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The problem of planning and goal-directed behavior has been addressed in computer science for many years, typically based on
classical concepts like Bellman’s optimality principle, dynamic programming, or Reinforcement Learning methods – but is this
the only way to address the problem? Recently there is growing interest in using probabilistic inference methods for decision
making and planning. Promising about such approaches is that they naturally extend to distributed state representations and
efficiently cope with uncertainty. In sensor processing, inference methods typically compute a posterior over state conditioned
on observations – applied in the context of action selection they compute a posterior over actions conditioned on goals. In this
paper we will first introduce the idea of using inference for reasoning about actions on an intuitive level, drawing connections
to the idea of internal simulation. We then survey previous and own work using the new approach to address (partially
observable) Markov Decision Processes and stochastic optimal control problems.

1 Probabilistic inference and inter-
nal simulation

Models of intelligent behavior organization can be roughly distin-
guished as model-based or model-free. In a model-free approach
the sensorial input (or the state1) is directly mapped to actions
and motor signals without the need to anticipate what the out-
come of these actions might be. In the context of cognitive
science one would describe such an action selection system as
reactive or habit-based [2]. An agent that follows a model-free
approach can learn to behave optimally by associating a certain
value to states and actions – which is the core idea of classical
Reinforcement Learning (RL) methods [30] – but it will not be
able to predict or anticipate where these actions lead. In fact,
there is no role for anticipation (or general knowledge) except
for the prediction of the expected future reward depending on
the state. The mapping from state to action is one-way – since
the agent cannot anticipate, the sensor-motor loop can only be
closed by explicit (“overt”) interaction with the external world.
Model-free behavior organization is without doubt a fundamen-
tal aspect of human and animal behavior (reflexes, habits, motor
skills), but it does not account for planned and anticipatory be-
havior.

In contrast, in a model-based approach the ability to pre-
dict (even if with uncertainty) is essential. One assumes that
some model of the environment is available or has been learnt
from experience. Given such a model one can in some sense
close the loop internally, i.e., predict the change of stimuli and
world state depending on (“covert”) actions and thereby induce
an internal simulation of action sequences and effects. Clearly,
internal simulation provides a very intuitive idea of how a learnt
model of the world can be used for decision-making and goal-
directed, prospective behavior. However, from a theoretical and
computer scientist point of view we would like to have a more
rigorous framework and efficient computational model of such
processes.

In this paper we discuss a new computational method for
planning and control based on probabilistic inference, which can

1We will more precisely discuss partial observability later.

be thought of as a theoretically grounded formalization of the
idea of internal simulation. We will show later to what degree
the inference approach and classical reinforcement learning and
control methods are equivalent. Let us first try to pinpoint the
core ideas of the inference approach in a minimalistic but formal
setting.

Probabilistic inference is a method to infer estimates of un-
observed variables. For instance, let X and Y be two ran-
dom variables that are coupled by some conditional probability
P (Y |X) (e.g., a measurement device). Graphically this can be
expressed as

X Y

Assume we observe only Y (a measurement) and want to esti-
mate X (the true state). When we have a prior P (X) over X we
can compute a posterior distribution P (X|Y ) ∝ P (Y |X)P (X)
using Bayes rule. This approach has been pervasive and suc-
cessful in many applications for decades: In Kalman filters (X is
a true trajectory, Y measurements of the trajectory), in speech
recognition (X is a sequence of phonemes, Y measured audi-
tory features), in image processing (X are true pixel colors, Y
a noisy image), etc. As a result, probabilistic inference methods
have for decades been used in the context of sensor processing:
given measurements, the true state of an unobserved variable is
estimated.

