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Abstract— This paper presents an integrative approach to objects into shape primitives. The coupling to the problém o
solve the coupled problem of reaching and grasping an objeéh  reaching motion optimisation is rarely addressed. A recent
a cluttered environment with a humanoid robot. While finding approach [5] makes a step towards solving the coupled

an optimal grasp is often treated independently from reachig . . B . o
to the object, in most situations it depends on how the robot problem by including a “environment clearance score” in the

can reach a pregrasp pose while avoiding obstacles. We taekl grasp evaluation measure. In that way, grasps are preferred
this problem by introducing the concept of task maps which which are not prohibited by immediate obstacles directly op
represent the manifold of feasible grasps for an object. R&ter  posing the grasp. Still, the full reaching motion is negielct
than defining a single end-effector goal position, a task map in the grasp evaluation.

defines a goal hyper volume in the task space. We show how o h is based directl i th

to efficiently learn such maps using the Rapidly exploring _ur approacl IS base _On |r§c y (?OUD Ing the grasp
Random Tree algorithm. Further, we generalise a previously Cchoice problem into the motion optimisation procedure, and
developed motion optimisation scheme, based on a sequettia thereby solving both coupled problems in an integrated
attractor representation of motion, to cope with such task naps.  framework. The motion optimisation is based on recent work
The optimisation procedure incorporates the robot's redurdant  \vhich optimises trajectories based on a sequence of task

whole body controller and uses analytic gradients to jointy e .
optimise the motion costs (including criteria such as coltiion space attractors [6]. A more probabilistic view on this is

and joint limit avoidance, energy efficiency, etc.) and theoice ~ given in [7]. If we could pr_edefine a deSired_graSP posture
of the grasp on the manifold of valid grasps. This leads to a as the goal of the reaching movement, this optimisation
preference of grasps which are easy to reach. The approach is technique could readily compute optimal reaching motions.
demonst_rated in two reach-grasp simulation scenarios withhe However, given the uncertainty of the choice of grasp we
humanoid robot ASIMO.
need to adapt the method.
|. INTRODUCTION A key pre-requisite for this is to learn object-spectfisk

Consider the problem of grasping the handle of a baskgia_ps_wh?ch_ represent the set 01_‘ feasible grasps for_a_n object.
in a cluttered environment. There are multiple criteria €o b ThiS i similar to the approach in [8] where an explicit (grid
fulfilled for a successful reaching and grasping motionst-ir Pased) representation of the feasible workspace is lesmdt,
the initial robot posture may be far from a feasible grasfP the object-specific “valid grasp sets” in [5]. Once such a
posture. Hence we need to plan a collision-free reachirgap is learnt, it defines goal set in a certain task space of
motion towards a feasible pregrasp. A classical solution '€ reaching motion rather than an explicit goal position.
this is a motion planning technique towards a predefined godENCce, We generalise the motion optimisation method to
posture. Second, the handle of the basket can be grasj&pe With general goal sets in arbitrary task spaces.
at many different positions. The best grasp choice clearly The previous approaches to learning maps of the
depends on the initial posture of the robot and the obstacl@@rkspace or of feasible grasps are based on exhaustive
in the environment. Hence, predefining a grasp position af@mPpling over a grid. If the grasp space is high dimensional
using a classical motion planner is a suboptimal solutio€-9- 6-dimensional when grasps are parametrised by the
In essence, we are faced with tbeupled problem of grasp preshape position a_md _orlentatlon) a grid-based sampling
choice and reaching motion planning. In this paper we solve @Pproach is rather inefficient. We propose to use a more
this problem by proposing an object representation in terngficient technique to learn task maps based on Rapidly
of an object-specific task map which can be learnt from dafPloring Random Trees (RRTs, [9]). While this technique

and, during movement generation, efficiently coupled into ¥aS SO far used for exploring feasible trajectories froml goa
movement optimisation process. to start through a configuration space, we employ it for

Most existing literature on grasp optimisation focuseaPidly building a tree of feasible pregrasps for a specific
on the grasp itself, isolated from the reaching movemerfRPiect. _ _
For instance, [1] reviews the various literature on defining 10 Summarise, the key novelties of our approach are:
grasp quality measures, [2] learn which grasp positions ares We solve the coupled problem of grasp choice and
feasible for various objects, [3] efficiently compute good reaching motion optimisation. This leads to a preference
grasps depending on how the objects shall be manipulated, ©f grasps which are easy to reach (reachable with little

and [4] simplify the grasp computation based on abstracting €ost) and thereby a disambiguation of grasp choice for
manifolds of feasible grasps.
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standard reactive task-space control.

