
Integrated motor control, planning, grasping and high-level reasoning
in a blocks world using probabilistic inference

Marc Toussaint, Nils Plath, Tobias Lang, Nikolay Jetchev

Abstract— A new approach to planning and goal-directed be-
havior has recently been proposed using probabilistic inference
in a graphical model that represents states, actions, constraints
and goals of the future to infer appropriate actions and controls.
The approach has led to new algorithms on the control and
trajectory optimization level as well as for high-level rule-based
planning in relational domains. In this paper we integrate these
methods to a coherent control, trajectory optimization, and
action planning architecture, using the principle of planning
by inference across all levels of abstractions. Our scenario is a
real blocks world: using a 14DoF Schunk arm and hand with
tactile sensors and a stereo camera, the goal is to manipulate a
set of objects on the table in a goal-oriented way. For high-
level reasoning, we learn relational rule-based models from
experience in simulation.

I. INTRODUCTION

Autonomous robots deal with information on different
levels of abstraction: they process low-level sensory input to
gain the perceptual information they are interested in, reason
about their high-level goals and actions, and translate abstract
actions into low-level motor control. A central problem of
modern robotics is how to integrate these different levels of
abstraction for decision-making, planning and control, which
requires a coherent principle of information processing.

A general framework for information processing is pro-
vided by inference in graphical models which provides a
principled way to define the couplings of variables with
the corresponding uncertainties. Over the recent years, a
new approach to reasoning and goal-directed planning has
emerged which is based on probabilistic inference in such
models. Using graphical models to specify the dependencies
of variables across multiple time-steps, one can reason about
the effects of actions in the now and the future. Inference
can be viewed as internal simulation for control, planning
and decision making. In previous work, we have applied this
approach on different levels of abstraction, in low-level motor
control [1], [2], [3] as well as in high-level planning [4],
[5], where we performed successful experiments in simulated
environments. In this paper, we integrate these methods to
a full control architecture across levels of abstraction. We
show the feasibility of this approach in a real-world scenario
where an autonomous robot manipulates multiple objects in
a goal-directed way.

Our target scenario is a real blocks-world (Fig. 1): a
14DoF Schunk arm and hand with tactile sensors and a stereo

This work was supported by Honda RI Europe and DFG Emmy Noether
grant TO 409/1-3.

MT, NP, TL, NJ are with TU Berlin, Machine Learning and
Robotics Group, Franklinstraße 28/29, 10587 Berlin, Germany.
{mtoussai,nilsp,lang,jetchev}@cs.tu-berlin.de

Fig. 1. The robot has successfully put objects with green and red labels into
separate piles, using probabilistic inference on different levels of abstraction
for planning and control.

camera manipulates objects on top of a table. By addressing
this scenario we want to bring the blocks-world, perhaps the
most popular scenario in classical A.I. since the 1970s, to real
life. We decompose the problem of acting in the real blocks-
world according to the different levels of abstraction and
apply appropriate algorithms based on approximate inference
on the level of motor control, trajectory optimization, as well
as for high-level planning.

After discussing related work in the next section, we
describe our target scenario in more detail in Section III.
We introduce the different components of our approach in
Section IV. In Section V, we present our experiments on
a real robot, before we conclude and give an outlook to
future research in the last section. A video of the exper-
iments is accompanying this paper and additional mate-
rial such as source code can be found at the web-page
http://cs.tu-berlin.de/∼mtoussai/10-ICRA/.

II. RELATED WORK

Research in the blocks world scenario has a great tradition
in the A.I. planning and reinforcement learning community
[6]. Over the last years, the blocks world has been made
more interesting by incorporating stochastic actions and
investigating generalization over situations, which has led
to the emerging field of relational reinforcement learning
[7], [8]. Realistic simulations of the blocks world have only
very recently been approached. [9] were the first to employ
a simulator of the blocks world using a physics engine, for
which they developed a rule-based world model which can
be learned from experience. We introduced a goal-directed

planning approach based on approximate inference using
learned rules [4] in such a realistically simulated blocks
world. This work aims to demonstrate such A.I. methods
in the real world.