However, more generally inference methods can be under-
stood as a computational paradigm that relaxes to a coherent
estimate of coupled variables2. This principle can not only be
applied to sensor processing but also to the estimation of ac-
tions and decisions that are coherent with constraints and goals:
Assume we have three random variables X, Y , and Z coupled
as

X Y Z

Assume we know X (“where we are”) and we know Z (“where
we want to be”) – we can use inference methods to estimate Y ,

2To stay formally precise, we could identify the notion of “coher-
ence” with the marginal consistency property in factor graphs.
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i.e., estimate the intermediate step that is “coherent” with ob-
served information (X) and the goal (Z). This, in a nutshell, is
the idea of using inference to reason about actions. The beauty
of the idea is that the network of involved coupled variables can
include a multitude of variables, some of which might represent
known features of the current state, some of which might rep-
resent constraints, goals, or motivations that lie in the future,
and some of which might represent future actions, motor signals,
sensor signals or any other kind of information. The variables
can be discrete, continuous or mixed, they can represent hier-
archies and abstractions. The decision or planning process now
means to clamp (condition) some of these variables to desired
values (goals), others to known context or sensor information,
and then to use a computational machinery that yields coherent
estimates of variables (in particular actions) across the network.
The next section will express this more formally in the framework
of graphical models.

2 Networks of actions, goals and sen-
sor variables

A convenient – but surely not the only possible – mathemati-
cal framework to formalize these ideas are so-called (dynamic)
Bayesian networks [17, 22]. In this framework we think of the
state at a certain time as being described by a number of random
variables. When we discretize time uniformly (which we do here
for simplicity) we have these random variables in each time slice.
A dynamic Bayesian network (DBN) describes the collection of
all random variables and their coupling in a temporal process.
In a more intuitive sense, the DBN represents our future spread
out in front of us. All these variables are coupled somehow.
Apart from a prior that we might have, all these variables are
yet undetermined since they represent events or features of the
future which are yet not observable.

In this framework goals correspond to “mental observations”
of future events – they correspond to conditioning some random
variables in the DBN (clamping them to a fixed value). To give
an example, when we walk past an advertisement for an ice
cream, this might inevitably induce the “mental observation” of
ourselves eating the ice cream somewhere in the future3, that
is, the conditioning of some variables in our DBN model of the
future.

In Graphical Models [17], inference is the process of com-
puting a posterior marginal over all variables given that some
variables are observed and we know how the variables are cou-
pled. Let us describe in some more detail what inference al-
gorithms actually do (following the framework of factor graphs
[19]). Formally, they assume that a so-called joint probability
distribution

P (X1, .., Xn) =
Y

i

φi(Xi)
Y
(ij)

ψij(Xi, Xj)

·
Y
(ijk)

χijk(Xi, Xj , Xk) · · · (1)

3Note the use of “somewhere” – the undeterminedness of when
we eat the ice cream (and receive the reward) is non-trivial to handle
properly. The mixture of DBNs in section 3.2 will be our solution to
this “somewhere”.

defines a scalar function over a tuple (X1, .., Xn) of random
variables. As expressed in the above equation, one assumes that
this function can be factored in variable-wise potentials φ, pair-
wise couplings ψ, triple-wise couplings χ, etc. Generally, one
writes

P (X1:n) =
Y
C

ψC(XC) (2)

in terms of cliques C which are subsets of coupled variables. Ob-
servations correspond to potentials φi which are zero except for
the value of Xi which is actually observed. Inference computes
the marginal beliefs b(Xi) for a variable Xi, i.e., computes the
distribution of Xi when all global information, couplings, and
observations are taken into account. Inference methods like be-
lief propagation can be interpreted as a computational scheme
that tries to achieve consistence between coupled marginal be-
liefs, that is, when XC and XD represent two cliques that share
a variable Xi, then their marginal posterior beliefs should co-
incide,

P
XC\Xi

b(XC) =
P

XD\Xi
b(XD) (see [32] for a brief

technical introduction to factor graphs and belief propagation).
This corresponds closely to methods in statistical physics that
try to estimate the state distribution of a large number of par-
ticles when they are locally coupled but also fulfill constraints
(observations), e.g., at boundaries.

What does this imply for our ice cream example? When we
assume that there is an inference machinery permanently ac-
tive on our DBN, then the ice cream advertisement conditions
a variable describing ourselves eating the ice cream, the infer-
ence machinery immediately infers what this implies for all the
other variables in the network – in particular the future that lies
between now and the ice cream. In some sense the inference ma-
chinery completes the picture of our future and lets us imagine
also all the intermediate steps toward the ice cream.

