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Abstract

A key aspect of semantic image segmenta-
tion is to integrate local and global features
for the prediction of local segment labels.
We present an approach to multi-class seg-
mentation which combines two methods for
this integration: a Conditional Random Field
(CRF) which couples to local image features
and an image classification method which
considers global features. The CRF follows
the approach of Reynolds & Murphy (2007)
and is based on an unsupervised multi scale
pre-segmentation of the image into patches,
where patch labels correspond to the ran-
dom variables of the CRF. The output of the
classifier is used to constraint this CRF. We
demonstrate and compare the approach on a
standard semantic segmentation data set.

1. Introduction

Visual scene understanding, e.g., in a robotics con-
text, means to identify and locate separate objects in
a scene. Such a segmentation is a crucial precursor for
any object-related behavior, like reaching for an ob-
ject, moving towards an object or telling a user where
an object is located. Even without depth informa-
tion (disparity, motion) humans are extremely good
in segmenting still images whereas this is still a great
challenge for Machine Learning (ML) methods (Ever-
ingham et al., 2008).

An interesting issue in this context is that most state-
of-the-art ML methods for image classification – that
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is, the task of predicting whether an object from a cer-
tain class is contained in the image – rely completely
on global image features (Zhang et al., 2007), since at
a local level the discriminating appearance of image
patches will deteriorate (e.g., wheels can be parts of
various kinds of vehicles.) Hence, typical image classi-
fication methods do not attempt to locate the object
or use information from a special focal area. They
only predict the presence of an object, in some sense
without knowing where it is. This fact suggests two
implications. First, the object context seems equally
relevant for the prediction as the object area itself.
Second, although image segmentation is the problem
of assigning a local object label to every local pixel, we
may expect that a purely local mapping will not per-
form well because the work on classification demon-
strates the importance of the context.

In this paper we propose a method for multi-class im-
age segmentation which comprises two aspects for cou-
pling local and global evidences. First, we formulate a
Conditional Random Field (Lafferty et al., 2001) that
couples local segmentation labels in a scale hierarchy.
This idea follows largely previous work by (Reynolds
& Murphy, 2007), which we extend to the multi-class
case and the use of SVMs to provide the local patch
evidences. Second, we use global image classification
information to decide prior to the segmentation pro-
cess which segment labels are considered possible in a
given new image. Experiments show that without this
use of global classification, the segmentation performs
poorly. However, with a hypothetical optimal classi-
fication the segmentation outperforms the best state-
of-the-art segmentation algorithms, while it is among
the top third using our own image classifier.

Previous work on segmentation includes for example
(Awasthi et al., 2007). Here, the authors also con-
struct a tree structured CRF from image patches. In
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contrast to our method, though, they split the im-
age into patches laying on a regular grid and connect-
ing them using a quad-tree structure. Also, they do
not have a image classification step before segmenting
an image. Another approach (Csurka & Perronnin,
2008) transforms low-level patch features into high-
level features based on Fisher kernels and defines a
score system for patches to determine whether a patch
is part of fore- or background. Their framework also
includes an image classification step, however, no CRF
are used (though it could be extended to use CRF).
Finally, in (Reynolds & Murphy, 2007) segmentation
is facilitated by constructing a tree-structured con-
ditional random field on image regions on multiple
scales. Their method is able to segment objects and
divide image into fore- and background. In its orig-
inal form it is only applicable to two-class scenarios,
foreground and background. We extend this to the
multi-class case and introduce an image classification
step to improve segmentation results.

Our segmentation algorithm follows a number of steps
which we briefly summarize here:

1. We first use an unsupervised segmentation to frag-
ment the whole image in a number of patches on
multiple scale levels.

2. For each patch on each level we compute color,
texture and SIFT features.

3. From all patch features we also compute a global
image feature vector.

4. We use trained SVMs to predict a class member-
ship for each patch and for the whole image.

5. Depending on the image structure and the global
classification we build a CRF model – a depen-
dency tree between patch labels – and use the
SVMs outputs as local evidences in this .

6. Thresholding the posterior labels for the finest
patches produces the final segmentation.

The next section describes the unsupervised image
segmentation and the feature computation. Section
3 will explain the CRF model, how we train it and
how we use the global classification. Section 4 demon-
strates the approach on the challenging PASCAL VOC
2008 image segmentation data set (Everingham et al.,
2008).