A core problem within the blocks world is grasping ob-
jects. Most existing literature on grasp optimization focuses
on the grasp itself, isolated from the reaching movement.
For instance, [10] reviews the various literature on defining
grasp quality measures, [11] learn which grasp positions are
feasible for several objects, [12] efficiently compute good
grasps depending on how the objects shall be manipulated,
and [13] simplify the grasp computation based on abstracting
objects into shape primitives. The coupling to the problem of
reaching motion optimization is rarely addressed. A recent
approach [14] makes a step towards solving the coupled
problem by including a “environment clearance score” in the
grasp evaluation measure. In that way, grasps are preferred
which are not prohibited by immediate obstacles directly
opposing the grasp. In [15] a method for simultaneous grasp
and reach trajectory optimization was presented based on a
sequence of attractor representations. The method we use is
similar but based on a new trajectory optimization method
involving probabilistic inference.

Concerning the trajectory optimization, recently there has
been growing interest in the possibility to frame the general
stochastic optimal control problem as an inference problem
[16], [17], [18], [3]. In practice, the resulting algorithms are
closely related to differential dynamic programming (DDP)
[19], [20], [21], [22] but differ in computational aspects. For
instance, in [3] a message passing scheme is used instead
of iterated Ricatti sweeps to find a posterior distribution
over the trajectories. To our knowledge, this work is the first
to demonstrate such inference based trajectory optimization
methods on real and high-dimensional hardware. The way
we formulate the control and trajectory optimization in terms
of multiple concurrently active task variables is very similar
to the Whole Body Control concept of [23]. Further related
work is discussed in the context of the methods’ descriptions
in Section IV.

III. TARGET SCENARIO

Our overall goal is autonomous goal-directed manipulation
in environments with multiple objects. In [4] we presented
methods for planning in stochastic relational worlds and
demonstrated these methods in physically simulated blocks
world problems like clearing the desktop or building towers
from objects of different sizes and shapes. In this paper we
want to address similar scenarios, but on a real robotic plat-
form. To solve the scenario we require a series of methods
for learning, perception, planning and control: Eventually,
the robot will need to

1) learn a high-level stochastic model of the effects of
actions like grabbing and placing an object,

2) use vision to identify and localize objects,
3) use a stochastic relational planner to compute a se-

quence of actions,

4) use trajectory optimization to compute dynamically
smooth reaching and pre-grasp motions,

5) use a controller to follow the computed trajectories,
6) and use a tactile feedback controller to execute the

grasp.

A. Hardware

Our robotic platform is shown in Figure 1 and includes
the following hardware components:
• Schunk Light Weight Arm (LWA) with 7DoF
• Schunk Dextrous Hand (SDH) with 7DoF
• 6× 14 tactile arrays on each of the 6 finger segments
• Bumblebee stereo camera

The arm and hand use different control protocols: We control
the LWA arm by sending positioning commands at 100Hz.
These positions determine the reference point of the on-
board PID controller in each of the 7 motor modules of
the LWA. The exact behavior and parameters of these on-
board PID controllers are not known to us – but they
behave approximately like a position smoothing with half-
decay time about 20 msecs. We control the SDH hand by
sending velocity commands and querying actual velocities
and positions at about 10Hz (the CAN interface currently
does not allow for a higher control rate). The SDH on-board
velocity controller tries to reach these velocities with con-
stant acceleration. Concerning the tactile sensor, we neglect
the spatial resolution of the signal and compute 6 scalar
values yi for each finger segment. For the ith finger segment
we use the equation yi = (integral over ith array)0.7; the
effect of taking the power 0.7 is higher sensitivity to small
pressure contacts. The Bumblebee stereo camera provides
images at resolution 1024×768 pixels at approximately 2–4
frames per second. We downscale these images by a factor
2 before processing.

IV. METHODS

A. Control

Our control framework follows in detail the approach
presented in [24]. We control the robot on a dynamic level.
That is, let qt ∈ R14 be the vector of all joint angles in the
LWA arm and SDH hand at time t. The control operates on
the phase state

xt = (qt, q̇t) ∈ R28 (1)

comprising joint angles and velocities.
The control framework is based on having many task

variables concurrently active with various precisions: We
assume we have m different task variables y1, .., ym, where
the dimension of the ith task variable is di. A basic example
is the 3D endeffector position yi ∈ R3 in world coordinates.
Below we will define in detail all the task variables that we
use for control in our scenario. Generally, a task variable
is defined by its kinematic mapping φi : q → yi and its
Jacobian Ji(q) = ∂φi(q)