We haven’t explicitly discussed actions yet. Interestingly, in
this framework there is hardly need to distinguish between action
or motor variables and state features or sensor variables. The
DBNs may include all kinds of variables equally, sensor variables,
motor variables, abstractions, reward variables, continuous and
discrete variables; whatever representations are available. The
inference machinery only computes what the conditioning of
one variable implies on the others, independent of whether they
might correspond to actions or perceptions. When our DBN in-
cludes motor and action variables, then the conditioning of some
future variable will imply an effect on the immediate motor or
action variable. If we make a last assumption that a non-uniform
posterior on an action variable inevitably leads to the overt ex-
ecution of the action, then we closed the loop: We see the ice
cream, the mental observation is induced, the inference machin-
ery spreads its messages through all other variables, the posterior
of some action or motor variables becomes non-uniform, we ex-
ecute the action.

The ice cream example gives a plausible idea of the working
of probabilistic inference in the context of goal-directed behav-
ior, but we should complement this intuitive example with some
critical remarks: First of all, the above view is suggestive in that
this is how the brain might work – but do we have evidence
for this? Answers to this can be given on different levels. On
a purely information processing level, several authors proposed
that certain functions of neural substrates could be abstracted in
terms of Bayesian information processing and inference [10, 24].
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On a neuroscientific level, Johnson and Redish [16] were able
to record neural activation patterns in rats during path plan-
ning that are remarkably similar to a spatial forward simulation.
On a cognitive level, Botvinick and An [2] argues rather closely
along the above lines of thought; Hesslow [13] and Grush [11]
generally discuss the role of internal simulation and imagery and
propose, for instance, Kalman filtering as a computational model
of internal simulation. These studies encourage our view that
probability inference might serve as an interesting model of neu-
ral functions – but clearly this hypothesis should be considered
tentative before we have more evidence in this direction.

As a second remark, the picture above suggests that we are
done after a single inference pass. However, when establishing
relations to computing optimal policies in Markov Decision Pro-
cesses (MDPs) (next section) we will find that one needs an
additional (Expectation Maximization, EM) loop on top of the
inference machinery. This is inevitable since the optimal action
now depends on the actions taken in the future. So, a model of
the future from which we can infer the optimal immediate action
needs to “use” the optimal policy in the future – this recursive
loop is resolved with an EM algorithm.

Nevertheless, we belief that the general picture we sketched
in this section is useful (1) as an inspiration for new approaches
to behavior organization and (2) as an intuitive grounding to
better understand the concrete computational methods we have
developed in recent years, which proved very efficient in concrete
applications and which we survey in the following section.

3 Concrete Methods

In this section we survey a series of explicit realizations of the
above concept. Instead of going into all technical details in each
case we refer to the technical publications. Our aim is to show
that the concept can be applied consistently in a variety of cases
and is not limited to, say, only MDPs. We will discuss
• previous work, in particular on influence diagrams,
• a new method to compute optimal policies in MDPs,
• an extension to hierarchical POMDPs,
• a new method to approximately solve stochastic optimal

control problems,
• and briefly some other extensions.

3.1 Previous work & Influence Diagrams

The idea of using inference methods for reasoning about deci-
sions has a long history. The earliest work on this we are aware
of was done in the context of so-called influence diagrams [14].
A key to the application of inference methods was to replace the
utility functions (scalar functions that measure cost or reward)
by a random variable which represents a “success event” such
that success probability is proportional to the total utility. This
idea is presented in [7, 25, 28]. The early approaches to use
inference made very strong assumptions (one utility variable,
regularity, no-forgetting) which leads to inefficient algorithms
(the no-forgetting assumption immediately lets the clique size
explode). Later work remedied some of these inefficiencies by
considering multiple utility variables and better exploiting the
problem structure [15, 41]. Kjaerulff and Madsen [18] present
a modern text book on influence diagrams including interest-
ing work on solving continuous state problems similar to LQG

stochastic optimal control [21]. Cano et al. [5] use Monte Carlo
methods for computing optimal policies in continuous state in-
fluence diagrams.

