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Abstract The problem of motion control and planning can be formulated as an opti-
mization problem. In this paper we discuss an alternative view that casts the problem
as one of probabilistic inference. In simple cases where the optimization problem
can be solved analytically the inference view leads to equivalent solutions. However,
when approximate methods are necessary to tackle the problem, the tight relation
between optimization and probabilistic inference has fruitfully lead to a transfer of
methods between both fields. Here we show that such a transfer is also possible
in the realm of robotics. The general idea is that motion can be generated by fus-
ing motion objectives (task constraints, goals, motion priors) by using probabilistic
inference techniques. In realistic scenarios exact inference is infeasible (as is the an-
alytic solution of the corresponding optimization problem) and the use of efficient
approximate inference methods is a promising alternative to classical motion opti-
mization methods. In this paper we first derive Bayesian control methods that are
directly analogous to classical redundant motion rate control and optimal dynamic
control (including operational space control). Then, by extending the probabilistic
models to be Markovian models of the whole trajectory, we show that approximate
probabilistic inference methods (message passing) efficiently compute solutions to
trajectory optimization problems. Using Gaussian belief approximations and local
linearization the algorithm becomes related to Differential Dynamic Programming
(DDP) (aka. iterative Linear Quadratic Gaussian (iLQG)).

Marc Toussaint
Technical University Berlin, Franklinstr. 28/29, 10587 Berlin, e-mail: mtoussai@cs.tu-berlin.de

Christian Goerick
Honda Research Institute Europe, Carl-Legien-Strasse 30, 63073 Offenbach/Main, Germany, e-
mail: christian.goerick@honda-ri.de

1



2 Marc Toussaint and Christian Goerick

1 Introduction

Bayesian Networks and inference methods like message passing algorithms are a
basic computational paradigm for information processing on coupled random vari-
ables. Inference methods compute the posterior distribution over random variables
when all couplings are taken into account (we will be more formal later). In this
view, it is not surprising that there are strong relations between the fields of opti-
mization and probabilistic inference: In the context of optimization, the coupling
of variables is typically described by additive decomposable functions; which is
in analogy to the factorization of a joint distribution as described by a Bayesian
network or factor graph (with the typical identification of cost with neg-log prob-
ability). Consequently methods that originated in optimization can be translated to
solve inference problems and vice versa: Message passing algorithms can be used to
address satisfiability problems (Culotta et al., 2007); graph cut algorithms are used
to address inference problems (MAP estimation) in Markov-Random-Fields (Tap-
pen & Freeman, 2003). The key of efficient methods is that local computations (e.g.,
local message passing equations) are used to achieve global coherence.1

Motion control and optimization are fundamental and very interesting problems
in robotics. The problem can be formalized as an optimization problem: devising an
appropriate cost function we can derive classical solutions (e.g., motion rate control,
stochastic optimal control) which provide the basis of modern robot control (Peters
et al., 2005). Complementary to the optimization view on robot control, we can also
address the problem from the point of view of probabilistic inference. The classical
cost function is replaced by a joint distribution over coupled random variables (e.g.,
via a neg-log transform), and the classical solution methods are replaced by meth-
ods of probabilistic inference. In simple cases, in particular those where an exact
solution can efficiently be computed in the optimization framework, the inference
approach will only reproduce the same solution. As in the field of optimization, the
transfer of methods becomes interesting when the optimization problem becomes
hard and exact algorithms are computationally expensive. Inference methods like
message passing algorithms are promising candidates to yield (approximate) solu-
tions to the optimization problem.

The problem of motion control and planning typically involves “solving” a sys-
tem of many coupled variables: transition or control costs couple the state variable
in two consecutive time steps, task constraints couple a task variable with the state
variable within a time slice. Classically, these couplings are implicit in the cost func-
tion. In the inference view, these couplings are explicitly formulated as conditional
dependencies in a joint distribution. This view naturally extends to more complex
and structured robotic systems where the state of the system is represented by a
number of state variables instead of a single state variable. An example is hierarchi-
cal control, or decoupled (or weakly coupled) control problems, where we maintain
separate state variables for the left and the right effector of a robot and their control

1 More formally, “coherence” could denote the marginal consistency in the context of inference,
or the consistency with constraints in the context of optimization.
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and plans (posterior distributions) are only weakly coupled. In such cases we can
use probabilistic inference methods that exploit structured (factored) representations
of the problem. Generally, while Bayesian methods have become a standard tool for
sensor processing and fusion, we investigate them to solve a fusion problem on the
motor level, namely the problem of fusing motion objectives like task constraints,
goals and motion priors into a posterior distribution over trajectories.

In this chapter we give an introduction to Bayesian motor control and planning,
i.e., methods to compute motions given a (probabilistic) model. Although our fo-
cus is not directly on learning such models, the methods are interesting also from
the point of view of “motor and interaction learning”: For instance, in (Vlassis &
Toussaint, 2009) we show how inference methods for model-based planning can be
translated to model-free Reinforcement Learning algorithms using stochastic sam-
pling methods. (Bui et al., 2002) show how probabilistic motion inference is useful
in the context of imitation learning. Generally, in a model-based learning approach
(where the behavior learning problem is decomposed in a first stage of learning a
model and a second stage of using the model to generate behavior) one should al-
ways expect the learned model to be uncertain (see other chapters of this book, such
as (Salaun et al., 2009; Howard et al., 2009)). The Bayesian methods we propose
here naturally address such uncertainty. The Bayesian framework also motivates
new interesting learning problems in the context of motion, for instance, learning
motion priors from data.

This chapter is organized as follows. In the next section we first address the kine-
matic and dynamic control problem, derive Bayesian control equations and high-
light the close relation to classical control equations. Section 3 introduces analogous
probabilistic models that represent the motion planning problem. Approximate in-
ference methods in these models yield new algorithms. When we approximate the
system locally these new equations are related to the Ricatti equation of the Linear
Quadratic Gaussian (LQG) case. In the general non-LQG case we need approximate
inference methods to solve the planning problem, for which we derive local mes-
sage update equations. Section 4 presents experiments that illustrate the methods.
Additionally, we discuss hierarchical planning (where one alternates between plan-
ning in the task space and planning in the q-space, see also (Li et al., 2004; Todorov
& Li, 2004)). This paper is an extension of the work presented earlier in (Tous-
saint & Goerick, 2007); see also the more theoretical discussion (Toussaint, 2009)
of the relation between iLQG and inference in general stochastic optimal control
scenarios.
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ẋt

q̇t-1

Fig. 1 Graphical models of Bayesian kinematic control, (a) for motion rate control, (b) under
multiple task constraints, (c) for Bayesian dynamic control.