is to sample the grasp space along a predefined grid [3],

« We propose an efficient learning scheme of task mag5]. However, in the case of a 6-dimensional grasp space
using RRTSs to rapidly explore the set of feasible grasthis is rather inefficient. Instead we use the idea of Rapidly

for an object.

exploring Random Trees (RRTSs, [9]) which so far were only

This paper is organised as follows. In the next section weésed in the realm of planning for the rapid exploration of
introduce task maps and focus on the problem of learnirf§asible paths through a configuration space. Even though
them. Section Ill addresses our motion generation fram#€ are not interested in paths through the task map, RRTs
work, which is based on ASIMO’s whole body motion con-provide an efficient means to explore the map of feasible

trol framework [10]. Section IV revisits briefly the sequiaht

grasps. More concretely, we assume we are given one

attractor representation of motion. In Section V we detedl t feasible graspyo € R° to start with. We addy, to a set
generalisation of the motion optimisation to general getds 7' = {g0}. Next we sample a uniform random pointin
in arbitrary task spaces. This will allow us to incorporate t the greater spadg®, find the pointg; € T' which minimizes
learnt task maps into the optimisation framework. Finallfhe distance ta;, and define the next exploration pointas
Section VI presents simulation studies for a long stick and = ¢i + €f;—27. In words, this new exploration point is
for the handle of a basket. We find that the resulting choice step of lengthe away fromg; in the direction ofz. We
of grasp nicely depends on the efficiency of the reachingvaluate the grasp. If C'(g) > 6 we addg to the setl’ (and

motion towards the grasp from the initial robot posture.

Il. LEARNING TASK MAPS

memorize a tree link frong; to g), otherwise we discard it.

During the learning phase, the robot needs to build a

map of feasible grasps. We assume that we parametrize a
grasp in terms of the hand position and orientation before
the fingers are closed — in coordinates relative to the object
frame. The closing of the fingers is controlled by a feedback
loop coupled to the haptic sensors. Given a vegter RS

of grasp parameters we can execute and evaluate the grasp
in a simulation environment, resulting in a quality measure

f € R. In abstract terms, we are given an evaluation function

C: RS > R.

In detail, grasps are evaluated as follows. The hand is 4o
positioned at a proximate pregrasp pose in front of the opjec 20
the fingers are opened. The 6 parameteesR® determine
the initial position and orientation of the preshaped hand -40
relative to the object frame. The evaluation now follows a

x 0
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feedback loop as illustrated in Figure 1. First the hand move

forward. If contact is detected, the fingers are closed (‘grow

Figure 2: Task map for object-hand relations

grasp”). The finger movement is controlled according to
the coupled 1-dof spring-tendon hand mechanism of the
humanoid robotASMO. Once a sufficient enclosing force This exploration strategy explores a contiguous region of
is detected, the object is lifted up and slightly rotated. Avalid parameters, forming a cluster of solutions in the task
control sequence is considered to be successful if the fingaap. To illustrate the proposed concept, we generated a
segments still measure an enclosing contact state after ttagher complete map for grasping a cylinder using an ex-

object is lifted. Otherwise, its fitness is zero.

Figure 1: Grasp sequence

haustive search algorithm. Figure 2 shows the parameters
of the lateral (y-direction) and frontal (x-direction) grasp
offset between hand and object vs. the quality of the grasp.
The inclination of the hand was upright. The lower part of
the figure shows the contours when the cylinder was grasped
at different heights (z-direction). In this example, thgiom

of grasping success is contiguous. However, valid parasmete
don't fall into only one contiguous region, but may rather be
clustered in several disjoint clusters. It is for instanesyv
likely that a similar region exists if the hand is rotated abo
180°.

