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Recent developments in decision-making research are
bringing the topic of planning back to center stage in
cognitive science. This renewed interest reopens an old,
but still unanswered question: how exactly does plan-
ning happen? What are the underlying information pro-
cessing operations and how are they implemented in the
brain? Although a range of interesting possibilities
exists, recent work has introduced a potentially trans-
formative new idea, according to which planning is
accomplished through probabilistic inference.

Behavioral and neuroscientific data on reward-based deci-
sion making increasingly point to a fundamental distinc-
tion between habitual and goal-directed action selection.
Habits, in this context, are actions arising from direct
situation-response associations. Goal-directed action, in
contrast, involves prospective planning: selection among
actions based on a forecast of their potential outcomes [1,2].

Between these two forms of decision-making, much
more is presently known concerning habit. Here, abundant
evidence supports the relevance of temporal-difference
procedures from reinforcement learning: dopaminergic
inputs to the striatum appear to convey a reward-predic-
tion error signal, which drives adaptive updates in striatal
representations of state value and (habitual) action
preference [1].

Regrettably, there is no corresponding story for goal-
directed decision making. Recent lesion and neuroimaging
work does provide important clues about localization, im-
plicating segments of prefrontal cortex and dorsal striatum
[1,2]. However, characterizing the actual information-
processing operations that underlie goal-directed action
selection remains an unresolved problem. A growing
awareness of this challenge has been drawing the problem
of planning back to center stage in cognitive science.

Traditional perspectives on planning
So how might the brain accomplish planning? In psychology,
the classical approach to this question focuses on planning
problems involving a specific a priori goal. Although the
study of such tasks has yielded important insights, it stops
short of the more general problem, which centers on the
generic goal of reward maximization. The classical approach
also concentrates on cases where action outcomes are per-
fectly predictable, something that is not characteristic of
most real life settings. Ultimately, what we need is an
account of how human decision-makers solve ‘Markov deci-
sion problems’: given a set of potential situations or states, a

set of available actions, a set of probabilistic action-outcome
relationships, and a set of preferences over outcomes, how is
a plan of action cobbled together?

The field of operations research, which centers on this
question, offers a number of candidate procedures. In
dynamic programming, each state is associated with a
value (a prediction of future reward), which is set through
a repeated exchange of information between adjacent
states. Actions are then selected by aiming for outcomes
with high value. Model-based reinforcement learning algo-
rithms, as applied in recent work on planning [3], do the
same thing, but by chaining forward from the decision-
maker’s current state, effecting a kind of ‘tree search’ that
focuses computational effort on reachable states.

Like classical cognitive models, dynamic programming
and model-based reinforcement learning models offer a
critical lever for uncovering the mechanisms that underlie
human planning. However, we believe that additional, and
possibly decisive, leverage may be offered by a third per-
spective on planning, which has only recently been crys-
tallizing. This perspective reconceptualizes planning as a
matter of probabilistic inference.

Planning as inference: the basic idea
Under the planning-as-inference (PAI) view, the decision-
making agent makes use of an internal cognitive model,
which represents the future as a joint probability distribu-
tion over actions, outcome states, and rewards (Figure 1a,
b). This generative model allows the agent to attach
a probability to any potential action-outcome-reward
sequence.

To plan, the agent can use its internal model to sample
potential action-outcome trajectories, essentially using it
to perform tree search. However, because the model spe-
cifies a probability distribution, the agent also has another
option: it can condition on reward, that is, the agent can
start from the initial assumption that its actions will yield
reward, and then use inverse inference to discover the
actions that render this assumption most plausible. In
slightly more technical terms, one can view the agent’s
strategy or action policy as a set of parameters specifying,
for each state, a probability distribution over actions.
Under PAI, the agent uses probabilistic inference to dis-
cover the maximum likelihood values for these para-
meters, conditional on future reward (Figure 1a).

PAI in machine learning and robotics
The seeds of PAI were planted in artificial intelligence and
machine learning research as early as the 1980s (for this
background, see [4,5]). Since then, evolving techniques for
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PAI have been increasingly applied to support planning in
artificial agents and to solve stochastic optimal control
problems in robotics. In both of these settings, recent
implementations of PAI have yielded computational ben-
efits over traditional techniques, discovering optimal solu-
tions more quickly and, in some cases, tackling complex
problems that otherwise appeared intractable (see, e.g.,
[6,7]; Figure 1).