2 A Bayesian view on classical control

2.1 Kinematic case

We first address the case of kinematic control, i.e., the problem of deciding on the
control signal given a desired constraint at the next time step. Throughout the deriva-
tion we will make use of identities for Gaussians which are summarized in the ap-
pendix. Let qt ∈ Rn be a random variable referring to the robot’s joint state at time
t. And let xt be a random variable referring to a task space of the robot (e.g. an
endeffector state) at time t. Consider the joint probability distribution

P(xt ,qt ,qt-1) = P(xt |qt) P(qt |qt-1) P(qt-1) (1)

as also illustrated by the graphical model in Figure 1(a). Here, we call P(qt |qt-1) the
motion prior and assume

P(qt |qt-1) = N (qt |qt-1 +h,W -1) , (2)

where h ∈ Rn is a vector that induces an asymmetry in the motion prior and W is
the motion metric which enters this prior in terms of its covariance W -1. Further, we
call P(xt |qt) the task coupling and assume

P(xt |qt) = N (xt |φ(qt),C) . (3)

Here, φ is a non-linear function (the task kinematics) with Jacobian J = ∂φ

∂q and
C denotes the covariance in this coupling (inversely, C-1 denotes the precision or
tolerance of this coupling).

Given this model we can compute the posterior motion conditioned on a desired
task constraint. That is, given xt and qt-1 we compute P(qt |xt ,qt-1). We can derive
the following result.
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Theorem 1. Given equations (1-3), the posterior motion is

P(qt |xt ,qt-1)≈N (qt |qMAP
t ,(JTC-1J +W )-1) (4)

with the MAP motion

qMAP
t = qt-1 +(JTC-1J +W )-1[JTC-1(xt −φ(qt-1))+Wh] (5)

= qt-1 + J]
WC(xt −φ(qt-1))+(In− J]

WCJ) h , (6)

J]
WC := W -1JT (JW -1JT +C)-1 .

The approximation refers to the linearization of φ(qt)≈ φ(qt-1)+ J(qt −qt-1).

Proof. We have

P(qt |xt ,qt-1) ∝ P(xt |qt) P(qt |qt-1) = N (xt |φ(qt),C) N (qt |qt-1 +h,W -1)

Using the linearization φ(qt)≈ φ(qt-1)+ J(qt −qt-1) we get

P(qt |xt ,qt-1)≈N (xt |φ(qt-1)+ J(qt −qt-1),C) N (qt |qt-1 +h,W -1)

Applying the Gaussian identities given in the appendix we have

P(qt |xt ,qt-1)

= N (Jqt |Jqt-1 + xt −φ(qt-1),C) N (qt |qt-1 +h,W -1)

∝ N [qt |JTC-1Jqt-1 + JTC-1(xt −φ(qt-1)),JTC-1J]N [qt |Wqt-1 +Wh,W ]

∝ N [qt |(JTC-1J +W )qt-1 + JTC-1(xt −φ(qt-1))−Wh,JTC-1J +W ]

= N (qt |qMAP
t ,A)

A = (JTC-1J +W )-1

qMAP
t = qt-1 +A[JTC-1(xt −φ(qt-1))+Wh]

To rewrite qMAP
t we can use the Woodbury identity

(JTC-1J +W )-1JTC-1 = W -1JT (JW -1JT +C)-1 (7)

and get

qMAP
t = qt-1 + J]

WC(xt −φ(qt-1))+(JTC-1J +W )-1W h .

Further, using the identity

In = (JTC-1J +W )-1(JTC-1J +W )

⇒ (JTC-1J +W )-1W = In− (JTC-1J +W )-1JTC-1J = In− J]
WCJ (8)

we get
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classical view Bayesian view

metric W of the pseudo-inverse J]
W =

W -1JT (JW -1JT )-1
covariance W -1 of the motion prior
N (qt+1 |qt +h,W -1)

nullspace motion (I− J]
W J) h asymmetry h of the motion prior

N (qt+1 |qt +h,W -1)

regularizer in the singularity-robust ˜J]
W =

W -1JT (JW -1JT +kId)-1
covariance C of the task coupling
N (xt |φ(qt),C)

Table 1 Correspondences between the classical and Bayesian view.

qMAP
t = qt-1 + J]

WC(xt −φ(qt-1))+(In− J]
WCJ) h .

The theorem gives two expressions (5) and (6) to compute qMAP
t , related by the

Woodbury identity. Note that the second expression (6) includes only d-dimensional
matrix inversions rather than n-dimensional (neglecting W -1, which can be precom-
puted). Thus, in practice the second expression will be more efficient to implement.

The second expression (6) also shows that the MAP motion qMAP
t is very sim-

ilar to classical kinematic motion rate control using the pseudo-inverse Jacobian
(Nakamura & Hanafusa, 1986) – in the tight constraint limit C→ 0, J]

WC coincides
with the standard pseudo inverse J]

W = W -1JT (JW -1JT )-1 and the two are equivalent.
For non-zero covariance C (i.e., when loosening the task constraint) the MAP mo-
tion qMAP

t corresponds to classical control with regularization in the computation
of the pseudo-inverse Jacobian. In fact, a standard approach to deal with singu-
larities (where JJT is not invertible) is to consider the so-called singularity-robust
inverse (Nakamura & Hanafusa, 1986) J̃]

W =W -1JT (JW -1JT +kId)-1, which directly
corresponds to the regularized pseudo-inverse J]

WC as defined in (6). The regular-
izer can be interpreted as measuring the tolerance of the task constraint. The asym-
metry h of the motion prior N (qt+1 |qt + h,W -1) is the Bayesian counterpart of
nullspace motion. Table 1 summarizes the relations between classical quantities and
their Bayesian counterparts.

2.2 Multiple task variables

Theorem 1 directly extends to the case when we have multiple task variables
x1, ..,xm, with xi di-dimensional, corresponding to different task mappings φi : Rn→
Rdi . The full joint (see Figure 1(b)) then reads

P(xt ,qt ,qt-1) =
[ m

∏
i=1

P(xi,t |qt)
]

P(qt |qt-1) P(qt-1) (9)

where the motion prior is as before and for each task coupling
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P(xi,t |qt) = N (xi,t |φi(qt),Ci) (10)

we have a different task covariance Ci.
The extension can be subsumed in the previous derivation by introducing the

joint random variable x = (x1, ..,xm) (d-dimensional with d = ∑i di) and defining
the covariance matrix C = diag(C1, ..,Cm) to be the block matrix with sub-matrices
Ci. Nevertheless, the explicit derivation allows us to establish interesting relations
to classical prioritized inverse kinematics (Nakamura et al., 1987; Baerlocher &
Boulic, 2004).

