It is suited to atcou

Figure 2 displays the extracted clusters for the given efor costs that depend on the posture of the robot. We formulat
ample. Clusters are formed by grasps applied to the leftjteria to account for the distance of the final end-effecto
right and top handle of the basket. In the figure, only th&ate to a target, collisions and proximities between dallle
position elements of the 6-dimensional task map parametetgects throughout the trajectory, and joint limit proxii@s.
are visualized. We only consider clusters of samples that halhe functionh subsumes costs for transitions grspace and
a significant size, such eliminating outliers that compaely depends on the current and the previous time steps. It isdsuit
a few samples. to formulate criteria like the global length of the trajestan
g-space and for the end effector velocity at the end of the
trajectory.

In this section we refer to the lower part of Figure 1. Other The movement generation process can be summarized by
than the processing steps in Section Il, the online movemejuations (A.2) - (A.5). Since the dependencies between
generation has to be Computationally efficient in order td ﬁrhttractor points and the task space trajectories are dietedm
smooth and collision-free movements within interactionei py the attractor dynamics (Egs. (A.13)-(A.17)) and the de-

The underlying robot control model is described in thgendencies between task and joint space is determined by the
form of a tree structure. The individual links are connectaghole body motion control, we can derive analytical grattien

by degrees of freedom (joints) or fixed transformations. Thg relate the attractor point location to the chosen costtfan:
tree may also comprise objects from the environment, so that dC v dC
task descriptors can also account for robot-object ralatigve = Yi o2 Q)

define a task as the relative movement of two tree noded A" idrengs of o= 0% Wi

such can compute the task velocity &8sk = @c; — Zbase:  The partial derivatives are given in part d) of Table I.

Indlces_ef andbase denote the effector body and its referenceg,q gradient computation is carried out in a forward and

respectively. , o . a backward propagation step, for details see [8]. We use
A task can be described in different ways, for instancg, efficient gradient-based optimization method that mtesi

as linear position, inclination, spherical and Euler asglefeasible solutions within the range of 0.5 to 2 seconds — vhic
etc. A task element may comprise just individual parts 9f pelow the critical “patience” threshold for the inteiiact
such a description, such as the vertical element of a 3ifdin humans.

position. Based on this, we derive an augmented Jacobian

holding all controlled task elements (see also [12], [15)e B. End-state comfort initialization

underlying whole body motion control is based on the schemeTo find an appropriate initialization for the optimization

by Liegeois [16], the equations are given in Table I, eq. YA.2problem, the target posture at the end of the movement is

Redundancies are resolved by mapping the gradient of @mputed according to each cluster center, respectivéiig T

optimization criterion (joint limit avoidance, etc.) inthe null requires to solve the inverse kinematics for the respective

space of the motion. task vector, which can be done efficiently with regression
The trajectories are generated using a dynamical systefashniques.

approach. We apply the simple attractor system in eq. (A.4)

(see [12] for details) to the elements of the augmented task

vector. The same attractor dynamics are applied to other

controllers that are not related to the inverse kinematiush

as “closing the fingers to a power grasp”, etc.

IIl. ONLINE MOVEMENT GENERATION

A. Optimization-based motion generation

To generate a joint-limit and collision free reaching motio
we apply the attractor-based optimization scheme predemte
[8]. It incorporates the employed controller (eq. (A.2) jon
the optimization process. The key idea is to optimize a scala
cost function by finding an optimal sequence of task space Figure 3: Goal postures according to task map clusters
attractor vectors which determine the robots motion.

We consider an integral cost function over the movement in
the general form of eq. (A.1). Here,e R™ is the joint state
vector of then-DoF robot,z € R¢ is the task state vector in
the augmented task space;, - € R? is a series of attractor
points, andr € R? an additional smoothing variable (see [8

The different target postures are then compared bgnan

state comfort value, motivated from psychological studies. It

is based on the joint limit cost (squared sum of the deviation
f joint angles from their zero position). The best solution
etermines the target task vector to initialize the optation

1There are other special cases for tasks, for instance thralblieear and prOblem' The attractor vector sequence Is “nearly Il’lﬂaltpd
angular momentum, etc. between initial posture and the chosen goal task vector.