We applied the presented RRT-based exploration scheme to

The problem of grasp exploration is to build a map othe problem of grasping a stick and the handle of a basket.

feasible grasps by efficiently collecting poingse RS for

The exploration has been initialized with a successfulmras

which C(g) is above some thresholl A popular approach at the center of each object. Figure 3 shows the resulting
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Figure 4: Robot control model including environmental objects

Figure 3:

Left: RRT of valid pregrasp poses for a cylinder, right: fhet

handle of a basket allows to derive the inverse kinematics equations not only

with respect to a heel or world reference frame, but also
to formulate task descriptors accounting for robot-object
RRTs after exploration. using the oresented aras Contrrﬁllations. We define a task as the relative movement of
P ’ 9 P grasp contigl ree nodesand such can compute the task velocity as
sequence. To illustrate the learnt RRT, only the position . ) ;
- . Tiask = Tef — Loase- INAicesef andbase denote the effector

parameters of the pregrasp pose are indicated in the gedphi . :

. o . . ﬁody and its reference, respectively.
visualization. However, the task map is defined over the fu

6-dimensional arasp space and includes parameters for t The choice of effector and reference yields some inter-
) . grasp spa P gs?ting aspects. This is illustrated in Figure 5 for a simple
orientation. It can very nicely be seen that the tree explor

the geometry of both objects. The RRT-based explorati lanar example. Representing the movement of the hand with

X = @spect to the cylinder results in the left part of Figure 5.
results in a significant speed-up as compared to an exhaustB( coordinated hand-object movement has to consider three
parameter search, but has the disadvantage to only fipéi

. L . . sk variable . Switching the frame of reference and
solutions that are within one contiguous region. 2y ¢) 9

X . ; representing the object movement with respect to the hand
While the chosen objects have a rather simple shap b 9 ) P

th d sch 0 b lied t ‘ads to a description of the movement in hand coordinates.
€ proposed scheme can aiso be applied 10 More CompiaX;q example, this might be advantageous, since the bbjec
objects without loss of generality. In such cases, the rathe

simple control sequence should be extended to more el Iﬁ symmetric and can be approached from any side. While in
P ; q e first case the task variables are dependent, in the second
orate strategies. The task map would then relate the mo

sophisticated control parameters to a chosen qualityricnite égsegp and y are invariant and can be set to zero. There
P P q are many other examples, such as representing a gazing
I1l. M OVEMENT REPRESENTATION ANDCONTROL controller as an object in head-centered coordinates which

The learnt task maps are the basis to integrate the problé%“pOinted” to by the focal axis, or a pointing controller in

of grasp choice in our motion optimisation framework. Thid similar way.
optimisation framework is based on representing motion as
a sequence of task space attractors [6]. In this section we
briefly review to the basics of this motion generation prsces ¥y
the general definition of task spaces and attractor dynamics Effector y{ f
generate whole body motion for high-dimensional humanoid & /

0 \/%

robots.
Findings from the field of biology impressively reveal 1 Rfﬁerence
.- S

how efficiently movement is represented in living beings.
Besides the well-known principle of movement primitives, i

is widely recognized that movement is represented in variou
frames of reference, such as in eye centered, reach and grasp
centered or object centered ones [11].

We borrow this principle and represent robot motion in a Figure 5: Relative hand-object task description
suitable task representation. For this, the robot contadeh

is described in the form of a tree structure as depicted in
Figure 4. The individual links are connected by degrees
of freedom (joints) or fixed transformations. Further, the 1There are other special cases for tasks, for instance thelolieear
tree may also comprise objects from the environment. Thisid angular momentum, etc.

X
,x“"? =

A task can be described in different ways, for instance



as linear position, inclination, spherical and Euler amgle steps. It is suited to formulate criteria like the globaldén

etc. A task element may comprise just individual parts obf the trajectory ing-space and for the end effector velocity
such a description, such as the vertical element of a 3-&t the end of the trajectory.

position. Based on this, we derive an augmented JacobianThe movement generation process can be summarized by
holding all controlled task elements (see also [10], [12])equations (A.2) - (A.5). Since the dependencies between
The underlying whole body motion control is based on thattractor points and the task space trajectories are digiedm
scheme by Liegeois [13] [14], the equations are given iby the attractor dynamics (Egs. (A.13)-(A.17)) and the de-
Table I, eq. (A.2). Redundancies are resolved by mapping tipendencies between task and joint space is determined by
gradient of an optimisation criterion (joint limit avoides, the whole body motion control, we can derieve analytical

etc.) into the null space of the motion. gradients to relate the attractor point location to the ehos
The trajectories are generated using a dynamical systemsst function:
approach. This is closely related to the biological findings dc dy; dC
and yields further advantages like robustness against per- PPl " . (1)
. ) : x ) L Oz* dy;
turbations and dynamical environments [15]. We apply a childreny; of «

simple attractor system [6], [10] to the task elements t0 bene partial derivatives are given in part d) of Table I. The
controlled. This is depicted in Figure 6, where a sequence BPadient computation is carried out in a forward and a