Corollary 1. In the case of multiple task variables, as given by equations (9,10,2),
the motion posterior is

P(qt |xt ,qt-1)≈N (qt |qMAP
t ,(

m

∑
i=1

JT
i C-1

i Ji +W )-1) (11)

with the MAP motion

qMAP
t = qt-1 +

[ m

∑
i=1

JT
i C-1

i Ji +W
]-1[ m

∑
i=1

JT
i C-1

i (xi,t −φi(qt-1))+Wh
]

(12)

The corollary follows directly from equation (5). The question of the classical limit
is particularly interesting in the case of multiple variables. Let us investigate the case
when we hierarchically require tightness in the task constraints. More specifically,
one can iteratively take the limit Ci → 0 starting with i = 1 up to i = m; in other
terms this limit can be generated when defining Ci = εm−iIdi and simultaneously
taking the limit ε → 0. It turns out that this limit is exactly equivalent to prioritized
inverse kinematics (Nakamura et al., 1987; Baerlocher & Boulic, 2004).

For m = 2 task variables one can prove the equivalence between prioritized in-
verse kinematics and the hierarchical classical limit of the MAP motion exactly (by
directly applying the Woodbury identity). For m > 2 we could not find an elegant
proof but we numerically confirmed this limit for up to m = 4.

Non-zero task variances can again be interpreted as regularizers. Note that with-
out regularizers the standard prioritized inverse kinematics is numerically brittle.
Handling many control signals (e.g., the over-determined case ∑di >n) is problem-
atic since the nullspace-projected Jacobians will become singular (with rank < di).
For non-zero Ci the computations in equation (12) are rather different to iterative
nullspace projections and numerically robust.

2.3 Dynamic case

We address the case of dynamic motion control by moving to velocity space and
considering the random variables q̇t ∈ Rn and ẋt ∈ Rd , which refer to the joint ve-
locities and task velocities, respectively. In addition to these variables, let ut ∈Rn be
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a random variable that refers to a (torque) control signal we apply to the actuators.
Consider the joint probability distribution

P(ẋt , q̇t ,ut , q̇t-1) = P(ẋt | q̇t) P(q̇t |ut , q̇t-1) P(ut) P(qt-1) (13)

as also illustrated by the graphical model in Figure 1(c). Here, we call P(ut) the
control prior and assume

P(ut) = N (ut |h,H-1) , (14)

where h ∈ Rn is a vector that induces an asymmetry in the control prior and H
is a control metric which enters this prior in terms of its covariance H-1. Further,
P(q̇t |ut , q̇t-1) is the system dynamics and we assume

P(q̇t | q̇t-1,ut) = N (q̇t | q̇t-1 +M-1(ut +F),Q) , (15)

where M is the generalized mass matrix, F ∈ Rn the generalized force, and Q de-
scribes the control stochasticity. Finally, for the task coupling we assume

P(ẋt | q̇t) = N (ẋt |Jq̇t ,C) , (16)

where the Jacobian J = ∂φ

∂q relates the task and joint space velocities and, as before,
C denotes the covariance in this coupling.

Bayesian dynamic control now computes the posterior control P(ut | ẋt , q̇t-1) con-
ditioned on the desired task velocity ẋt . We can derive the following result

Theorem 2. Given equations (13-16), the posterior control is

P(ut | ẋt , q̇t-1) = N (ut |uMAP
t ,(T T A-1T +H)-1) (17)

T := JM-1 , A := JQJT +C ,

and the MAP control

uMAP
t = (T T A-1T +H)-1[T T A-1(ẋt − Jq̇t-1−T F)+Hh] (18)

= T ]
HA(ẋt − Jq̇t-1−T F)+(In−T ]

HAT ) h , (19)

T ]
HA := H-1T T (T H-1T T +A)-1 . (20)

Proof. We have

P(ut | ẋt , q̇t-1) ∝
∫

q̇t
dq̇t P(ẋt | q̇t) P(q̇t | q̇t-1,ut) P(ut)

=
∫

q̇t
dq̇t N (ẋt |Jq̇t ,C) N (q̇t | q̇t-1 +M-1(ut +F),Q) N (ut |h,H-1)

=
∫

q̇t
dq̇t N [q̇t |JTC-1ẋt ,JTC-1J]N [q̇t |Q-1q̇t-1 +Q-1M-1(ut +F),Q-1] N (ut |h,H-1) .

Applying the product rule (37) produces a Gaussian over q̇t which integrates to 1.
Using the short hand A := JQJT +C we get
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Fig. 2 The same graphical model as for redundant motion control (Figure 1(a)) but for multiple
time slices.

P(ut | ẋt , q̇t-1)

= N
[
q̇t-1 +M-1(ut +F) | JT A-1ẋt , JT A-1J

]
N [ut |Hh,H]

∝ N
[
ut | M->JT A-1(ẋt − Jq̇t-1− JM-1F), M->JT A-1JM-1

]
N [ut |Hh,H] .

Again applying the product rule (37) and using the short hand T := JM-1 we get

P(ut | ẋt , q̇t-1) ∝ N
[
ut | T T A-1(ẋt − Jq̇t-1−T F)+Hh, T T A-1T +H

]
= N (ut |uMAP

t ,B)

B = (T T A-1T +H)-1

uMAP
t = B[T T A-1(ẋt − Jq̇t-1−T F)+Hh]

Using the Woodbury identity as in (7) and (8) we can rewrite this expression as

uMAP
t = T ]

HA(ẋt − Jq̇t-1−T F)+(In−T ]
HAT ) h .

Again, the theorem provides two expressions (18) and (19) for uMAP
t . In the clas-

sical limit C→ 0 and Q→ 0 (tight task constraint and zero control noise) the second
expression directly retrieves the general optimal dynamic control law presented in
(Peters et al., 2005),

uMAP
t

Q→0
C→0= T ]

W (ẋt − Jq̇t-1−T F)+(In−T ]
W T ) h . (21)

Again, C can be understood as a regularizer for a singularity-robust matrix inver-
sion. As discussed in (Peters et al., 2005), special choices of the control metric H
in the dynamic control, e.g., H = M-1, H = M2, or H = In correspond to special
classical control strategies. For instance, Khatib’s operational space control follows
from choosing H = M-1.