∂q such that ẏi = Ji(q)q̇. For each
task variable we assume we have a desired state yi,t ∈ Rdi

and state precision %i,t ∈ R and a desired velocity ẏi,t ∈ Rdi

and velocity precision νi,t ∈ R at time t. We also assume
to know the state xt-1 at time t-1. The problem of control
is to compute a new state xt which accounts for all the
constraints of the system dynamics, all the desired task
variables, and the control costs. The new state xt implies the
positioning commands qt sent to the LWA arm as well as the
velocity commands q̇t sent to the SDH hand. We compute
x∗t such that it corresponds to optimal “pseudo-dynamic”
control accounting for all task variables. Let us explain what
we mean by “pseudo-dynamic”: Generally, we assume the
discrete time system dynamics

xt = Axt-1 + a+But + ξ , 〈ξξ>〉 = Q , (2)

A =
0B@1 τ
0 1

1CA , B =
0B@τ2M -1

τM -1

1CA , a =
0B@τ2M -1F
τM -1F

1CA , (3)

where M is the system inertia tensor and F the force vector
in state xt-1, τ the time discretization interval, ut ∈ R14 the
control signal, and ξ Gaussian noise with covariance matrix
Q. Since our hardware does not allow for torque control
anyway, we make the simplifying assumption of “pseudo-
dynamics”: namely M = 1 and F = 0. In other words,
we assume that the control signal ut corresponds directly
to joint angle accelerations. Under these assumptions on the
dynamics we compute a new state x∗t using the following
equations,

r =
m∑
i=1

0BB@%i,tJ
>
i (yi,t − φi(qt-1) + Jiqt-1)

νi,tJ
>
i ẏi,t

1CCA , (4)

R =
m∑
i=1

0BB@%i,tJ
>
i Ji 0

0 νi,tJ
>
i Ji

1CCA , (5)

S = Q+BH-1B> , (6)
s = a+Axt-1 , (7)

x∗t = (S-1 + V -1 +R)-1(S-1s+ V -1v + r) . (8)

The matrix H defines a quadratic cost u>tHut (or, in other
terms, a Gaussian prior) on the control signal (namely, accel-
erations). The matrix V and vector v are explained in the next
section and may comprise terms that are related to following
a pre-computed optimal trajectory. We refer to [24], [25] for a
derivation of these equations. Our control method is strongly
related to many well-known classical control methods: If
we have only one task variable, m = 1, and take the
limit of infinite precisions, % → ∞, ν → ∞, one can
show that our control law is equivalent to optimal dynamic
control (and thereby operational space control for a certain
choice of H) [25], [26]. If we have multiple task variables,
m > 1, and take a hierarchical limit of infinite precisions,
our control law corresponds to prioritized inverse kinematic
control [27]. For m = 1, having non-infinite precisions
is equivalent to introducing a regularization for singularity
robust inverse kinematics [28]. When all precisions are non-
infinite, our control equation is singularity free even for many
concurrent task variables, m� 1. Equation (8) might seem
computationally expensive due to the matrix inversions in 28
dimensions. However, all matrices are symmetric and (when
using appropriate LAPACK routines) these computational

costs are fully negligible compared to the cost of collision
detection.

1) Task variables used for control: The control, the grasp-
ing, and the trajectory optimization algorithm are all based
on defining a set of relevant task variables and conditioning
them appropriately for the task. For our scenario we define
the following task variables:
• yEFF ∈ R3 is the endeffector position (the center of the

hand) in world coordinates.
• yCOL ∈ R is the collision cost: a scalar task variable

which measures collision danger. More precisely, if dj
is the shortest distance between a pair j of collidable
geometric shapes, then yCOL =

∑
j θ(dj − ε)2, with the

heavy-side function θ and margin ε = 0.03 meter. We
use SWIFT++ to compute the mapping φCOL : q →
yCOL.

• yLIM ∈ R is the limit cost: a scalar task variable which
measures the danger of violating joint limits. Similar
to the collision costs we define yLIM =

∑
j θ(dj − ε)2,

summing over all joints j, where dj is the distance to
the joint limit and ε = .1 radians is the margin.

• yVEL ∈ R14 are the joint angles: that is, a task vector that
is directly equal to the joint angles themselves, φVEL =
Id. We will use this to penalize high velocities.

• yTAC ∈ R6 are the 6 scalars of the tactile sensors (see
section III-A). We do not have a kinematic function
φTAC : q → yTAC explicitly, but can query the state yTAC

from the hardware. We approximate the Jacobian JTAC

by setting the rows equal to the normal vector of each
tactile sensor array. See section IV-C for more details.