3 attractor potentials leads to the indicated smooth tt@fgc ,5ckward propagation step. In therward propagation step

we start with a given set of current attractor points,,
then compute the task space trajectogyr, then theg.r-
trajectory, and finally the global cost. In the backward
propagation step we propagate the cost function gradients
backward through the network using the chain rules. This
involves first computing gradient&” / dq;, thendC'/dx;, and
finally dC/dzx7. . Since all computations in the forward and
backward propagation are local, the overall complexity is
o(T).

We use a gradient-based optimisation meth8®ROP
[16]). Our technique provides feasible solutions withie th
range of 0.5 to 2 seconds — which is below the critical
“patience” threshold for the interaction with humans.

Figure 6: Attractor sequence and resulting trajectory

The same attractor dynamics are applied to other contsoller V. TASK MAP INTEGRATION
that are not related to the inverse kinematics, such asitgos

: In the following, we extend this scheme to incorporate the
the fingers to a power grasp”, etc.

learnt task maps. The key idea is to define a cost function
IV. OPTIMISATION-BASED MOTION GENERATION and its gradient to account for the proximity to the nearest

To generate a joint-limit and collision free reaching mo_solu'uon in the task map. It will replace the offset of thegear

tion, we apply the attractor-based optimisation scheme prsnd-eﬁector state and contribute to the cost funcgialuring

sented in [6]. It incorporates the robots redundant coletrol motion optimisation. Given a current stadxff'_m th‘."‘ tf”‘Sk
. L . space (e.g., the current hand position and orientatiotivela

(eg. (A.2) ) into the optimisation process, and finds :’i\ the obiect te th L el T

sequence of task space attractors describing the movem ﬁt. € object), we compute € nearest € emegp < 1'in

The key idea is to optimise a scalar cost function by findinz € task map. Now we can define a cost

an optimal sequence of ta_\sk space attractor vectors which cmap= (2 = Zmap)TW (2® — Zmap) (18)

determines the robots motion.

We consider an integral cost function over the movemeriihe metric W accounts for the difference in the linear and
in the general form of eq. (A.1). Herg,€ R is the joint angular units. The nearest neighbor in the task map to the
state vector of the:-DoF robot,z € R? is the task state hand is computed with the approximate nearest neighbor
vector in the augmented task spaeg,- € R¢ is a series of algorithm described in [17], similar t&d-trees. For this,
attractor points, and € R¢ an additional smoothing variable the hand position and orientatiari®' is represented in the
(see [6] for details). The function subsumes cost criteria in reference frame of the object. The gradient is
the g-space which depend on single time steps. It is suited to Ocma
account for costs that depend on the posture of the robot. We 3 ,e,p = 2(2f® — Zmap) "W (19)
formulate criteria to account for the offset of the final end- Tt
effector state to a target, collisions and proximities lestov  However, since we might want to choose another task
collidable objects throughout the trajectory, and joimiti description than relative coordinates when controlling th
proximities. The functionh subsumes costs for transitionspreshaping motion of the robot, the gradient of eq. (19) has
in g-space and depends on the current and the previous titebe projected onto the task description of the controller.




a) cost function:
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TABLE |
FUNCTIONAL NETWORK OF THE CONTROL ARCHITECTURE

For this, we need to consider the differential kinematics of
the task space control:

Ocmap chapﬁxf' dqq

_ 20
ax(t:trl ax)rfel 8(115 ax(t:trl ( )
which corresponds to
oc
Wrzslp = 2($28| - :'Emap)TWJrelJ(ﬁérl (21)
t

Since the task map comprises data vectors describing con-
tiguous regions, gradient (21) will strongly force the peegp
pose toward the valid region. However, there is only little
influence of the gradient in the tangential directions of
the task map parameter surface. These directions will be
exploited by other criteria that are subject to the optitiisa

so that the final state of the movement may travel along the
parameter surface. We therefore don’t have a fixed attractor
but rather an attractor hyper volume in which the optimal
solution may be found. This is similar to the task relaxation
method proposed in [12].
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Figure 7: Grasping a long cylinder from a table

VI. SIMULATION STUDIES

We applied the proposed method to two simulated scenar-
ios. Learning the task maps was done in dynamic multibody
simulations with a reduced hand - table - object model.