3 A Bayesian view on motion planning

From the last two theorems we may conclude that the Bayesian approach applied
to control in a single time-slice largely reproduces regularized classical solutions
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in a different interpretation. In particular, in these ‘single time slice’ models one
is typically only interested in the MAP solutions. The additional covariances we
derived do not seem of much practical relevance.

The situation changes when we move from single time slice models of the im-
mediate control to time extended models of the whole trajectory. The probabilistic
inference approach naturally extends to inference over time and will become a plan-
ning method. For instance, we will consider inference in the model of Figure 2 as
the direct temporal extension to Figure 1(a). The resulting posterior over q1:4 will
describe the set of likely trajectories starting in q0 that are consistent with the con-
straint x4.

The inference techniques in such temporal models typically have the flavor of
forward-backward algorithms, similar to inference in HMMs or Kalman smooth-
ing in state-space models. A flexible description of such inference techniques is in
terms of message passing algorithms. These algorithms also extend to more struc-
tured temporal models with many random variables in one time slice, as we will
investigate them later. In most realistic cases exact inference is infeasible because
the shape of the exact probability distributions would be very complex (not part of a
simple parametric family of distributions). Again, message passing is a convenient
framework to handle approximations systematically by maintaining approximate
belief representations in the spirit of assumed density filtering or Expectation Prop-
agation (Minka, 2001b).

A more detailed description of message passing in general factor graphs is given
in (Toussaint, 2008), see also (Yedidia et al., 2001; Murphy, 2002; Minka, 2001a).
Here we only give the message equations in pair-wise coupled networks: Given two
random variables Xi and X j coupled via a potential fi j(Xi,X j), the message passing
equations are

µ j→i(Xi) = ∑
X j

fC(Xi,X j) ∏
k:k 6=i

µk→ j(X j) , (22)

where k indicates variables coupled to j other than i and, roughly speaking, the
message µ j→i(Xi) is a distribution over the random variable Xi which encodes the
information over Xi that results from its coupling to X j. Given all incoming messages
to a variable, the posterior marginal belief is given as the product of these,

bi(Xi) := ∏
j

µ j→i(Xi) . (23)

In the continuous case (as in the following) summations are replaced by integrals.

3.1 Kinematic case

We can now derive the messages for inference in the motion planning scenario. As
before, let qt ∈ Rn be a random variable referring to the robot’s joint state at time
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t. And let xt be a random variable referring to a task space of the robot (e.g. an
endeffector state) at time t. We consider the joint probability distribution

P(x1:T ,q0:T ) =
[ T

∏
t=1

P(xt |qt) P(qt |qt-1)
]
P(q0) (24)

as also illustrated by the graphical model in Figure 2. We choose the motion prior
and the task coupling exactly as before

P(qt |qt-1) = N (qt |qt-1 +ht ,W -1) , (25)
P(xt |qt) = N (xt |φ(qt),Ct) . (26)

Please note that we have indexed the task covariance Ct with time – this means
we can choose for each time t separately how tight we want to follow a given task
constraint. In particular, in the typical planning case we might be interested only
in the final endeffector position xT ; in this formalism this corresponds to choosing
CT → 0 very tight while choosing all other covariances C1:T-1→ ∞ very large (they
will drop out of the messages). The messages take the following form

Theorem 3. Given equations (24 - 26) and using a local linearization of φ at q̂t in
time slice t, the message update equations read

µqt-1→qt (qt) = N (qt |st ,St) ,

st = ht +(S-1
t-1 +Rt-1)-1(S-1

t-1st-1 + rt-1)

St = W -1 +(S-1
t-1 +Rt-1)-1 (27)

µqt+1→qt (qt) = N (qt |vt ,Vt) ,

vt =−ht +(V -1
t+1 +Rt+1)-1(V -1

t+1vt+1 + rt+1)

Vt = W -1 +(V -1
t+1 +Rt+1)-1 (28)

µxt→qt (qt)≈N [qt |rt ,Rt ] ,

rt = JTC-1
t (xt −φ(q̂)+ Jq̂)

Rt = JTC-1
t J (29)

Further, given these messages, the belief bt(qt) over the posture at time t reads

bt(qt) = N [qt |bt ,Bt ] ,

bt = S-1
t st +V -1

t vt + rt , Bt = S-1
t +V -1

t +Rt (30)

Proof. Since all factors are pairwise we can use the expression (22) for the mes-
sages. We have

µqt-1→qt (qt) =
∫

qt-1
dqt-1 P(qt |qt-1) µqt-2→qt-1(qt-1) µxt-1→qt-1(qt-1)

=
∫

qt-1
dqt-1 N (qt |qt-1 +ht ,W -1) N (qt-1 |st-1,St-1) N [qt-1 |rt-1,Rt-1]
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Fig. 3 Factor graph for Bayesian kinematic motion planning under multiple constraints.

Using the product rule (38) on the last two terms gives a Gaussian N (st-1 |R-1
t-1rt-1,St-1 +

R-1
t-1) independent of qt which we can subsume in the normalization. What remains

is

µqt-1→qt (qt) ∝
∫

qt-1
dqt-1 N [qt-1 |W (qt −ht),W ] N [qt-1 |S-1

t-1st-1 + rt-1,S-1
t-1 +Rt-1]

Using the product rule (37) and integrating over qt-1 we finally get

µqt-1→qt (qt) = N
(

qt −ht | [S-1
t-1 +Rt-1]-1[S-1

t-1st-1 + rt-1], W -1 +[S-1
t-1 +Rt-1]-1

)
.

The message µqt+1→qt (qt) can be derived in exactly the same way. Concerning
µxt→qt (qt) equation (22) simplifies to

µxt→qt (qt) = P(xt |qt) = N (xt |φ(qt),Ct)

Linearizing the task coupling at q̂t we have

µxt→qt (qt)≈N (xt |φ(q̂t)+ J(qt − q̂t),Ct)

=
1
|J|

N [qt |JTC-1
t (xt −φ(q̂t)+ Jq̂t),JTC-1

t J)

Concerning the belief bt(qt), by definition (23) we have

bt(qt) = µqt-1→qt µqt+1→qt µxt→qt

= N [qt |S-1
t st ,S-1

t ] N [qt |V -1
t vt ,V -1

t ] N [qt |rt ,RT ]

Applying the product rule (37) twice and neglecting normalization terms we have

bt(qt) ∝ N [qt |S-1
t st +V -1

t vt + rt ,S-1
t +V -1

t +Rt ] .