Behind these successes lie two critical developments in
PAI theory. First, increasing precision and generality has
been gained in understanding the basic computational
problem. In contemporary formulations, PAI is framed
as involving a minimization of the (Kullback-Leibler) di-
vergence between two probability distributions: the mar-
ginal distribution over states and actions under the agent’s
current policy, and the corresponding posterior distribu-
tion, under the assumption of future reward [6,8]. (This is
complementary to previous formulations which introduce a
mixture model with the time of reward as a random vari-
able [4]). Second, on the algorithmic front, increasingly
efficient methods have been developed for accomplishing
the pivotal minimization, building on general procedures
for parameter estimation (in particular, the expectation-
maximization (EM) algorithm [4,6,8]).

On a coarse level, the resulting approach involves two
phases. The first centers on computing or estimating the
key probability distributions. In recent work, this has often
been accomplished through ‘message passing’ within the
underlying generative model. Here, marginal distributions
for each variable are computed based on a local exchange of
information among small subsets of variables within the

larger model (Figure 1a). The second step involves updat-
ing the agent’s policy, so as to bring its distribution of
behaviors closer to the target distribution. Cycling between
these two steps yields an iterative procedure, which grad-
ually hones in on an optimal plan of action.

Implications for psychology and neuroscience
As cognitive and neuroscientific research has reengaged
with the topic of planning, recent work has begun to
explore the potential relevance of PAI [5,9]. Although still
at its inception, such work already makes clear why PAI
may hold special interest.

One appealing aspect of PAI is that it brings planning
under the same umbrella as other forms of information
processing. There has been a recent surge of interest in the
idea that essentially all cognitive and neural computation
can be understood in terms of probabilistic inference.
Inference-based analyses have become central in areas
ranging from perception and motor control to language
processing and social cognition [10]. PAI offers a way of
bringing planning within the same unifying view, charac-
terizing this apparently special domain in domain-general
terms.

On a more detailed level, the pivotal role that PAI
accords to model inversion brings planning into close
contact with Bayesian theories of visual perception, where
inverse inference has been a key motif [10]. The analogy
has been highlighted vividly in work by Friston and col-
leagues, where a common set of ideas, centering in part on
model inversion, has been applied across a diverse set of
domains including planning [9].
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Figure 1. Planning as inference (PAI). (a) Schematic illustration of one implementation of PAI. The decision-maker’s internal generative model is represented as a Bayesian

network. Nodes correspond to random variables representing states (s) and actions (a) at successive time-steps (subscripts), as well as ultimate reward (r). Black arrows

indicate conditional dependencies, with distributions over receiving variables depending on sending variables. Arrows connecting state to action variables carry the action

policy (p). Shading of a node indicates that the value of the corresponding variable is known or stipulated. PAI assumes that reward is received and searches for the policy

that is most probable under this assumption. This can be accomplished through procedures in which ‘messages’ are passed between variables. In the present

implementation, messages propagating forward from the initial state (green) indicate the probability of encountering specific successor states. Messages propagating

backward from reward (red) indicate the likelihood of having visited specific states, given the assumption of reward receipt. Forward and backward messages are integrated

to yield probabilities of specific state-action pairs, and these form the basis for an updated policy. If this inference process is iteratively repeated, the model will converge to

an optimal (reward-maximizing) policy. A straightforward elaboration of the model depicted here allows PAI to accommodate the fact that rewards can occur at any time

and to encompass ‘infinite horizon’ scenarios where there is no fixed termination step. Adapted from [4]. (b) The graphical model representation can be extended to a

variety of problem settings, allowing PAI to be flexibly applied. The model shown here captures the structure of a ‘partially observable Markov decision problem’, in which

the agent receives (potentially ambiguous) observations (o) from the environment, rather than having direct access to its true underlying state (s). The agent maintains an

internal memory or belief state (b) based on the history of its actions and observations, which in turn provides a basis for action selection. (c) In robotics, PAI has been

applied to difficult motor control problems. In this scenario, approximate inference discovers a feasible posture for grasping an occluded target. Reproduced, with

permission, from [7].
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If PAI is relevant to the neural processes underlying
goal-directed behavior, then one should expect to find that
the brain implements a generative model linking plans to
actions, actions to outcomes and outcomes to rewards
(Figure 1). Pursuing this idea, Solway and Botvinick [5]
pointed out an apparent correspondence between the com-
ponents of the generative model in PAI and a specific set of
neuroanatomic structures. To further explore this map-
ping, Solway and Botvinick [5] implemented a neural
network model of the processes involved in PAI, leveraging
recent work showing how neural computation may approx-
imate message-passing procedures for probabilistic

inference [10]. Individual units within the resulting neural
network turned out to display response profiles closely
matching those of individual prefrontal and striatal neu-
rons recorded during reward-based decision making, as
illustrated in Figure 2.