We evaluated different simulation packages. It turned out
to be difficult to resolve a stable contact simulation. The
engines provided by Ageia (PhysX) and Cm-Labs (Vortex)
produced stable and realistic results. In the followingugam
tions, the PhysX engine was used. The simulation was set up
with estimated material properties, and accounted fotimer
and gravity effects. Contacts and friction are handeled by



Figure 8: Pregrasp poses during an optimization run

the simulation engine. The palm is represented as a cubgdsition lower to the center. The bottom part of Figure 7
which is kinematically constrained to the transformatidn oshows the integral joint limit cost over the iterations oé th
the hand. The finger links are connected to the palm witimulation. The plot illustrates nicely that when emplayin
revolute joints. The joints are modeled in series with gprin the task map, the joint limit cost drops significantly faster
damper elements to account for the elasticity of the reand converges to a lower value.
robots hand mechanism. )

In both simulation scenarios, the optimisation is iniiei  Grasping a basket
with 12 attractor vectors, which are linearly interpolatedn the second experiment, we incorporated the task map for
between initial hand pose and some point in the proximity ahe basket into the optimisation scheme. Three simulation
the object. The corresponding task elements that are gubjegns with similar settings as in the previous example have
to the optimisation comprise the hand position and the grageen carried out. The initialization of the target attracto
axis attitude, represented in polar angles (2 dof). Furtherector was in the proximity of the center of the handle. The
we applied fixed equality constraints to the transformatiobasket has been put at three different locations with réspec
of the feet and the lateral position of the center of gravitythe robot, see Figure 9. In Figure 8, we illustrate the pregre
In the figures, the position elements of the attractor vectoof one optimisation run by showing intermediate results at
are indicated with small spheres. certain iterations of the optimisation. The image sequence

Collisions between body and forearm of the robot, tablgshows the pose at the end of the movement and illustrates
and basket are considered. The collision model consists labw the pregrasp "travels” along the geometry of the basket
simple primitive shapes (Line swept spheres for the robdtandle, and finally converges to the optimal pose. The image
segments and the baskets handle, rectangle swept sphessguence in Figure 9 shows the different grasps that result
for the table and the lower part of the basket) and is alsbom the optimisation. In the first image, the grasp targets

depicted in the images. to the lower left handle of the basket. Moving the basket to
_ _ the left of the robot results in grasps at the upper left part
Grasping a long cylinder of the handle, and finally to the center of the handle. This

In the first scenario, the task was to grasp a cylinder froffustrates how the algorithm finds the most appropriatsgra
a table. We performed two optimisation runs, one with théonsidering the explored geometry of the basket handle.
center of the cylinder as the "exact” reaching target (iatéd
by a small sphere), and another one employing a task map.
Both runs converged after 21 iterations. In each iteration, We presented a framework for reaching and grasping
the movement of the robot is propagated from the initiabbjects with a humanoid robot. The coupled problem of
state to the target, and the optimisation costs and gradieggrasp choice and reaching motion optimisation is solved
are computed based on the recursive scheme presenteddynincorporating object-specifiask maps directly into the
Sections IV and V. The attractor vectors are then updatedovement optimisation process.
according to the chosen optimisation algorithm, and the¢ nex These maps represent a functional characterization of
iteration is computed. The left image of Figure 7 showsbjects in terms of their grasp affordances, i. e. a manifold
the robots initial pose. The middle image depicts the pogsf feasible pregrasp poses. To acquire such maps, we present
found for the exact target, the right image the pose found Bn exploration scheme based on Rapidly exploring Random
incorporating the task map. Both runs result in a smooth andees, which efficiently finds contiguous regions of valid
collision-free movement around the table, finally reachimg grasp manifolds.
the cylinder. As expected, the task map yields valid sohgtio = While typical task goals define a single state in task
along the cylinder axis, and the final grasp is located at space, a task map defines an attractor hyper volume in

VIl. CONCLUSION



[6]). When task maps are defined in a relative bimanual task
space there is no limitation of our methods to be applied also
to bimanual grasping tasks.

Future work will focus on applying the simulation results
to real-world problems including vision and tactile feedka
Further, we plan to extend the framework to account for an
optimal stance position with respect to the object. Sinee th
framework allows to generate movements within interaction
time, we will also focus on extending the scheme to dynamic
scenes with moving objects and human interaction.
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