The theorem provides two recursive equations for the forward messages (27)
and the backward messages (28). A standard algorithm would resolve the recursive
equations by first iterating forward over time to compute the forward messages,
and then iterate backward over time to compute the backward messages. However,
an extra complication in our case is that in (29) we used a linearization of φ at
q̂t in each time slice. We will choose this point of linearization as follows: in the
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Algorithm 1 Bayesian kinematic motion planning
1: Input: start posture q0, metric W , motion prior ht , task targets x0:T , kinematic and Jacobian

functions φ , J
2: Output: trajectory q0:T
3: initialize s0 = q0, S-1

0 = 1010, v0:T = 0, V -1
0:T = 0, r0:T = 0, R0:T = 0, k = 0

4: repeat
5: for t = 1 : T do // forward sweep
6: update st and St using (27)
7: update vt and Vt using (28)
8: if k = 0 then
9: q̂t ← st

10: else
11: q̂t ← (1−α)q̂t +αbt
12: end if
13: update rt and Rt using (29)
14: update bt and Bt using (30)
15: if |q̂t −bt |2 > θ then
16: t← t−1 // repeat this time slice
17: end if
18: end for
19: for t = T −1 : 0 do // backward sweep
20: ..same updates as above...
21: end for
22: k← k +1
23: until convergence

first forward iteration we use the previous time step’s MAP belief q̂ = bt-1(qt-1)
while in subsequent backward and forward iterations we linearize at the old MAP
belief q̂t = bold

t (qt). Since the messages depend on the point of linearization we
have to iterate the forward and backward sweeps until convergence. The algorithm
is analogous to extended Kalman smoothing where observations are replaced by
task constraints. The pseudo code is given in table 1.

As in the kinematic control case it is straightforward to extend these equations to
the case of multiple task variables. The task coupling message then reads

rt = Rt q̂+∑
i

JT
i C-1

i,t(xi,t −φi(q̂)) , Rt = ∑
i

JT
i C-1

i,tJi .

In this case we can choose different task variances Ci,t for each task variables and
in each time slot. This flexibility allows one to determine when and which task
constraint has to be fulfilled by which precision. One can also follow the cascaded
limit approach we mentioned in section 2.1 which in effect leads to a prioritization
of the tasks, which might vary over time.

Finally, we note that the Bayesian motion planning scheme can be extended to the
dynamic case in the same way as we extended the Bayesian control to the dynamic
case. Due to the limited space we omit this derivation here; a general derivation can
be found in (Toussaint, 2009).
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Fig. 4 Snake benchmark with four concurrent constraints. (b) Accumulative trajectory length
L = ∑t |qt −qt-1| in q-space over time using prioritized inverse kinematic (pIK, dashed) and a soft
Bayesian motion control (BMC, solid). (c) Total error ∑i ei during the movement. (d) Errors during
a movement towards an unreachable target.

4 Experiments

4.1 Kinematic control

Concerning motion control, we showed theoretically that Bayesian motion control
is equivalent to regularized classical pseudo-inverse control. Our experiments con-
firm the close similarity to classical control. For illustration, we give examples on
the simple snake benchmark proposed by (Baerlocher & Boulic, 2004) and specifi-
cally focus on “critical” situations where the regularization implicit in the Bayesian
equations becomes apparent in comparison to non-regularized hierarchical control.
The problem is to control a simulated planar snake configuration composed of 20
segments under four constraints: (1) the center of gravity should always remain ver-
tically aligned with the foot, (2) the goal for the first segment (foot) is to be oriented
with 30◦ from the ground, (3) the positional goal for the last segment (finger) is
at (.5,0,1), (4) the orientational goal for the last segment (finger) is to be oriented
parallel to the ground. Figure 4(a) shows the snake in a valid target configuration.
In (Baerlocher & Boulic, 2004) the problem is solved using prioritized inverse kine-
matics (pIK) with priority as listed above. We solve the problem by defining four
variables x1, ..,x4 according to the constraints above. For all task variables xi we de-
fine that we want to follow a target that linearly interpolates from the start position
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x0
i (straight upward posture) to the goal position x∗i ,

xi,t =
t
T

x0
i +

T − t
T

x∗i .

In the first experiment we assumed rather tight and prioritized precisions C-1
i =

νiI with ν1:4 = (106,105,104,103). As a result, the joint trajectories generated with
BMC and the classical prioritized inverse kinematics are virtually indistinguishable:
the max norm ||q1:T −q′1:T ||∞ between the two trajectories is < 0.01.

In the second experiment we assume that we require high task precision only
at the final time step T . An efficient way to realize this with BMC is to start with
rather soft precisions ν2:4 = 1 at t = 0 and then slowly increasing them to the desired
precision ν2:4 = (105,104,103) at t = T . As an exception we always keep the pre-
cision of the balance constraint high, ν1 = 106. The trajectory generated by BMC
is now quite different from the previous one: it is much smoother. We can measure
the quality of the trajectory in terms of the integrated length of the joint trajectory
L = ∑t |qt − qt-1|. Figure 4(b) shows pIK and BMC behavior very differently w.r.t.
this measure. Nevertheless, all target variables meet the final goal constraint with
high precision. This can be seen in Figure 4(b) which shows the errors ei = |xi−x∗i |
in the control variables and the total error E = ∑i ei during the movement for both
approaches. In effect, the BMC tolerates larger errors during the movement (where
we have only required loose task coupling) in favor of a shorter trajectory – but the
final task constraints at time t = T are met precisely.

As a final illustration we address conflicting and infeasible constraints. Assume
we want to generate trajectories where the snake curvature is minimal, as measured
by a fifth variable x5 = ∑

n
i=1 q2

i and a target x∗5 = 0. This curvature constraint is
in conflict with most other constraints. As a result, the prioritized IK numerically
breaks down when adding this fifth variable without further regularization. In con-
trast, BMC (with constant ν1:5 = (106,101,101,101,100)) yields a smooth move-
ment which eventually fulfills the targets for x1:4 but additionally realizes a final
curvature e5 = 1.57494 much lower than without this additional constraint (e5 =
3.11297). In another case, assume we set a target (1,0, .5) for the last segment (fin-
ger) which is actually out of reach. BMC (with constant ν1:4 = (106,101,101,101))
yields smooth and balanced postures where necessarily the error e2 increases. As
can be seen in Figure 4(d), classical pIK drastically diverges as soon as the hard
constraint in finger position becomes infeasible (at t = 75).