• yUP1 ∈ R and yUP2 ∈ R are two scalars which measure
the declination of the hand (or object in hand) with
respect to the horizontal. For instance, conditioning both
to zero will align the object vertically.

• Furthermore, control variables represent features of the
finger configuration, namely two scalars which measure
whether the normals of opposing fingers are aligned.

The general control equation (8) together with these defi-
nitions of multiple task variables provides great flexibility.
In practice, setting precisions %i and νi to zero means to
deactivate a task variable since it drops out of Eq. (8).
Depending on the overall task we can turn on and off task
variables as desired and associate variable precisions with
them. In a typical control mode, we always condition yCOL,
yLIM and ẏVEL to zero and impose high precisions %COL, %LIM

and low but non-zero velocity precision νVEL.

B. Trajectory Planning

In [3] we presented an algorithm called Approximate
Inference COontrol (AICO) for solving a stochastic optimal
control problem based on probabilistic inference. The algo-
rithm is closely related to differential dynamic programming
(DDP) [19], [20], [21], [22], but uses a message passing
scheme to compute a posterior over the whole trajectory
conditioned on all desired task variables. The method is
introduced in exactly the same framework we described in
the previous section – in fact, Eq. (8) is the solution to

a stochastic optimal control problem with a 1-step time
horizon T = 1; the quantities (s, S) correspond to the
forward message, (r,R) to the task message, and (v, V) to
the backward message [3].

Stochastic optimal control means to find a control law that
minimizes the expectation of the cost

C(x0:T , u0:T) =
T∑
t=0

ct(xt, ut) (9)

over the time interval t = 0, .., T under the stochastic process
(2). In general, the cost terms ct(xt, ut) are arbitrary cost
functions in each time step. In our case we assume that these
costs comprise the quadratic cost u>tHut of control and cost
terms for each conditioned task variable. With the definitions
made in the previous section, a local quadratic approximation
of the task costs induced by all task variables is given by

ct(xt, ut) = x>tRtxt − 2r>txt + u>tHut , (10)

where rr and Rt are defined in (8) and comprise all costs
implied by the conditioned task variables.

1) Following an Optimized Trajectory: All the stochastic
optimal control methods (AICO, DDP) compute a quadratic
potential function Jt(x) = x>Vtx− 2v>tx in each time slice
t. This potential (classically the cost-to-go or value function;
in the probabilistic framework the log backward message)
implies the optimal (feedback) control law xt-1 7→ ut in time
step t. In our case, we use AICO to compute the quantities
(vt, Vt) for a given time interval t = 0, .., T . Once AICO
has converged we use these quantities in Eq. (8) to compute
control signals for the real robot. Executing the control law
in Eq. (8) for T time steps with the potentials (vt, VT) will
make the robot “trace” approximately the trajectory that was
implicitly optimized by AICO (the MAP trajectory computed
by AICO). However, note that the potentials (vt, Vt) really
only define a (usually low-gain) feedback control law, that is,
we do not replay a deterministic optimal trajectory with high
gains. Also, Eq. (8) implies that even when “tracing” a pre-
computed trajectory the controller will additionally account
for all currently active task variables, in particular yCOL and
yLIM to avoid collisions and joint limits.

2) Optimizing the Reach and Pre-Grasp Trajectory: To
optimize a trajectory we need to specify the desired task
variables and precisions for the respective problem. In the
case of the reaching and pre-grasp motion we consider T =
400 time steps with τ = 0.01sec and condition the task
variables as follows: The collision and limit variables yCOL,
yLIM are conditioned to zero throughout the trajectory; the
endeffector variable yEFF is conditioned to be at the object
position at the end of the trajectory; the joint angles yVEL

are conditioned to zero-velocity at the end of the trajectory;
opposed fingers are conditioned to be aligned at the end of
the trajectory and with sufficient distance to the object. The
optimized trajectory is dynamically smooth and generates a
reaching motion which at the same time ends in a good pre-
grasp posture. Figure 3 (left) shows some illustrations of start
and end postures of such reach and pre-grasp motions.