2. Pre-segmentation and Features

2.1. Unsupervised pre-segmentation into
image patches

The aim of unsupervised image segmentation is to seg-
ment the image into patches of high textural and color
homogeneity. This kind of segmentation is a priori in-
dependent from any given labels or object classes, but
due to the textural and color homogeneity, the result-
ing patches are likely to belong to only one object and
not overlap with different objects. Felzenszwalb and
Huttenlocher (2004) proposes an algorithm based on a
graph cut minimization formulation: Every pixel of an
image is considered a node of a graph. Starting with
an initially unconnected graph, a greedy algorithm de-
cides on whether to connect nodes/pixels (and thereby
subgraphs/patches) depending on their similarity and
depending on evidence that there actually is a visual
boundary between those patches.

The algorithm provided by the authors has three pa-
rameters which allow us to tune the typical size and
scale of the resulting image patches: a smoothing fac-
tor σ, a similarity threshold k, and a minimum patch
size m. We can exploit this in our algorithm by com-
puting pre-segmentations of an image on L different
scale levels, from fine to coarse patches. Figure 1 dis-
plays an example. Formally, we represent the output
of such a multi-level pre-segmentation as an integer la-
bel pli ∈ {1, .., P} of the ith image pixel on level l. The
integer label in 1, .., P enumerates all patches found on
all levels, i.e., P varies from image to image. In our
experiments we use L = 3.

The unsupervised pre-segmentation of an image into
patches plays an important role in our algorithm. For
each patch on each level we will estimate its object
class label using local patch features, as described in
the next section.

2.2. From Image to Patch Features

Image classification typically means to predict whether
a certain object is contained in the image. Cur-
rent state-of-the-art methods for image classification
(Zhang et al., 2007; Nowak et al., 2006) put much em-
phasis on defining good global image features which
can then be mapped, using large-scale statistical Ma-
chine Learning methods such as SVMs, to the desired
classification. Our approach tries to draw as much as
possible on these existing methods. Any global im-
age classification method can usually be translated to
a local patch classification method by computing the
features only on the patch. The features we use are
based on local color, texture, and SIFT descriptors,
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Figure 1. Images are segmented with a greedy algorithm at multiple scales. Each patch q at level l is connected to the one
node p in the next coarser level l+ 1 which has the largest overlap with itself. In this example three tree are constructed
for this image.

which we explain in the following.

The color features are computed from the HSV color
space model of the input image. As in (Reynolds &
Murphy, 2007) we compute an HSV histogram over an
image patch where hue and saturation are binned to-
gether into a 10×10-bin histogram and value is binned
separately into a 10-bin histogram. For each patch
p ∈ {1, .., P} this gives a feature vector f color

p ∈ R110.

The texture features are computed using Gabor filters.
Also as in (Reynolds & Murphy, 2007) we applied these
filters to the images with d = 6 directions and at s =
4 scales. The resulting energies are binned on a per
patch-basis in a 10-bin histogram for each direction
and scale, which gives a feature vector f texture

p ∈ R240.

Finally, for standard image classification bag-of-words
features based on SIFT descriptors have been found
critical for high performances. We first compute a
standard SIFT discriptor at regular grid points over
the whole image. We choose a grid width of 6 pixels
so that the local SIFT circular regions, with a radius of
16 pixels, overlap. We assume that during training we
have created a visual codebook of SIFT descriptors,
i.e., we have clustered the SIFT data to yield 1000
visual prototypes using regular K-Means. Hence, at
each grid point we can associate the computed SIFT
discriptor with an integer i ∈ {1, .., 1000} indicating
the prototype it belongs to. To construct the patch
feature, we consider all the grind points in a given
patch and compute the prototype histogram. Since we
choose a small enough grid size and sufficiently high
minimum patch size k we never observed that a patch
without any grid points in practice. For each patch p
this gives a feature vector fSIFT

p ∈ R1000.

The full patch feature fp = (f color
p , f texture

p , fSIFT
p ) is

the concatenation of the described features.