a) cost function:

T T—1
C=3 gla)+ Y hge,a+1) (A1)
t=0 t=0
b) movement generation:
Q1 =t + I (w1 — dlar)) — o (I=JFTe) WL (9gHy) T (A.2)
g1 = @ + (Tt Te—1,Te41) (A3)
(@, Tp—1,7e41) = a(reg1 — @) + (@ — x4—-1) (A4)
. . t—kT/K
th(l—T)Ik+Txk+1 , k=[tK/T], T:T/T (A5)
¢) chain rules following (1):
dC oCc 0 dC
@& o | YAl (A.6)
dqt  Ogs 9q:  dgiy1
dC g 8C | w1 dC | dryyn  dC A7)
dry Ozt Oqt Oxry  dziy1 Ort dxis2 '
acC Oxy dC
o Tt T A.8
d’l’t 87",5 dxt ( )
acC ory dC
= - A.9
dzf ; 8:02‘ dre (A-9)
d) partial derivatives:
oC
Er g (ae) + W' (ar, qe1) + R (qe—1, ) (A.10)
t
o)
% =1—JF T+ (030 (wes1 — ¢lar))
—a (I=JFJ) W (02H)T + a 0,(Jf0) Wt (9H:)T
(A11)
Oqt #
oa _ 4 A.12
Ozt t=1 ( )
8xt+1 =1+ 7(‘,1 (:ch z’t_1,7“t+1) (A.13)
oxt
oz
P2 = 12 (wegr, @, Trra) (A14)
8:17;/
N ey, 21, me41) = —a+ b, 7 (@,e—1,7e41) = —b
(A.15)
oxt 3
o =7 (Te—1, Te—2,7¢) (A.16)
or
gri = (1-7)dj= + 701=k+1 , T andk depend ort as above
&

(A.17)

TABLE |
FUNCTIONAL NETWORK OF THE CONTROL ARCHITECTURE

It should be noted that this procedure ignores the course
of the overall trajectory, but rather considers a "snagshbbt
the final pose. It is therefore not guaranteed that the chosen
initialization will lead to the global optimum. However, it
considers the relative pose between robot and object. éturth
it yields an estimate of the approximate target pose, and
whether the target can be reached or not. Figure 3 illustrate
the initializations for a given location of the basket on the
table.

C. Integration into optimization procedure

In the following, we extend the optimization scheme to in-
corporate the learnt task maps seamlessly into the optiimiza
process. The key idea is to formulate criteria to account for
both the proximity to the nearest solution in the task map
manifold and the quality of the resulting grasp.

We therefore formulate two optimization criteria: Tjiex-
imity criterion enforces a smooth and collision free movement
into the manifold of feasible grasps represented in the map.
It so to say “pulls” the final grasp towards the manifold of
valid preshape postures in the course of the optimizatitwe. T
quality criterion evaluates the quality of the final grasp. It is
based on the force-closure quality measure for each task map
sample and guides the movement towards a preshape posture
that leads to a high-quality grasp.

1) Proximity criterion: The proximity will replace the
distance of the target end-effector state and contributiéeo
cost functiong in eq. (A.1) during motion optimization. Given
the final task state at the last time step T (e.g., the hand@osi
and orientation relative to the object), we compute the estar
elementzmgp in the task map. Now we define a cost

gp = ($;e| - xmap)TWmap(l";el — Tmap) (18)

The metriciWmap accounts for the difference in the linear and
angular units. The nearest neighbor in the task map to the han
is computed with the approximate nearest neighbor algarith
described in [17]. For this, the hand position and orieotati
= is represented in the reference frame of the object. The
gradient is 5

35;' = 2(«%;6' - l'map)TWmap (19)

2) Quality criterion: To account for the quality of the grasp
that has been determined with the force closure measure,
each sample of the task map is interpreted as a Gaussian
fi= |27r2;1|—% exp(—%dz,i) with a mean vector, and some
small neighborhoodls, ; = (z; — u)* S (z; — i), determined
by covariance matrixx~!'. The overall cost is computed
as a weighted mixture of Gaussians considering the quality
measure (force closure); associated with each sample:

1

We skip the gradient for brevity. This model has been chosen
to account for the noise associated with the chosen force
closure value. The noise is mainly due to the discontinuous
number of contacts, the determination of the contact points




and some other aspects. The mixture model smoothens

doeording to termy’ in eq. (A.10). For this, we can rewrite

criterion in a local region, such assuring a smooth gradietie differential kinematics as

This is illustrated in Figure 4, where we plot the grasp duali

over a rotation angle of the hand with respect to a basket

handle.
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Figure 4:

Raw and smoothened force closure. The force closure is
negative for stable grasps.