4.2 Kinematic motion planning

We first investigate the kinematic motion planning algorithm on a reaching problem
with a simulated humanoid figure (39 DoFs) as illustrated in Figure 5. We consider a
trajectory of length T = 200. Starting from an upright posture (right image) the goal
is to reach a target point (black dot) with the right finger while avoiding collisions
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Fig. 5 Reaching test scenarios. The two images display the goal posture, the start posture is
upright.

fwd-bwd iterations k
∫
|q̇| dt E =

∫
∑i ei,t dt

½ (reactive controller) 13.0124 0.0873
1 7.73616 0.1366

1½ 7.70018 0.0071
2 7.68302 0.0027
5 7.65795 0.0013
10 7.62888 0.0012

Table 2 Trajectory length and control errors for Bayesian motion planning.

and keeping balance on the one foot rigidly anchored to the ground. We introduce
three control variables for the finger tip (endeffector) position, the center of gravity,
and a global collision cost. The desired motion is defined by trajectories xi,1:T for
each control variable xi. We defined these to be linear interpolations from the start
state to the target with T = 100, while keeping the precisions ν1:3 = (103,103,106)
constant over time. Table 2 displays the trajectory length and control errors after dif-
ferent numbers of forward-backward iterations of belief propagation for Bayesian
motion planning. k = ½ means a single forward pass and corresponds to the reactive
application of the single time-slice Bayesian motion control. k = 1 additionally in-
cludes a single backward smoothing. For instance, if we fix the total computational
cost to 3 times that of the Bayesian forward controller (k = 1½ iterations) we find an
improvement of 40.8% w.r.t. the trajectory length and 91.9% w.r.t. control errors as
compared to the forward controller. These improvements are due to the fact that the
forward controller chooses a non-efficient path which first moves straight towards
the obstacle and then needs a longer path to circumvent the obstacle. In contrast,
the probabilistic smoothing of extended BMC leads to early nullspace movements
(leaning to the right) which make the later circumvention of the obstacle more effi-
cient.
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Fig. 6 The factor graph for the decomposed planning scenario.

4.3 Planning in more structured models

Consider the model in Figure 6 with factors

f1(qt+1,qt) = N (qt+1 |qt ,W -1) (31)
f2(qt) = N (qt |0,1.0)
f3(xt+1,xt) = N (xt+1 |xt ,0.1)
f4(xt ,qt) = N (xt |φ(qt),0.001)
f5(xT ) = N (xT |x∗T ,0.001)

The first factor is the usual motion prior in the joint state. The second factor places
a prior P(qt) which limits the joint range – for simplicity we use again a Gaussian
potential (q = 0 indicates the joint centers). The third factor expresses a prior about
the endeffector movements – since we do not have a strong prior about endeffec-
tor movements we assume a weak potential with standard deviation of endeffector
movements of 0.1. The fourth factor is the usual coupling between joint state and
endeffector. Generally, in factor graphs conditioning a variable can be expressed as
including a Kronecker factor. Hence, the fifth factor represents the goal constraint,
conditioning the target of the endeffector to be close to x∗T .

This model is different to the one of the previous section in two respects: We
condition only on the final task state xT , and we included a motion prior also within
the task space. We investigate this graph because it allows for a qualitative new ap-
proach to decompose planning. In (Li et al., 2004; Todorov & Li, 2004) an algorithm
was proposed for hierarchical planning. In the first stage it first computes an optimal
trajectory only in the task space. In the second stage, constrained on this task space
trajectory, it computes an optimal trajectory in joint space. Clearly, this approach is
limited since the task space trajectory was computed without any concern whether
this task space trajectory might lead to high costs when realized in joint space.

In the factor graph 6 we can follow a very similar approach to hierarchically
decompose planning – but fully account for the mutual coupling of task and joint
variables. Given the explicit model we can derive all necessary messages for belief
propagation from equation (23). The algorithm we propose is given by the following
message passing scheme:

1. Initialize all beliefs uniformly, except for q0, x0 and xT .
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2. Update the task space beliefs

b(xt) = µxt-1→xt µ
t
xt+1→xt µ

t
qt→xt ,

first iterating forward for t = 1, ..,T , then iterating backward for t = T-1, ..,1.
This will yield a preliminary belief over possible trajectories in task space.

3. Update the q-space beliefs

b(qt) = µ
qt-1→qt µqt+1→qt µ

t
xt→qt ,

first iterating forward for t = 1, ..,T , then iterating backward for t = T-1, ..,1.
This procedure is exactly as described in the previous section, using local lin-
earizations of the kinematics at q̂t = 〈b(qt)〉. This generates a belief over possible
trajectories in q-space.

4. Iterate steps (ii) and (iii).

Conceptually, the most interesting aspect is that in step (ii) we do not compute
a single task space trajectory, but rather represent the whole variety of possible task
space trajectories by the beliefs. The coupling to the q-space then narrows down
this variety according to the prior in q-space. Iterating steps (ii) and (iii) means
to propagate up (µ t

qt→xt ) and down (µ t
xt→qt ) messages between the x-level and the

q-level until coherence between both levels is achieved.

4.3.1 Illustration on a planar arm

(a)

(b)

Fig. 7 (a) The belief over the endeffector trajectory after the first stage of inference – neglecting
the coupling to the joint state. (b) The belief over the endeffector trajectory after coupling to the
joint state; also the MAP joint configurations for each time step are displayed.
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We would first like to illustrate the approach on a simple 3-link planar arm de-
scribed by the joint state q ∈ R3 and the endeffector position x ∈ R2. We are given
the initial configuration q0 = (.5, .5, .5), the endeffector target x∗T = (−1.5, .5) and
T = 20.

Figure 7(a) displays the preliminary belief over endeffector states after the first
stage of inference (step (ii)). We find that at this stage, the belief over the endef-
fector trajectory is simply a straight line with quite a large standard deviation asso-
ciated with each via-point. This “Gaussian worm” can be interpreted as the range
of possible endeffector trajectories neglecting the coupling to any other variables or
constraints. All subsequent inference steps will further refine and narrow down this
initial belief by fusing it with messages from the q-space. Figure 7(b) displays the
belief over endeffector trajectories after a cycle of inference steps (ii), (iii), (ii), i.e.,
the coupling to the joint state has been accounted for. Also the MAP joint config-
uration is displayed at each time step. As expected from the discussion above, the
MAP endeffector trajectory is not anymore a straight line. The reason is that the
constraints we induced via the prior joint transition probability (31) favors small
steps in joint space.