As mentioned in the introduction, the local classifi-
cation inherent in image segmentation can profit from
the global classification of the whole image because the

latter is a compact representation of the context. We
will make use of global image classification and hence
also need to define global image features. As before we
define a regular grid over the images, here with a 10
pixel width, and compute SIFT descriptors over mul-
tiple scales, i.e. the radii are changed on each layer (4,
6, 8, and 16 pixels). Then visual prototypes are con-
structed with K-Means clustering. For computational
reasons we randomly selected 10 images from each ob-
ject class and computed 1200 cluster centers followed
by a quantization of the image features. Additionally
we computed a 2-level spatial pyramid representation
of the images, which has been shown to perform well in
(Lazebnik et al., 2006). The final image-level feature
vector is the concatenation of all histograms over all
regions in the pyramid and over all scales. The train-
ing of the image classifier makes use of a SVM with a
χ2 kernel. The details of training are the same as for
the segmentation, as will be explained later.

3. Conditional Random Fields

The patch features allow us to learn a patch classi-
fier that would predict the object class membership of
each patch independently. However, given the spatial
relation between patches – and in particular the re-
lation (overlap) between patches on the different scale
levels – the patch labels should not be considered inde-
pendent. A standard framework for the prediction of
dependent labels of multiple output variables is struc-
tured output regression (Lafferty et al., 2001; Altun
et al., 2003; Tsochantaridis et al., 2005). Generally,
a discriminative function F (y, x) over all output vari-
ables y = (y1, .., yP ) is defined depending on the input
x such that the prediction for all output variables is
given as f(x) = argminy F (y, x). The factorization of
F (y, x) w.r.t. y typically corresponds to a graphical
model for which the argmin can efficiently be com-
puted using inference methods.

Let us first focus on only one object class, N = 1;
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we will discuss the general multi-class segmentation
below. In this case we need to segment the image
into foreground (label 1) and background (label 0).
We will predict these labels not on the level of pixels
but on the level of patches. Hence, in our case the
output variables y = (y1, .., yP ) are the binary labels
yp ∈ {0, 1} we want to predict for each patch.

We assume a tree as the coupling structure between
these variables. Let π(p) denote the set of children
(descending nodes) of a patch p in this tree, then the
discriminative function is of the form

F (y, x) =
P∏
p=1

φ(yp, x)
∏

q∈π(p)

ψ(yp, yq) , (1)

where φ(yp, x) represents input dependent evidences
for each patch, and ψ(yp, yq) represents a pair-wise
coupling between the labels of a parent and child
patch. We first explain how we construct the tree for a
specific image before giving details on these potentials.

The tree (actually forest) is fully defined by specify-
ing the parent of each node. A node corresponds to
a patch from one of the multiple scale levels. Every
patch connects to the one parent patch in the next
coarser level which has the largest overlap with itself:
if q is a patch of level l, then its parent p in level l+ 1
is

p = argmax
p

|Ip ∩ Iq|
|Iq|

, (2)

where Ip = {i ∈ I : pl+1
i = p} is the image region

that corresponds to p. As a result, every patch in the
coarsest level does not have a parent and is a root of
a tree. Figure 1 illustrates such a tree.

The potentials φ(yp, x) represent the local evidence for
labelling the patch p as forground depending on the in-
put. We will assume that only the local patch features
fp are used, φ(yp, x) = φ(yp, fp).

The potentials ψ(yp, yq) describe the pairwise coupling
between overlapping patched from layers l + 1 and l,
respectively. Reynolds and Murphy (2007) made such
edge potentials dependent on the visual similarity be-
tween the patches. Although this seems a reasonable
heuristic, we found that this local similarity measure
is too brittle to yield robust results. We decided to
use a set of parameters γl to tune the coupling be-
tween pairs of levels separately. This has the advan-
tage that the coupling can be increased for layers for
which the patch-level classifiers exhibit a high amount
of certainty. For parent p and child q in layers l + 1
and l we define the pairwise potentials as the following

2× 2-matrix

ψ(yp, yq) =
(
eγl e−γl

e−γl eγl

)
(3)

Inference in the tree (or forest) is done using stan-
dard exact inference (we use an implementation of the
Junction Tree Algorithm).