Ogmap _ 9(gp + g4) dxf _ 9(9p + 9q)

Oqr 8%29' oqr (‘31;;6'
with Jye being the Jacobian of the task vector relating to the
relative hand-object coordinates of the task map. This mean
that the task map can be represented in different coordinate
than we chose to control the system. We can for instance
represent the task map in relative hand-object coordireatds
control the movement in global coordinates.

Both quality and proximity terms are only evaluated in the
last time stepr = T' of the trajectory, since this corresponds
to the hands final grasp pose. Their effect is back-propdgate
in time and on the attractor point locations with eqs. (A.11)
ff. The nearest neighbor query only needs to be carried out
once in each optimization iteration which is advantageous i
terms of computational efficiency.

J, rel (21)

IV. EXPERIMENTS

We have set up the control model according to the ex-
periments shown in Figure 7. It comprises a model of the

While the proximity criterion tries to pull the final handhumanoid robot ASIMO, a table and a basket with a U-
posture towards the task map manifold, the quality criterishaped handle. The robots upper body has the 6 rigid body
only becomes active when the final hand posture is closedggrees of freedom. Each leg is modeled with 6, and each

the manifolds proximity. It tries to level the target pose/énd
the best force closure. Figure 5 shows the two cost terms o

arm with 5 dofs. The head has 2 dofs (pan and tilt). For the
fiagers, we introduced a one degree of freedom controlldr tha

the time course of a trajectory. The proximity cost decreas@rives the finger joints according to the coupled springien
towards converging to the task manifold, the quality cosy onmechanism of ASIMO’s hand.

shows activity when getting close to its proximity.

(111
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Figure 5:

Proximity and quality costs over a trajectory. During optimiza-
tion, they are evaluated in the last time step of the movement.

In addition to theproximity and quality criteria described
in Section 1ll, we employ analytical gradients for joint fim
avoidance, the overall length of the trajectory in joint spa
the difference to a zero-velocity at the end of the movement,
and a detailed collision model: The collisions are congder
with a computationally efficient shape primitive model [18]
of the respective segments. They are incorporated into the
optimization with a distance-to-collision gradient pretsel in
[8]. We consider collisions for the hand and finger segments,
the lower arms, the body, the thighs and the environment
objects table and basket. In our implementation, we caigassi
a distance threshold for each object pair. The self-collisi
between the robot segments as well as the collisions between
the robot and the table are penalized if they get closer than
0.1 m. The collisions between hand, fingers and basket are
penalized if they get closer than 2 mm. The overall collision
model comprises 30 body pairs.

The following task variables are subject to the optimiza-
tion: Right hand position and orientation (2D, polar anples
between hand and basket. Further, we constrained the hor-
izontal components of the center of gravity and the foot
transformations. Another constraint has been added toahe g
direction vector: It will continuously travel towards therder
of the top basket handle. Overall, the dimensionality of the
task is 21. The employed task map has been sampled with

To account for the formulated criteria during optimization1000 valid grasps. The best initialization of the trajegts
their gradient has to be derived with respect to the stattovecdetermined according to Section IlI-B. Figure 3 illusteathe



three potential target postures that correspond to theectisp force resistive measurement principle (FSR sensors)rietl
cluster. The movement is initialized with a sequence of 1dut to be difficult to sense the initial contact between hamdl a
21-dimensional attractor task vectors. The initial atmac object. This is due to the sensor response characterifitiss.
sequence is interpolated linearly between the robotsalnithecessary to exceed a minimum pressure threshold in order
posture and the task state associated with the mean of theget a signal. This is difficult when touching lightweight
selected cluster. The movement shall be completed withinoBjects. We therefore integrated an additional proximétysor
seconds. based on a capacitive measurement principle on the palm.
It already reacts shortly before the contact, which makes it
possible to close the fingers without hitting the object. The
proximity measurement depends on the material of the sensed
object. We adjusted it to react to the basket at a distance of
approx. 1.5 cm. When the basket is sensed, the fingers are
automatically closed.