One surprising result in this work relates to the role of
iteration. As noted earlier, PAI algorithms almost univer-
sally involve iterative processing, with repeated cycles of
inference, each feeding into the next. Solway and Botvinick
[5] pointed out the formal similarity between the role of
iterative inference in PAI and its role in contemporary
drift-diffusion models of perceptual decision-making [11],
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Figure 2. Neurophysiological findings paired with simulations from Solway and Botvinick [5]. (a) Single-unit recording data from [14]. In this study, monkeys chose

between two visual targets yielding different quantities of juice. Neurons in the dorsal striatum coded for action value: individual neurons coded for specific (left vs right)

eye movements, but with a firing rate that scaled with the reward to be expected for executing them. Firing rates were insensitive to the value of the opposing action.

Preferred (non-preferred): portion of firing rate attributable to the value of a neuron’s preferred (non-preferred) action. +/�: data from trials on which preferred (+) and non-

preferred (�) action was executed. Adapted, with permission, from [14]. (b) Simulation results from [5]. When a neural network implementation of planning-as-inference

(PAI) was applied to the task from [14], a subset of units tracked action value. Adapted, with permission, from [5]. (c-d) Neurophysiological data from [15]. Here, monkeys

chose between different quantities and types of juice by making a saccade to one of two locations. Single-unit recordings in orbitofrontal cortex revealed neurons that

coded for offer value (the utility of one of the juice offers, regardless of the competing option; panel c), and chosen value, the value of the option ultimately selected by the

animal (panel d). Juice A:B: proffered units of each juice type (juice ‘A’ and juice ‘B’). Adapted from [15]. (e–f) Simulation results from [5]. When a neural network

implementation of PAI was applied the task from [15], a subset of units tracked offer value (panel e), while another subset tracked chosen value (panel f). Adapted from [5].

(g) Single-unit recording data from lateral intraparietal area (LIP) and middle temporal area (MT) during perceptual decision making (motion discrimination). MT carries a

representation of momentary evidence concerning motion direction, whereas the ramping activity in LIP reflects information integration, akin to that involved in drift-

diffusion decision models. A response is triggered when activity in LIP reaches a fixed threshold. Solid traces show data from trials where motion direction corresponded to

the preferred direction of recorded neurons, dotted traces the anti-preferred direction. Adapted, with permission, from [11] � Annual Reviews Inc. (h) Results from a neural

network implementation of PAI, showing how reward-based decision making might arise from processes analogous to those underlying perceptual decision making. Units

proposed to capture a function of orbitofrontal cortex (OFC) code for momentary evidence concerning available rewards (as in panel g). Units representing action policies –

modeling the role of the dorsolateral prefrontal cortex (DLPFC) – act as integrators, rising to a response threshold. Solid traces relate to units representing the chosen action

policy, dotted traces to units representing the unchosen policy. Adapted from [5].
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identifying conditions under which the two are in fact
equivalent. At a neural level, the iterative processes
involved in perceptual decision making have been linked
to specific substrates: research on perceptual choice shows
parietal and frontal neurons acting as ‘integrators’, sum-
ming over sequential inputs from other areas that repre-
sent momentary evidence ([11]; Figure 2g). Simulations
reported by Solway and Botvinick [5] indicate how compu-
tationally identical information-integration processes,
playing out in prefrontal cortex, might support goal-directed
decision making based on reward (Figure 2h).

Present opportunities and challenges
PAI appears to offer a promising new perspective on the
time-honored problem of planning – one that reveals
underlying commonalities with other cognitive functions
and which may shed new light on relevant neural process-
es. Of course, a great deal of additional research will be
needed if the apparent relevance of PAI to cognition and
neural function is to be properly validated. To date, most
work on PAI has been theoretical. A necessary next step
will be to identify and test empirical predictions arising
from PAI, predictions that differentiate the framework
from other computational accounts. The recent surge in
innovative experimental work on planning, both in animal
learning and in behavioral and cognitive neuroscience,
promises to provide a fertile context for this next stage
of research.

A more specific challenge, which existing work on PAI
has not fully engaged, derives from classical cognitive
research on planning. A central take-home message from
such research is that planning occurs under strict capacity
limitations. Fully rational planning, based on an exhaus-
tive, exact evaluation of all possible action-outcome trajec-
tories, is infeasible. Instead, human planners display
bounded rationality, applying heuristics and other simpli-
fying strategies to obtain plans that ‘satisfice’.

When difficult inference problems arise in machine
learning, they can often be conquered through approxima-
tion techniques. In one major class of such techniques,
precise representations of probability are substituted with
estimates based on sampling. It has been proposed recently
that such sampling-based approximations may be relevant
to understanding human information processing under
capacity limitations [12], as well as to stochastic operations

within biological neural networks [13]. Importing the same
idea into the domain of planning, by way of PAI, may offer a
new way of understanding and modeling bounded ratio-
nality in planning.
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