3) Optimizing the Place Trajectory: Once the object is
grasped we need to generate a motion to place it onto another
object. Again, we assume T = 400 and τ = 0.01sec and
constantly conditioned yCOL, yLIM. For the placing movement
we do not condition any finger features but keep the hand
posture constant. We condition yEFF and yVEL as above and in
addition a task variable which measures whether the object
in hand is upright. Figure 3 (right) shows some illustrations
of start and end postures of such “place object” motions.

C. Grasping and Releasing the Object

The pre-grasp posture in which the reach motion ends is
already very close to the object, wrapping the fingers around
the object with about ∼ 3cm distance. The grasping itself
can then easily be executed using a tactile feedback loop. In
our control framework we can realize this by conditioning
the tactile task variable yTAC to a desired non-zero pressure
value and then iterate the control (8) (without (vt, Vt)) until
this task variable reaches its desired state. We condition the
pressure on the three finger tips to be a non-zero constant
which results in the closing of the hand until the object is
grasped. Figure 5 displays the change in tactile signals yTAC

during such a closing of the hand.
Similarly, when releasing the object after the optimized

placing motion we condition the yTAC variable to zero which
results in the opening of the hand until no pressure is
measured. In addition, we condition yCOL to zero which leads
to further opening of the hand until fingers have distance to
the object below the collision margin of ε = 3cm.

D. Vision

The identification and localization of objects is based
on SURF interest points and descriptors [29] using the
OpenSURF library [30]. Prior to our experiments, for each
object O we took several sample images from different view
angles and pre-computed a set FO of SURF features. Given
a new stereo image from the Bumblebee camera we compute
sets FL and FR of keypoints and SURF descriptors for the
left and the right image, respectively. The identification and
localization of objects is now based on finding subsets of de-
scriptors in FO, FL, and FR which match (using approximate
nearest neighbor (ANN library)1) and which are consistent
with respect to a homography from the left to the right
image (using the RANSAC homography implementation of
OpenCV2). The homography constraint implies that only
keypoint subsets are detected which have similar disparity on
the stereo image. If, for a given object identifier O, we find
keypoints in FO, FL, and FR which are consistent, we use
the average disparity of the matched keypoints in FL and FR
to estimate the distance of the object and the center of mass
of these keypoints to estimate the object coordinates within
the image. Using the camera calibration we can compute
the 3D position of the object in world coordinates. For each
stereo image we loop over all possible object identifiers O
to see if we can find and localize the object in the image.

1http://www.cs.umd.edu/mount/ANN/
2http://opencv.willowgarage.com/wiki/

Fig. 2. Identifying and locating objects using SURF interest points and a
stereo camera. Each row depicts the recognition of an object. The left and
right column correspond to the left and right camera, respectively.

Since computer vision is not the primary scope of this
work, we tried to simplify the general problem by keeping
lighting conditions constant (as far as possible) and use
objects with significant textures.

E. High-level Relational Planning

An autonomous robot needs to reason about its potential
actions to achieve its overall goals. Similarly as in our low-
level motor control, we pursue a model-based approach based
on inference in graphical models for high-level planning.
Symbolic action models are a common approach in A.I. to
describe how the world changes with the execution of actions
[31]. In a real environment, such models need to account
for uncertain action outcomes, e.g., a tower of blocks may
topple over when trying to place an object on its top.
Furthermore, action models have to generalize over situations
and objects to enable planning in unseen situations with new
objects. Recent work in A.I. has led to the development of
abstract stochastic action models using relational representa-
tions which account for these requirements. In our work,
we use a rule-based model, namely noisy indeterministic
rules [9] which are particularly appealing, as they can be
learned effectively from experience. Although abstract action
models capture the world dynamics compactly, using them
for planning is challenging: the state space in relational
domains is exponential in the number of objects, the search
space of action sequences is huge, and reasoning about
actions is aggravated by the their stochasticity. We apply
the PRADA planning algorithm presented in [4], [5], which
tackles these difficulties by converting abstract stochastic
relational rules into partially grounded dynamic Bayesian
networks and applying approximate inference to find suitable
action sequences.

We employ the same symbolic representation as in [4]
to describe our domain, consisting of predicates such as
inhand(·), upright(·), on(·, ·) and functions such as size(·)
to describe world states and predicates such as grab(·) and

puton(·) to describe actions. A major challenge in develop-
ing intelligent robots is how to couple high-level reasoning
with sensors and low-level motor control. We approach
the first problem by a set of simple heuristics to translate
object information from vision and tactile sensors into our
symbolic representation. For instance, we derive on(a, b) if
the x/y-coordinates of objects a and b are sufficiently similar
while b’s z-coordinate is slightly smaller, and inhand(b)
if b is closest to the robot’s fingers and we get significant
tactile feedback. To translate the high-level action symbols
to concrete robot action, we set them to trigger execution of
the corresponding low-level motor control routines described
above.