There are some crucial differences between the framework of
influence diagrams and temporal process models such as MDPs
or stochastic optimal control; see [3, section 4.3] for an excel-
lent discussion. One point is that influence diagrams typically
describe finite worlds whereas MDPs describe infinite processes.
While inference methods in influence diagrams rely on recursing
backward starting from the last decision, there is no “last deci-
sion” in an infinite-horizon MDP. Further, in stationary MDPs
the optimal policy is known to be stationary, i.e., independent
of time and needs to be optimized globally. Instead, in influ-
ence diagrams each decision can be treated separately (in back-
ward order). Indeed, in textbooks on influence diagrams [18]
the infinite-horizon or stationary sequential decision problem is
addressed based on the Bellman optimality equation and recur-
sive value function computation. To my knowledge, inference
methods for solving infinite-horizon or stationary scenarios have
not been developed in the context of influence diagrams.

Beyond influence diagrams, there are a series of papers that
investigate inference methods in MDPs. Attias [1] assumed that
instead of arbitrary rewards at every time slice we have one goal
state g at the final time (which can easily be generalized to sev-
eral goal states), and a finite horizon T is prefixed. Additional se-
quential dependencies between actions are also assumed. Given
this model, Attias computes the MAP (maximum aposteriori
probability) action sequence conditioned on reaching the goal,

α∗0:T-1 = argmax
a0:T-1

P (a0:T-1 |xT =g) . (3)

The paper was very inspiring for the subsequent work, although
the method does not exactly solve the typical MDP problem in
the sense of computing a policy that maximizes future expected
return. Raiko and Tornio [27] introduced the same idea inde-
pendently in the context of continuous state stochastic control
and called this optimistic inference control. Verma and Rao [38]
used inference to compute plans (considering the maximal prob-
able explanation (MPE) instead of the MAP action sequence)
but again the total time has to be fixed and the plan is not
optimal in the expected return sense. Bui et al. [4] have used
inference on Abstract Hidden Markov Models for policy recog-
nition, i.e., for reasoning about executed behaviors, but do not
address the problem of computing optimal policies from such in-
ference. A very interesting approach to imitation learning based
on probabilistic inference of what the intended goal of the ob-
served behavior is was presented by Verma and Rao [38].

Finally, in a neuro-scientific context, Dayan and Hinton [8]
proposed an Expectation Maximization algorithm for RL in the
case of immediate reward, but not addressing delayed rewards
in sequential processes.

3.2 Expectation Maximization in MDPs

In [35] we proposed a first method to compute optimal policies
in a standard MDP using inference. There are two key points
in this approach: First, the policy is identified as a parameter of
the DBN (the conditional probability coupling states to actions).
Thus, finding the optimal policy is more than just computing a
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posterior over actions. It requires parameter optimization us-
ing Expectation Maximization (EM) which uses the inference
machinery in an internal loop.

Second, we formulated a probabilistic model that actually
consists of a mixture of finite-length MDPs. This turned out to
be very convenient to resolve a number of issues. All inference
approaches, including ours, introduce a random variable to rep-
resent reward or success and condition this variable. However,
when rewards can be collected at any time step in an infinite
process it is unclear which future reward variable to condition
(the issue of “somewhere in the future” we mentioned above).
Conditioning reward random variables in each time step to ob-
serve reward does not lead to an equivalence to maximization of
(discounted) expected future return (also a log-transformation
does not help). The mixture of MDPs solves this issue. One
could think of the mixture model as a superposition of possible
world where in each one the reward event (the mental ice cream
observation) is observed at another time T and its probability is
proportional to some weighting γT . We now do inference un-
der this uncertainty of which world we live in. Since mixtures
correspond to summation it almost trivially turns out that max-
imizing the reward likelihood in this mixture model is equivalent
to the classical notion of maximizing the expected future return
(sum of discounted rewards) in the MDP. In effect, we solved
the problem of handling discounted total rewards in the inference
framework and also found an efficient inference technique that
probabilistically propagates forward from time zero and back-
ward from the unknown time of the reward event. For further
details we would like to refer to [35] and the extended version
[36].