Concerning the multi-class case we tried some alter-
natives. A straight-forward extension to the binary
tree is to extend the patchwise labels to be an inte-
ger yp ∈ {0, 1, .., N} where N is the number of object
classes. The local evidences φ(yp, fp) can be repre-
sented by N+1 separate models and the pairwise cou-
plings ψ(yp, yq) become a (N+1)×(N+1)-matrix with
diagonal entries eγl and constant off-diagonal entries
e−γl . This approach seems to work fine if in every im-
age we have always all N object classes present. How-
ever, in realistic data, some images contain only one
object class out of N = 20, other images three or more.
Generally, the uncertainties in object classes that are
not present in an image cause, particularly for large
N , a significant perturbation of the segmentation of
the present object class. We decided to aim for a more
robust approach where the segmentation within an ob-
ject class should be independent of N and uncertain-
ties in other object classes. We settled for having N
separate binary trees and compute the posterior label
distribution for each tree. Since we compute patches
on multiple scale levels, we will use the predicted labels
of the smallest scale patches as the predicted segmen-
tation. The final label we assign to a patch p is the
object class for which the posterior is maximal if this
maximum is larger than a threshold, and background
otherwise. The threshold is determined using cross-
validation.

3.1. Training

The conditional random field framework we introduced
above would naturally lead to a structured output re-
gression method for training the φ’s and ψ’s. How-
ever, we simplified the training problem by decompos-
ing the training of local evidences φ(xp, fp) from the
inference mechanisms on top of that (Reynolds & Mur-
phy, 2007).

We assume we are given a dataset of segmented im-
ages, i.e., images for which each pixel i is labeled with
an integer Si ∈ {0, .., N} indicating either that the
pixel belongs to one of N object classes or to the back-
ground (Si = 0). An example is depicted in figure 2.

We can apply the multi-scale pre-segmentation on each
image of this dataset and compute the patch features
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for all patches. When more than 75% of the pixels of
a patch are labelled with the same object class then
we consider this patch as positive training data for the
classifier for this object class, otherwise it is considered
negative training data (Reynolds & Murphy, 2007).
That is, for each patch p = 1, .., P and each object class
n = 1, .., N we have a label ypn ∈ {+1,−1} indicating
whether p has more than 75% overlab with n. We train
N separate SVMs on all patches using these labels ypn.

An appropriate kernel for histogram features is a χ2-
kernel, which was shown to be a suitable similarity
measure histograms features (Hayman et al., 2004;
Zhang et al., 2007). The parameter b determines the
width of the kernel, which is set to the mean of the χ2

distances over all pairs of training samples (Lampert
& Blaschko, 2008).

The regularization parameter c was tuned using cross-
validation. Since the data is highly biased towards
negative examples, it is a good idea to duplicate posi-
tive training examples so that the number of training
samples in both groups is approximately the same. We
used the Shogun SVM implementation (Sonnenburg
et al., 1999), which balances the data set automati-
cally.

Applying a re-normalization using logistic regression
(Platt, 1999) allows us to treat the output of the clas-
sifiers as probabilities

φ(yp = 1|fp) =
1

1 + e−(alsvm(fp)+bl)
(4)

where l is the scale level of the patch p and the param-
eters al and bl control the slope and the bias.

3.2. Coupling global image classification with
local segmentation

What we found one of the most important keys to good
image segmentation is that global image information is
taken into account. As discussed in the introduction,
the patch classifiers we described in the previous sec-
tion rely only on local image information. However,
as is evident from the success of image classification
techniques that neglect completely the location of an
object and use the whole image, the image context is
an essential ingredient for good classification. This is
also true for the segmentation task.

Based on the global image feature vector fI we train N
separate image classifiers (SVMs) to predict whether
a certain object class is present in a new image. Only
when a class is predicted we build the binary random
tree and consider this class label in the segmentation
procedure described in the previous section.

4. Experiments

In this section we report results on the data set pro-
vided by the Pascal VOC2008 challenge (Everingham
et al., 2008). The data set consists of three pre-
defined subsets for training, validation, and testing.
The groundtruths, as shown in figure 2, are given only
for the training and the validation set. However, the
organizers of the challenge offer to evaluate the results
submitted to them.

The images, for which the challenge defines 20 object
categories, are randomly downloaded samples from the
famous Flickr photo portal and the groundtruths were
produced in meticulous hand-work. On average the
training and validation set comprise around 40 color
images per class with varying sizes. No official statis-
tics about the test data are published by the organizers
of the challenge.

Performance is measured by the average segmentation
accuracy across all object classes and the background.
The accuracy a is assessed using the intersection/union
metric

a =
tp

tp + fp + fn
(5)

where tp, fp, and fn are true positives, false positives,
and false negative, respectively.