V. EXPERIMENTS

We evaluate our approach in the real blocks world scenario
described in Section III. Our experiments are designed to
focus on qualitative aspects: we investigate whether the
different methods can indeed be successfully applied in a real
world domain and our approach is suitable to fully control an
autonomous robot to achieve its goals. For quantitative stud-
ies with respect to the individual methods, we refer the reader
instead to the respective papers, i.e., for a comparison and
discussion of different low-level robot control approaches
to [3], [1] and of different high-level relational planning
approaches to [4], [5].

In our experimental setup, the Schunk robot is placed in
front of a table with cylindric objects of two different sizes
and colors. In the scenario of the video accompanying this
article, the goal is to “clear up” the desktop: to stack objects
of the same color onto each other. There are two big and
one small red object and two big green objects stacked in
three piles, where two piles contain two objects of different
colors. To achieve the goal of a cleared desktop, the robot
needs to grab and place 3 objects in total.

The first problem is to localize the objects using the stereo
camera which is placed next to the robot arm. The objects
have individual patterns which are used to identify them,
see Fig. 2 for an example. Once the objects are recognized,
their coordinates are calculated and a symbolic world state
representation is derived. Then, the robot uses the PRADA
algorithm to derive a high-level plan of actions to achieve
a cleared desktop. PRADA is based on stochastic relational
rules. A set of 11 abstract rules has been learned beforehand
using the algorithm of [9] with the same parameter settings
from a set of 500 experiences of state transitions. We have
generated these experiences in a 3D rigid-body dynamics
simulator (ODE) of the scenario including the robot, the
objects and the table by performing random actions with a
slight bias to build high towers.

After a suitable action plan has been found, the single
abstract actions trigger the respective low-level motor control
routines, namely AICO, to generate grasp and placing trajec-
tories. Fig. 3 (left) illustrates the start posture (central hand
position) and the end posture of an optimized reach and pre-
grasp trajectory. The pictures are taken from the simulator
that is internally used by AICO. The red distance markers

Fig. 3. Visualization of start and end postures of calculated trajectories.
The blue bars are the stereo camera (to the right of the robot) and a laser
scanner (not used in these experiments, mounted on the arm close to the
hand). (left) A grab action moving the hand from the center to the right pile.
(right) A place action moving the hand with the object from the left to the
center pile. The red distance markers indicate critical proximities between
collidable objects.

illustrate the output of the collision (distance proximity)
detection engine. The end posture is a good pre-grasp with
the fingers wrapping around the object with about ∼ 3cm
distance. The large number of critical distance proximities in
such a pre-grasp movement makes the optimization computa-
tionally expensive (the collision engine queries generate the
major computational cost). This can be seen in Fig. 4; it takes
about 10 seconds to find a dynamically smooth trajectory
which at the same time does not violate the collision margin
of 3 centimeters but still ends wrapping the fingers around
the object.

When this pre-grasp posture has been reached the grasp is
executed based on the tactile feedback loop. Fig. 5 displays
the three relevant components of the yTAC task variable, that
is, the integrated pressure feedback from the sensor arrays at
the tip of the three fingers. As described before, we generate
the grasp by conditioning the yTAC to be non-zero, namely
(0.2, 0.2, 0.2), and iterating the control equation (8). The
pressure curves show how this task variable behaves during
the closing of the hand.

Finally, Fig. 3 (right) displays the start posture (hand at
left pile) and end posture (hand at center pile) of an object
placing movement. As can be seen in Fig. 4, this movement is
much easier to optimize (in about 2 seconds) since collisions
and finger movement do not play a critical role.

The video shows a complete demonstration to solve the
clearing up task with five objects. PRADA found the correct
sequence of actions necessary to stack the two objects with
green labels on one pile. To reach this state, two objects with
red labels first have to be removed from them by placing
them on the center pile for the red-labeled objects. Fig. 1
shows the end posture after the whole trial.