The resulting algorithm is an EM algorithm that yields opti-
mal policies in an MDP. However, this first work is still a rather
limited realization of the general concept. An MDP is a very
strong abstraction of decision processes: every time slice con-
tains only two random variables (a state variable st and an ac-
tion variable at, coupled by a predictive model P (st+1 | at, st)
and the policy π(at | st)), graphically

a2a1a0

π

s0 s1 s2

This is a strong simplification from the picture we have drawn
in section 2, where the future is described by many random
variables at each time, referring to various state features, ab-
stractions, motor variables, or other representations.

Further, in the simple MDP framework one can show very
close similarity between the resulting EM algorithm and classi-
cal policy iteration – put critically, we introduced a rather fancy,
complicated new theory only to end up with a well-known classi-
cal algorithm (though there are differences, e.g., w.r.t. exploiting
the forward propagated messages). This equivalence to policy
iteration indirectly also provides the proof of convergence to op-
timal policies, which is not obvious since EM-algorithms are only
guaranteed to converge to local optima.

However, in the developed framework it is rather straight-
forward to generalize the algorithm beyond the simple MDP
case: e.g., to structured representations (more variables) and
partial observability. In conclusion, the framework does not pay-
off much in the simple MDP case. But it is powerful to generalize
to more interesting and harder problems, as we will see in the

n2
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Figure 1: Partially observable Markov Decision Process with
hierarchical controller.

next section.

3.3 Hierarchical controllers and POMDPs

Partial observability means that we cannot observe the state di-
rectly. Formally, this introduces an additional random variable
in our DBN: the observation yt we make in a certain time step
which only encodes partial information about the true state of
the environment. The interesting aspect about POMDPs (par-
tially observable MDPs) is that a direct sensor-to-action associ-
ation can usually not lead to optimal behaviors since the sensor
information (yt) is not sufficient to take optimal decisions. In-
stead, the agent needs some kind of internal memory or context
representation that summarizes past observations and augments
the current observation so that together they form a sufficient
basis to take optimal decisions. One way to represent informa-
tion that can be gained from past observation is to maintain
the so-called belief – a distribution over the world state. This
distribution contains all information that can be extracted from
observations for making optimal decisions. We refer to other
publications on belief-based approaches, e.g., [26].

In our work we followed another common approach. One as-
sumes that the agent uses an internal automaton to process past
and current observations and decide on an action. Usually a very
simply structured automaton is assumed, a so-called FSC (finite
state controller), which comprises a single internal state variable
(or node) which changes its state depending on observations.
A direct mapping from the internal state to actions realizes the
decision-making. Generally, the agent’s internal automaton to
process observations and build internal context representations
may be much more complex. In [12, 6] hierarchical automata
were proposed which contain not only one internal state vari-
able but several variables on different levels; they are coupled as
in typical hierarchical process models (like hierarchical Hidden
Markov Models). These extended FSCs can represent hierarchi-
cal behaviors in a POMDP context, where a higher-level process
controls a lower-level control process.

For the scope of this paper the details of these hierarchical
automata and the POMDPs are not important (see [37] for more
details). What we described above means that we represent the
future again as a DBN which now comprises much more vari-
ables than just states and actions. In graphical notation, the
DBN we assume is given in figure 1. In each time step it com-
prises the (unobserved) environment state st, the observation
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yt, the action at, and the hierarchy of internal states n0
t ,..,n2

t .
The specific coupling structure can be exploited in the inference
machinery (the maximal clique size in the Junction Tree Algo-
rithm remains tractable also for many levels of hierarchies). In
essence we are back to the general picture developed above: the
future is spread out in terms of a DBN and we can use inference
and Expectation Maximization to solve planning problems.

In [37] we used this technique to solve POMDPs using hi-
erarchical FSCs. The method significantly outperforms previous
methods to optimizing hierarchical FSCs [6], in particular with
increasing problem sizes. The complexity of the method fully de-
pends on the cost of the inference query – the more structured
the world or agent is, the more we can exploit this structure
and use efficient inference techniques. On some large problems
our method is also competitive to the state-of-the-art POMDP
solver (HSVI2, heuristic search value iteration, [29]). We cur-
rently investigate even larger problems where the environment is
structured (factored POMDPs) and hope to push the limits of
what is solvable significantly further with the new technique.