4.3.2 Illustration with a humanoid upper body

Fig. 8 A humanoid upper body with n = 13 hinge joints. The hip is fixed, the right hand serves as
endeffector.

As another illustration, consider the n = 13 joint humanoid upper body displayed
in Figure 8. We take the right hand as the endeffector and plan a target reaching
trajectory (of length T = 50) to a goal in the upper left working domain of the robot.

Figures 9(a&b) display the result after 2 iterations of the inference steps (1-4),
which provided sufficient convergence. The figures display the maximum a posteri-
ori joint configuration (MAP, the maximum of the posterior joint state distribution)
and the standard deviations of the endeffector distribution at different time steps.
The MAP endeffector trajectory is not a straight line. To give a quantitative mea-
sure of the quality of the trajectory we compare the MAP joint trajectory computed
via probabilistic inference with the joint trajectory that results from a standard re-
dundant control approach. More precisely, the redundant control approach first pre-
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(a)

(b)

Fig. 9 Results of probabilistic inference planning with an humanoid upper body. Reaching to a
target without obstacles, displayed from two different perspectives. We see the MAP joint config-
uration and the Gaussian endeffector distribution (indicated as ellipsoid) at different intermediate
time steps. The optimal trajectory in joint space leads to a curve trajectory in endeffector space.

sumes a straight endeffector line equally divided in T = 50 segments and then uses
standard motion rate control.

We define a global trajectory cost using the q-space metric W ,

C(q1,..,T ) =
t-1

∑
t=1
||qt+1−qt ||W .

Table 3 displays the trajectory costs for the trajectories computed via the forward
controller and the MAP trajectory computed via probabilistic inference. The MAP
trajectory is clearly more efficient in terms of this cost. This stems from the fact that
equation (31) imposes a prior transition likelihood f1(qt+1,qt) ∝ N (q,W -1) which
reflects exactly this metric in joint space. The curve of the endeffector trajectory is
a result of this efficiency.

trajectory cost C(q1,..,T )

forward controller 11.19

MAP trajectory 8.14

Table 3 Global cost of joint space trajectories.

4.4 Coupling with collision constraints

In (Li et al., 2004; Todorov & Li, 2004) the idea of hierarchical decomposition of
planning was considered, where a planning problem is first solved on a reduced task.
This results is then coupled into a second-stage planning problem on the q-space
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level. This strict two-stage procedure neglects that constraints (or priors) on the q-
space level should eventually also influence the optimal task space plan. Intuitively
one might come up with an algorithm that reiterates planning on both levels until
their mutual interaction leads to a coherent plan on both levels. This is exactly what
belief propagation does automatically in our framework.

c1

x3

q3

x4

q4

x2

c3 c4

q1

x1

q1

x1

c2

q2

Fig. 10 Model for decomposed planning under collision constraints.

Let qt and xt be as before. In addition, let ct be a binary random variable that
indicates collision of the endeffector with an obstacle (a table in the following ex-
periment). Consider the model

P(c1:T ,x0:T ,q0:T ) = P(x0) P(q0)[ T

∏
t=1

P(ct |xt ,xt-1) P(xt |qt ,xt-1) P(qt |qt-1)
]

(32)

as illustrated in Figure 10. We assume the motion prior P(qt |qt-1) as before and

P(ct |xt ,xt-1) = N (ct |φ c(xt ,xt-1),D) , (33)
P(xt |qt ,xt-1) ∝ N (xt+1 |xt ,Cxx) N (xt |φ(qt),Cxq) . (34)

Here, φ c is a function that determines the maximal penetration depth with the ob-
stacle when the endeffector moves from xt-1 to xt . We compute gradients for this as
in (Toussaint et al., 2007). Further, note that we have now included a task motion
prior N (xt+1 |xt ,Cxx) as an additional factor in the model, even though this might
be a rather week prior (we will choose Cxx = .1 in the experiments).

In the specific experiment we condition on the final endeffector position xT = x∗

and we condition on each collision variable ct = 0 being zero. We perform infer-
ence in this model by a message passing scheme that effectively alternates between
forward-backward inference on the task level and on the q-space level until a coher-
ent posterior over both is found. We apply the following message passing scheme:

1. propagate forward & backward on x: first compute the messages µxt-1→xt for t =
1, ..,T , then the messages µxt+1→xt for t = T-1, ..,1

2. compute all the messages µc→(xt-1xt ) using local linearizations of φ c at the current
MAP task belief bt(xt)

3. propagate down: compute all the messages µxt→qt

4. propagate forward & backward on q: first compute the messages µqt-1→qt for
t = 1, ..,T , then the messages µqt+1→qt for t = T-1, ..,1
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5. propagate up: compute all the messages µqt→xt

6. iterate steps (i)-(v)

In the first iteration, step (i) will compute a preliminary task space belief neglecting
the collision constraint. In step (ii) the collision constraint is then coupled into the
task space belief which is then in step (iii) propagated to the q-space belief, et cetera.

(a)

(b)

Fig. 11 Reaching to a target above (a) the table and below (b) the table whilst avoiding collision.

Figures 11(a&b) display the result after two iterations of this message passing
scheme for T = 30. In the first case (Figure (a)) the target endeffector position is
slightly above the table and the generated movement avoids the obstacle. In the
second case, the target is only slightly displaced but now below the table. Here,
the result is a rather straight trajectory. A standard forward controller that follows a
gradient of a superimposed target potential and obstacle avoidance potential would
typically get trapped under the table in the first case. Also, the local target potential
of a reactive controller would hardly distinguish between the first and the second
case.

The experiments ran on a laptop with a 1.1GHz Centrino Mobile processor. The
first experiment (T = 50, without constraints, k = 2 inference sweeps) takes 3.56
seconds, the second experiment (T = 50, with constraints, k = 2 sweeps) takes 3.97
seconds.
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5 Discussion

Let us discuss here specific aspects in relation to the derived algorithms and the
Bayesian approach in general.