For simplicity, in this demonstration, all computations and
control are done on a single 2-processor laptop. This has a
number of limitations. For instance, we found that the paral-
lel communication with all four hardware components slows
down the communication with the LWA to a level that in
10% of the control steps the 100Hz control frequency is not
met. Further, for safety we always optimized trajectories until
full convergence. Given the limited computational power

0.01

1

100

10000

 0 2 4 6 8 10 12 14

co
st

 a
bo

ve
 o

pt
im

um

seconds

AICO grasp
AICO place

Fig. 4. The costs of intermediate solutions during trajectory optimization
using AICO for a typical grasp and a place action. The reaching motion
of the grasp action is more difficult to compute due to the many critical
distance proximities in the pre-grasp posture.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 100 200 300 400 500

ta
ct

ile
 s

en
so

r s
ig

na
l

milli seconds

finger 1
finger 2
finger 3

Fig. 5. Tactile signals of the finger sensors used to guide an exemplary
grasp action. Finger 2 touches the target object first. After half a second,
the object is fixed in hand, indicated by the maximum signals of all fingers.

we performed this optimization before executing the whole
movement. A better computational infrastructure and heuris-
tics to start the movement immediately when the quality of
the trajectory is sufficient (e.g., the cost below a threshold)
might allow to parallelize the trajectory optimization and
movement execution in the future. The same is true for the
object localization, given the significant computational cost
of the computation and processing of the image features.
The experiment also revealed limitations on the precision of
our kinematic model of the arm and the object localization,
causing some placed objects not to align as perfectly as they
do in the simulation.

VI. CONCLUSIONS

The general aim of this work is to bridge the gap between
methods and theory developed in the context of Machine
Learning and A.I. and their application in real-world au-
tonomous robotics. Given the recent work on probabilistic
inference methods as a tool not only for sensor information
processing but also for reasoning about actions and control
under uncertainty, we believe that these methods have the
potential to provide a more coherent and integrated view
on motor control, motion planning and decision making on
all levels of abstraction. In this work we demonstrated the
feasibility of approximate inference methods for control and
trajectory optimization on the motor level as well as high-
level planning in an integrated real-world robotics problem.
We chose the block-world scenario in analogy to typical

A.I. benchmarks to demonstrate that the methods, such as
PRADA, can be transferred to real world.

We mentioned limitations of our current architecture in
the previous section. Beyond these technical issues, in future
work we intend to apply our approach to scenarios that
are more challenging for both the high-level planning as
well as the low-level control: scenarios which require longer
action sequences, include different types of objects and more
cluttered scenes with big obstacles the robot has to avoid.

In principle, inference in graphical models provides a
natural way to account for sensor uncertainty. In this paper,
this has not been investigated yet as so far the perceptual
modalities (vision, tactile sensing) are not fully integrated
in the probabilistic framework. Future work will examine
how our approach can handle perceptional uncertainty which
could lead to movement failures such as accidentally pushing
objects off piles. In particular, we will work on more
tightly coupling uncertainties across modalities and levels,
e.g. between the object localization and grasp planning.

The source code for low level motor control as well as
high level planning used in this paper are publicly available
at http://cs.tu-berlin.de/∼mtoussai/10-ICRA/.

REFERENCES

[1] M. Toussaint and C. Goerick, “Probabilistic inference for structured
planning in robotics,” in Int Conf on Intelligent Robots and Systems
(IROS 2007), 2007, pp. 3068–3073.

[2] N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis, “Learning
model-free robot control by a monte carlo em algorithm,” Autonomous
Robots, special issue on Robot Learning, 2009, submitted.

[3] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in Proc. of the 26rd Int. Conf. on Machine Learning (ICML
2009), 2009.

[4] T. Lang and M. Toussaint, “Approximate inference for planning in
stochastic relational worlds,” in Proc. of the 26rd Int. Conf. on Machine
Learning (ICML 2009), 2009.

[5] ——, “Relevance grounding for planning in relational domains,” in
Proc. of the European Conf. on Machine Learning (ECML 2009),
2009.

[6] J. Slaney and S. Thiébaux, “Blocks world revisited,” Artificial Intelli-
gence, vol. 125, no. 1-2, pp. 119–153, 2001.

[7] S. Dzeroski, L. de Raedt, and K. Driessens, “Relational reinforcement
learning,” Machine Learning, vol. 43, pp. 7–52, 2001.

[8] M. van Otterlo, The Logic of Adaptive Behavior. IOS Press,
Amsterdam, 2009.

[9] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Artificial Intelligence Research,
vol. 29, 2007.