3.4 Approximate inference for stochastic op-
timal control

The previous examples address problems in discrete domains.
But the concept is in no way limited to discrete variables. Con-
tinuous and hybrid (mixed discrete and continuous) domains are
naturally formalized in DBNs; a typical example for a hybrid
DBN model are switching state-space models. See, e.g., [22]
for more examples to include discrete and continuous variables
in DBNs with appropriate couplings.

In this section we want to demonstrate the inference ap-
proach on the level of motor control and planning – and suggest
that the concept covers the whole spectrum between symbolic
reasoning and sub-symbolic sensor-motor processing.

A standard mathematical framework for motor control and
planning is stochastic optimal control. In the standard case we
assume we have a single state random variable qt that describes
the physical state (posture and velocities) of articulated degrees
of freedom, and a motor control variable ut. The physics of
the system implies a stochastic process P (qt+1 |ut, qt) (in dis-
cretized time).

Again, the details of this stochastic model are not important
for the scope of this paper – we refer to [34, 33] for more details.
In essence, we again have a DBN as a spread out representation
of the future, this time with variables qt and ut in each time step.
A basic problem in motor planning is to reach a desired end pos-
ture at a desired point T in time. This rather literally translates
to our picture of mentally observing ourselves to be in the de-
sired posture at time T (conditioning the random variable qT to
the desired posture) and then using the inference machinery to
compute what this implies on all other variables – in particular
the current motor control variable. Let us make this a bit more
realistic: in typical motion problems the whole goal configuration
is not specified, but only certain aspects of the posture, so-called
task variables of the configuration. The most basic example is a
3-dimensional end-effector (e.g., hand) position, other examples
for task variables are the collision state between objects (actu-
ally a discrete variable) or the balance (horizontal offset) over
a point of support. In our DBN picture, all task variables are
additional random variables that are coupled to the posture vari-

able qt in each time slice. A goal is specified, for instance, by
reaching a certain 3D position with the end-effector at time T ,
not colliding and keeping balance in the time interval [0, T ]. All
these goals and constraints can be expressed as conditioning the
respective variables in the DBN. The inference machinery then
computes estimates of intermediate postures and motor control
variables that are coherent with all these constraints and goals.

For the idea presented so far it is not clear to what degree the
resulting control is optimal in the well-defined sense of stochastic
optimal control. In fact, we have neglected a number issues in
the simplified view above. For instance, classical stochastic opti-
mal control usually assumes a cost term on the control variables
– this can be be translated to a prior over the control variables
in our DBN. Further, in the case of competing or contradicting
constraints and goals, classical methods assume a task priori-
tization or a Tikhonov regularization to generate compromises
[23]. In the DBN formulation this translates to certain non-tight
couplings between qt and the task variables. In [33] we discuss
in detail to what degree or in what sense the solutions found
by approximate inference methods solve stochastic optimal con-
trol problems. The concrete approximate inference method we
investigated is closely related to perturbative (variational) so-
lutions around the optimal deterministic trajectory. Concerning
the performance, we could demonstrate that the approximate in-
ference techniques outperform stochastic optimal control solvers
like iLQG [31], which is an efficient form of sequential quadratic
programming. To give an impression of the performance, it takes
about one second to compute a near-optimal posterior over a
trajectory of length 200 for a 30 degrees-of-freedom robot in a
reaching problem [33].

Similarly to our earlier work on MDPs, the work done so far
on stochastic optimal control is limited to rather basic scenarios
with only one state variable qt in the model. Although we can
demonstrate good performance on these basic problems, the ac-
tual target are more complex structured problem like distributed
or hierarchical motion planning problems on many concurrent
and coupled variables. This is where the new approach should
payoff even more since it can exploit structured inference meth-
ods – as in the POMDP case. Future research will have to
examine this.

3.5 Extensions

Finally, let us briefly mention some recent extensions of the
methods described in the previous sections.