Figure 7 shows three representative movement sequences.
: In the upper row of the figure, the robot reaches and grasps for
0 120 the inner handle of the basket. During reaching, it avoidstto

200

Cost
6000

4000}

2000 "'».:; . - the other handles and finally shifts its hand to the lower part
5 J‘(’:‘glthlg‘l‘gﬁ N of the handle before closing the fingers. In the middle row, th
S Proximity - basket has been moved away in frontal direction. The optimal
S Grasp %“““tyl - pregrasp was found on the right end of the baskets top handle.
. . . . . - ]’era In further experiments, it turned out that the top handle was
0 40 80 120 preferably grasped when the basket was located farther away
Iterations in front of the robot. In the lower row, the basket was moved
to the left side. In this location, the movement optimizatio
Figure 6: Cost terms during optimization run was initialized with the right handle. In this case, the hditl

not have to move under the top handle, which resulted in a
more “relaxed” movement.

The progression of the cost terms during the simulation run
is depicted in Figure 6. The costs massively decrease in the V. CONCLUSION
beginning, since the initial trajectory leads to many sadins, We presented a framework for fluent reaching and grasping
violates some joint limits and doesn't exactly reach thé tasf objects with a humanoid robot. The coupled problem
map manifold. After a few iterations, it rapidly convergesat of reaching and grasping is solved by incorporating object-
minimum. The enlarged subimage image in the figure showpecific task maps directly into the movement optimization
that 1) the target task manifold is exactly reached after@pp process. These maps represent a functional charactenizzfti
15 iterations (red line) and 2) the grasp quality converdes a objects in terms of their grasp affordances, i. e. a maniédld
approx. 25 iterations (light blue line). feasible pregrasp poses.

Figure 5 shows the proximity and quality cost over the We proposed a method to efficiently sample such maps in
optimal trajectory. It can be seen that initially, the hanoves simulations, and to preprocess them to extract qualitgtive
away from the table edge, and then moves upward in an alifferent pregrasp postures. The proposed task maps oontai
around the table. The finally chosen grasp position is on theth information about the proximity to a valid solution
left side of the basket handle, which seems to lead to loweranifold and the quality of the grasp, represented by itsefor
costs than to grasp the handle at its center. closure. Since the map parameters are computed from values

Due to the local character of the chosen gradient-basédt can be extracted by sensor data, this permits to generat
optimization scheme and its parametrization, it turnedtbat or refine task maps also in real experiments.
the visually realistic modeling of objects is not alwaystabie The task map concept has been integrated in an online whole
for the collision avoidance mechanism. It should rather b@dy motion control and optimization framework. It efficign
avoided to shape attractor and repeller “sinks”. In suclegascouples collision-free reaching with grasping, leadingato
the solution sometimes gets stuck in local minima, or “tusine preference for grasps which are easy to reach and exhibit
through objects, leading to unrealistic results. One eXarng a high quality. A selection mechanism chooses the most
the collision model of the basket, depicted in the top part appropriate initialization for the movement optimizaticoich
Figure 5. We had to insert a repelling object, since in sonaglding a more global perspective.
cases the hand got trapped under the handle. Future work will focus on integrating computer vision and

We devised a set of experiments applying the schemettwztile feedback. Further, we plan to extend the methods to
reach for and grasp a basket at different locations on tHe.talaccount for additional criteria (e. g. manipulability iods),

In order to autonomously grasp the basket handle, the mbatiore complex grasping strategies and bimanual grasping.
fingers have been equipped with tactile sensors based oSiace the framework allows to generate movements within



Figure 7: Movements for different basket locations

interaction time, we will also focus on extending the schemgs]
to dynamic scenes with moving objects, walking and human
interaction.
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