[10] R. Suárez, M. Roa, and J. Cornellà, “Grasp quality measures,”
Universitat Politècnica de Catalunya, Institut d’Organització i
Control de Sistemes Industrials, Tech. Rep. IOC-DT-P 2006-
10, 2006. [Online]. Available: https://upcommons.upc.edu/e-prints/
bitstream/2117/316/1/Roa.pdf

[11] D. Schwammkrug, J. Walter, and H. Ritter, “Rapid
learning of robot grasping positions,” in Proceedings of the
International Symposion on Intelligent Robotics Systems (SIRS),
1999. [Online]. Available: http://www.techfak.uni-bielefeld.de/ags/ni/
publications/media/SchwammkrugWalterRitter1999-RLO.ps.gz

[12] R. Haschke, J. Steil, I. Steuwer, and H. Ritter, “Task-oriented quality
measures for dextrous grasping,” in Proceedings of the IEEE Inter-
national Symposium on Computational Intelligence in Robotics and
Automation (CIRA), 6 2005, pp. 689 – 694.

[13] A. Miller, S. Knoop, H. Christensen, and P. Allen, “Automatic grasp
planning using shape primitives,” in Proceedings of the IEEE Inter-
national Conference of Robotics and Automation (ICRA), 2003, pp.
1824 – 1829.

[14] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner,
“Grasp planning in complex scenes,” in Proceedings of the IEEE-
RAS/RSJ International Conference on Humanoid Robots, 12 2007.

[15] M. Gienger, M. Toussaint, N. Jetchev, A. Bendig, and C. Goerick,
“Optimization of fluent approach and grasp motions,” in 8th IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids 2008), 2008.

[16] E. Todorov, “General duality between optimal control and estimation,”
in proceedings of the 47th IEEE Conf. on Decision and Control, 2008.

[17] B. Kappen, V. Gomez, and M. Opper, “Optimal control as a
graphical model inference problem,” 2009. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:0901.0633

[18] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems 21, D. Koller,
D. Schuurmans, and Y. Bengio, Eds. Cambridge, MA: MIT Press,
2009.

[19] P. Dyer and S. R. McReynolds, The Computation and Theory of
Optimal Control. Elsevier, 1970.

[20] D. M. Murray and S. J. Yakowitz, “Differential dynamic programming
and newton’s method for discrete optimal control problems,” Journal
of Optimization Theory and Applications, vol. 43, pp. 395–414, 1984.

[21] C. G. Atkeson, “Using local trajectory optimizers to speed up global
optimization in dynamic programming,” in NIPS, 1993, p. 663670.

[22] Y. Tassa, T. Erez, and W. Smart, “Receding horizon differential
dynamic programming,” in Advances in Neural Information Process-
ing Systems 20, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds.
Cambridge, MA: MIT Press, 2008, pp. 1465–1472.

[23] M. Gienger, H. Janssen, and C. Goerick, “Task-oriented whole body
motion for humanoid robots,” in Proceedings of the IEEE-RAS/RSJ
International Conference on Humanoid Robots, 12 2005.

[24] M. Toussaint, “A Bayesian view on motor control and planning,” in
From motor to interaction learning in robots, O. Sigaud and J. Peters,
Eds. Springer, 2010, in print.

[25] ——, “Lecture notes: Stochastic optimal control,” http://ml.cs.tu-
berlin.de/˜mtoussai/notes/, 2009.

[26] J. Peters, M. Mistry, F. E. Udwadia, R. Cory, J. Nakanishi, and
S. Schaal, “A unifying framework for the control of robotics systems,”
in IEEE Int. Conf. on Intelligent Robots and Systems (IROS 2005),
2005, pp. 1824–1831.

[27] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulators,” Int. Journal of Robotics
Research, vol. 6, 1987.

[28] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with sin-
gularity robustness for robot manipulator control,” Journal of Dynamic
Systems, Measurement and Control, vol. 108, 1986.

[29] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” Computer Vision and Image Understanding (CVIU), vol.
110, no. 3, pp. 346–359, 2008.

[30] C. Evans, “Notes on the opensurf library,” University of Bristol,
Tech. Rep. CSTR-09-001, January 2009. [Online]. Available:
http://www.cs.bris.ac.uk/Publications/Papers/2000970.pdf

[31] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Prentice-Hall, Englewood Cliffs, NJ, 2003.