A model-free RL version. Although the focus of this paper is
on planned behavior and model-based approaches, we also men-
tion a recent derivation of a model-free RL algorithm from the
idea of using inference for planning. Going back to the standard
MDP case, we have shown in [35] that the problem of computing
optimal policies can be translated to a problem of Expectation
Maximization (EM) in a mixture of DBNs. From a theoretical
point of view it is rather straight-forward to derive a model-free
version of this method: inference can either be done by propa-
gating exact messages (when we know the model in detail), or
by sampling. It turns out that in the mixture of DBNs we can
perform inference based on sampling which makes no explicit use
of the model but only uses direct trajectory samples from the
interaction with the environment. Since inference can be done
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in a model-free way, also EM can be realized without model. In
[39] we resorted to the SAEM algorithm (Stochastic Approxi-
mation EM) [9] as a theoretically well-grounded EM algorithm
based on samples that guarantees convergence.

Reasoning about the manipulation of objects. Our natu-
ral environment is composed of objects. The size of the state
space grows exponentially with the number of objects (and their
properties) and, when choosing inappropriate representations,
inference methods become intractable. Artificial Intelligence re-
search has from the beginning focused on better representations
for worlds with objects by representing properties and relations
using a logic framework. Recently there is increasing efforts to
marry classical AI representations with the probabilistic frame-
work and, in fact, it is possible to express and learn compact
models of the environment in terms of probabilistic relational
rules [40]. We took this representation as a starting point to
develop methods that realize the use of inference in the case of
worlds composed of objects [20]. With this approach we hope
to capture the essence of the idea of internal simulation in the
case of objects, i.e., the mental imagery of using and manipu-
lating objects as a means to reach a goal. In its current form we
developed an efficient inference machinery for this probabilistic
rule-based representation, but still have to cope with extremely
large representations since all objects are always taken into ac-
count. The next step will be to investigate more clever ways to
reduce the computational burden, e.g., by focussing on only a
subset of objects that seem relevant for the task.

4 Conclusion

In the previous section we presented a series of concrete realiza-
tions of the general idea, leading to different concrete algorithms
when applied in the scope of MDPs, POMDPs, stochastic op-
timal control, or model-free RL. We hope that these examples
make the overarching theme of using inference as a model for
intelligent behavior more concrete and clear. In essence, we
reduced the problem of planning, decision-making or motor con-
trol to a problem of inference on coupled sensor, motor and goal
representations.

At different places we pointed to analogies to the idea of in-
ternal simulation or mental imagery to organize goal-directed,
prospective behavior. The key is to envision a possible fu-
ture conditioned on reaching the goal – this envisioning can
be set analogous to performing inference on possible futures
conditioned on the “mental” observation of a goal. We believe
that making connections to neuroscience and psychology, as we
hinted at, is a particularly promising aspect of this approach – it
would be most interesting to closely relate efficient and theoret-
ically grounded methods of computer science to neuroscientific
and psychological theories. First steps in this direction were
already taken by Botvinick and An [2].

We would like to conclude with a discussion of a slightly more
global view on the whole system. In standard approaches to, for
instance, integrated robotic systems one typically discriminates
between problems of sensor processing, motor control, behavior
planning, etc. In terms of the system architecture one speaks
of a modular design with black box algorithms that specialize
on subtasks with well-defined interfaces and a well-defined flow

of information between them. Within each black box there are
completely different and specialized algorithms and computa-
tional principles at work. Conceptually, the method we intro-
duced suggests the exact opposite: The inference approach does
not distinguish between the problems of sensor processing, motor
control, or planning. The same information processing principle
applies in all cases; in some sense, the computational mecha-
nisms of inference treat all variables equal, no matter what the
semantics of their representation is. There is no one-directional
computational flow from sensor to motor; representations are
coupled and a continuous recursive information exchange be-
tween all representations leads (hopefully) to convergence and
posterior estimates of unobserved variables, be they perceptions,
actions or motor signals. In practice, of course, this ideal of a
generic information processing scheme that can solve all prob-
lems is too simplified. For inference methods to be efficient they
need to use approximations that are specialized to the concrete
representations and tasks. For instance, we used Gaussian belief
representations to address stochastic optimal control problems –
a crude but efficient approximation. Similar computational tricks
are necessary to efficiently handle rule-based world models. Nev-
ertheless, the conceptual idea of a generic computational princi-
ple to address seemingly diverse problems is interesting, also in
view of the system design problems that are currently predom-
inant in the development of integrated intelligent systems such
as robots.
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