Our classification algorithm reached an average preci-
sion of 42% on the test data.

The segmentation framework has been set up accord-
ing to the parameters in table 1. The initial stage
of patch generation involved careful hand-tuning as
to satisfy the balance between the number of patches
created per level and general quality of the patches in
terms of how they overlap with the actual objects in
the images. Settings for color and texture features re-
main the same as in (Reynolds & Murphy, 2007). The
configuration for the SIFT components is a trade-off
between computational efficiency and discriminative
features. For the creation of the visual codebook we
limited the number of descriptors used and randomly
sampled 10, 000 vectors per object class and applied
K-Means clustering.

The entire process chain is shown in figure 4. The
sample images are pre-segmented as described above,
then for each patch p in each of the three layers l the
confidence is computed. In figure 4 (b)-(d) the confi-
dences for each patch are shown as gray values, where
black corresponds to a confidence of zero and white to
one. The resulting posteriors at the leaf level are illus-
trated in figure 4 (e). The last column of this figure
depicts the final segmentation after thresholding the
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Table 1. Settings used in experiments. Settings for the
classifiers are not shown, since they are determined auto-
matically and may vary depending on the data source.We
tested 3 different segmentation thresholds t, for which all
other settings are identical. For tind we computed one
threshold for each object class individually, tglo uses mean
of tind, and tmax is set to the maximum of tind.

step parameters values

patches
σl {0.5, 0.75, 1.25}
kl {500, 500, 700}
ml {50, 200, 1200}

color feat.
binsHS 10× 10
binsS 10

texture feat.
binsGabor 10
directionsGabor 6
scalesGabor 4

SIFT features
grid size 6× 6
visual prototypes 1000

trees
al {2, 1.5, 1.5}
bl {0, 0, 0}
γl {2, 1}

BP
tind n thresholds
tglo mean of tind

tmax max(tind)

posteriors.

Table 2 shows detailed results of our segmentation re-
sults and compares them to the competitors of this
year’s challenge. In average our results settle in the
middle. However, it is important to keep in mind that
our algorithm can only be as good as the prior image
classification. In a different setting we assumed to have
a perfect image classifier. In this case the segmentation
significantly outperforms the best reported algorithms.
Surprisingly applying individual thresholds (tind) does
not perform as well as a globally applied threshold
(tglo), as more false positives will be reported. The
third configuration (tmax) uses the maximal value of
the individual threshold. This setting reduces false
positives but at the same time increases the number
of false negatives.

Figure 3 depicts examples of successful and unsuccess-
ful segmentations. A correct segmentation becomes
very probable if the object classes in the image have
been determined correctly. In the case where the im-
age classification contains a lot of false positives the
results deteriorate. One reason is that the additional
patch classifiers may be very confident that certain
patches resemble their training data, e.g. a cow could
be mistaken for any other animal with similar fur color
and texture or the sky could be labelled as aeroplane
since it is in a contextual relation to that class.

Figure 2. Randomly selected images of the VOC2008 chal-
lenge. Rows with odd indices depict the provided image,
rows with even indices are the according hand-made seg-
mentation groundtruths.

5. Conclusions

We presented an extension of the work done in
(Reynolds & Murphy, 2007) from simple figure-ground
segmentation to multi-class segmentation. Our frame-
work consists of a simple image classifier to detect the
presence of categories of objects in an image and ap-
plies a semantical segmentation according to the class
information. The quality of our segmentation relies
strongly on the performance of the various patch-level
and image-level classifiers. Thus, using more elabo-
rate features may lead to better results. These could
include shape features (Bosch et al., 2007; Belongie
et al., 2002). Changing the method of the object cate-
gorization step to state-of-the-art classification algo-
rithms, such as (Zhang et al., 2007; Nowak et al.,
2006), would bring us closer to the segmentation per-
formance we observed assuming the correct class pre-
diction.
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Table 2. Segmentation results for Pascal VOC2008 challenge. The results for the method described in this paper are the
two rows on the bottom. (tglo) indicates that a global threshold for image classification has been used, (tind) indicates
the use of one separate threshold per object class, for (tmax) we choose the maximal value of (tind) as global threshold.
To demonstrate the capacities of our segmentation algorithm (true class), we tested it on the validation set using the
classification information provided with the data. With this additional information our method outperforms all other
reported methods.
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