Local vs. global planning

An important aspect often discussed in the context of robotic planning is locality.
Many classical approaches like RRTs (Kuffner & LaValle, 2000; Kuffner et al.,
2003) try to tackle global planning problems, for instance where one first has to
move away from a goal before moving towards the goal becomes possible. The-
oretically, planning based on exact inference would also generate globally correct
posterior distributions about all possible trajectories and thereby perform global
planning. For discrete MDPs this is feasible and has been demonstrated (Toussaint
et al., 2006). However, in almost any realistic robotics scenario exact inference is
infeasible since this would require to represent very complex distributions (beliefs)
which are not part of a feasible parametric family of distributions. In the algorithms
we derived we assumed Gaussian belief representations and used local linearizations
to stay in this family of belief representations. If we tried exact inference in domains
with collision constraints, the exact beliefs had very complex, discontinuous forms.
The Gaussian belief approximations effectively introduce a kind of “locality” since
the set of likely trajectories is assumed close to a mean trajectory. Other kinds of
belief representations would give a more global character to planning, e.g. sample
based representations (particle filters) or mixture of Gaussians. In conclusion, it is
very much a matter of which approximations and belief representations are chosen
which determine how global the inference approach is.

Computational complexity

The complexity of inference is linear in the number of message computations
needed; each message computation requires operations on symmetric matrices that
approximately with n2. A single forward-backward pass along one variable is linear
in T . If the number of neighbors to each variable is bounded, then the total number
of edges in the factor graph is O(T K), i.e., linear in the number K of variables. For
complex (e.g., hierarchically deep) DBNs it is however an open question how many
iterations of inference sweeps one needs until convergence.

Handling delayed feedback in control

In realistic cases the sensor feedback on the precise robot configuration (qt and q̇t )
is delayed. Thus, for instance in the case of torque control, the direct Bayesian dy-
namic control law (19) is not applicable. However, it is straight-forward to explicitly
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q̄t-3

ut

q̄tq̄t-2

ut-2 ut-1

q̄t-1

ẋt

Fig. 12 Bayesian dynamic control in the case of delayed feedback. Here, q̄t = (qt , q̇t) subsumes
positions and velocities.

include the delay in the probabilistic model and then apply Bayesian inference as we
discussed it in the planning case. Figure 12 is an example for representing delayed
feedback in the model – here the feedback is delayed for 2 time steps. The Bayesian
control law is then given by computing P(ut | q̄t3,ut1,ut2, ẋt). In a sense, this ap-
proach naturally combines a probabilistic state estimation of q̄t1 with the ordinary
Bayesian dynamic control.

6 Conclusion

Bayesian motion control and planning is based on the idea of fusing motion objec-
tives (task constraints, goals, motion priors, etc) in a way similar to Bayesian sensor
fusing. We formulate probabilistic models which represent these objectives, condi-
tion on constraints and goals, and use probabilistic inference to compute a posterior
distribution over the possible trajectories and control signals. This distribution is
a representation of the variety of likely trajectories and the corresponding control
signals given that constraints and goals must be met.

The main contribution of this paper are derivations of explicit Bayesian control
and planning algorithms. In the case of control we have addressed the problems
of kinematic and dynamic task control by deriving a posterior distribution over the
posture qt and the control ut , respectively. A straight-forward way to apply these
results is to choose the MAP posture qMAP

t as the next kinematic control point, or
the MAP control uMAP

t as the current control signal. We have shown that these MAP
control laws are closely related to the classical control laws. More specifically, qMAP

t
corresponds to classical motion rate control including nullspace movement and a
regularized pseudo-inverse Jacobian – where the regularizer is now interpreted as
the tightness of the task constraint and the nullspace motion as the asymmetry of
the motion prior. And uMAP

t correspond to the classical dynamic control (as given,
e.g., in (Peters et al., 2005)) generalized to include also a non-zero task variance C
and a stochastic control variance Q.

To solve planning problems we extended the approach to multiple time slices, i.e.
we proposed to use Bayesian inference to compute posterior trajectories conditioned
on (future) constraints and goals. We derived explicit message passing algorithms
for the basic cases of kinematic and dynamic planning. However, the general ap-
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proach of inference and message passing algorithms can also be applied to more
structured representations. Structure means that either the state qt is factored into
multiple variables (e.g., when we need to include variables describing objects or
other properties of the environment) or that the task xt is factored in multiple vari-
ables (the multi task variable scenario we mentioned is an example). In particular
when the dependencies between such variables are sparse inference and message
passing algorithms can exploit this structure to increase computational efficiency.
This leads us away from the classical bottleneck of planning: the need to represent
state in one big state space. Rather than deriving more explicit message passing al-
gorithms for specific cases of structured models, the theorems showed how message
equations can systematically be derived for specific graphical models. Our last ex-
perimental scenario addressed such an alternative model structure which is related
to hierarchical planning where one alternates between planning in the task space
and planning in the q-space. In section 5 we have also discussed in what sense exact
inference would correspond to optimal global planning, whereas the more realistic
case of approximate inference corresponds to more local planning. Future research
on Bayesian motion planning should focus on exactly these two points: (1) exploit-
ing the benefits of message passing algorithms in more structured models and (2) ex-
ploring different belief representation techniques (such as particle representations)
for better approximations during inference.
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Used Gaussian identities

We define a Gaussian over x with mean a and covariance matrix A as the function

N (x |a,A) =
1

|2πA|1/2 exp{−1
2
(x−a)T A-1 (x−a)} (35)

with property N(x |a,A) = N(a| x,A). We also define the canonical representation

N [x |a,A] =
exp{− 1

2 aT A-1a}
|2πA-1|1/2 exp{−1

2
xT A x+ xT a} (36)

with properties

N [x |a,A] = N (x |A-1a,A-1) , N (x |a,A) = N [x |A-1a,A-1] .

The product of two Gaussians can be expressed as

N [x |a,A] N [x |b,B] = N [x |a+b,A+B] N (A-1a |B-1b,A-1 +B-1) , (37)
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N (x |a,A) N (x |b,B) = N [x |A-1a+B-1b,A-1 +B-1] N (a |b,A+B) , (38)

N (x |a,A) N [x |b,B] = N [x |A-1a+b,A-1 +B] N (a |B-1b,A+B-1) . (39)

Linear transformations in x imply the following identities,

N (Fx+ f |a,A) =
1
|F |

N (x | F-1(a− f ), F-1AF->) , (40)

=
1
|F |

N [x | FT A-1(a− f ), FT A-1F ] , (41)

N [Fx+ f |a,A] =
1
|F |

N [x | FT (a−A f ), FT AF ] . (42)

The joint Gaussian of two linearly dependent Gaussian variables reads

N (x |a,A) N (y |b+Fx,B) = N
((x

y

)∣∣( a
b+Fa

)
,
( A AT FT

FA B+FAT FT

))
(43)
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