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Abstract The aim of this chapter is to draw links between (1) No Free Lunch (NFL)
theorems which, interpreted inversely, lay the foundation of how to design search
heuristics that exploit prior knowledge about the function, (2) Partially Observable
Markov Decision Processes (POMDP) and their approach to the problem of sequen-
tially and optimally choosing search points, and (3) the use of Gaussian Processes as
a representation of belief, i.e., knowledge about the problem. On the one hand, this
joint discussion of NFL, POMDPs and Gaussian Processes will give a broader view
on the problem of search heuristics. On the other hand this will naturally introduce
us to efficient global optimization algorithms well known in operations research and
geology [2, 7, 6] and which, in our view, naturally arise from a discussion of NFL
and POMDPs.

1 Introduction

We consider the problem of optimization, where an objective function f : X → R
is fixed but unknown and an algorithm has to find points in the domain X which
maximize f (x). In this paper we take the view that search is a problem of navigat-
ing through belief space. With “belief” we denote our current knowledge about the
objective function represented in terms of a probability distribution over problems
(functions). In principle, Bayes rule tells us how to update this belief state when
we explore a new search point and thereby gain new knowledge about the objec-
tive function. In that sense, repeatedly querying search points generates a trajectory
through belief space—and efficient search means to “navigate” through belief space
in a goal-directed manner. For instance, with the goal to gain information about the

Marc Toussaint
Machine Learning & Robotics lab, FU Berlin, Arnimallee 7, 14195 Berlin, Germany e-mail:
marc.toussaint@fu-berlin.de

1



2 Marc Toussaint

objective function, or with the goal to reach a belief that implies certainty about the
location of the optimum of the objective function.

In this view, the problem of optimization can be framed as a POMDP (partially
observable Markov Decision Process) problem just in the same way as standard nav-
igation problems. The POMDP formulation naturally ties in with an alternative for-
mulation of the No Free Lunch (NFL) theorem: In the next section we present such
a formulation which is equivalent to the one in [5] but, instead of relying on classi-
cal notions like “closed under permutation”, is formulated in terms of the structure
of the function prior P( f ). In a sequential search process, this prior is updated to
become a new posterior P( f |observations) after each exploration of a search point
and observation of the corresponding function value. This posterior is the belief state
in the corresponding POMDPs. Therefore, the POMDP framework directly implies
the optimal policy in the case that NFL conditions do not hold.

Clearly, for most relevant cases the optimal search policy is infeasible to com-
pute. However, when making strong assumptions about the prior belief—that is, our
initial knowledge about the objective function—and approximating optimal plan-
ning with optimal 1- or 2-step lookahead planning, then such algorithms become
tractable. An example is search in continuous spaces when the prior belief is a
Gaussian process. The resulting approximate optimal search algorithms are of high
practical relevance and have a long history in operations research and geology (e.g.,
under the name of Kriging) [2, 7, 6].

The material covered in this chapter is complementary to the survey on (ap-
proximately) optimal search algorithms in chapter REFERENCE-TO-OLIVIERS-
CHAPTER. In particular the chapter REFERENCE-TO-OLIVIERS-CHAPTER
gives an explicit introduction to Kriging, while the focus of this chapter is on the
alternative formulation of NFL, how this ties in with the POMDP approach to opti-
mal search policies and a basic demonstration of a truly planning (2-step lookahead)
search policy in the case of Gaussian Processes.

In the following section we will present an alternative formulation of a general
NFL result that is equivalent to the one presented in [5]. Section 3 will briefly
introduce the most relevant notions of POMDPs. Section 4 then draws the rela-
tion between POMDPs and optimization. We interpret optimization as a “Bayesian
Search Game” and discuss the belief update when we acquire new observations dur-
ing search. In section 5 we define some simple heuristic policies to choose new
search points based on the current belief, including one that would be optimal for
a 2-step horizon problem. Finally, in section 6 we discuss the use of Gaussian Pro-
cesses as belief representation, as was done before in the context of Kriging [2, 7, 6],
and illustrate the resulting optimization algorithms on some examples. The reader
may experience the idea of search using Gaussian Processes by literally playing
the “Bayesian Search Game” (competing with a Gaussian Processes based search
policy), using the implementation given at the author’s webpage1.

1 http://userpage.fu-berlin.de/mtoussai/07-bsg/
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2 Yet another formulation of NFL

Let us begin with a simple formulation of No Free Lunch (NFL) [16]. Roughly
speaking, NFL theorems specify conditions under which “informed search”—that
is, picking search points better than random—is impossible. These issues are in-
timately linked to the conditions under which generalization in learning theory is
possible—which we discuss briefly below. The point in specifying such conditions
is that (1) one should never try to write an efficient search algorithm when NFL
conditions hold, and (2) the NFL theorems should give a hint on how to design a
search algorithm when these conditions do not hold.

There are many alternative formulations of NFL theorems; a standard one for
optimization is [16]. In [5] we presented a general formulation which specifies con-
ditions on the probability distribution over the objective function. The formulation
we present here is equivalent to the one in [5] but more naturally leads to the no-
tion of beliefs, POMDPs and Bayesian search. The specific formulation and proof
we give here are, to our knowledge, novel—but only a minor variant of the existing
formulations; see [5] for a more extensive discussion of existing NFL formulations.

Let X be a finite or continuous search space. We call elements in X sites. As-
sume a search algorithm is applied on a function f : X → Y sampled from P( f ).
We write fx for the function value of f at site x. A non-revisiting algorithm itera-
tively samples a new site xt and gets in return an observation yt = fxt . We formalize
an algorithm A as a search distribution P(xt |x0:t-1,y0:t-1;A) conditioned on previ-
ous samples and their observed values, and the initial search distribution P(x0;A),
with zero probability of re-visitation, xt ∈ x0:t-1⇒ P(xt |x0:t-1,y0:t-1;A) = 0 . All this
defines a stochastic process of the search algorithm interacting with the objective
function, as summarized by the joint distribution

P( f ,x0:T ,y0:T ;A) = P( f ) P(y0 |x0, f ) P(x0;A)
T

∏
t=1

P(yt |xt , f ) P(xt |x0:t-1,y0:t-1;A) .

(1)

Theorem 1. In this setting, a basic NFL theorem reads

∃h : Y → R s.t. ∀ finite subsets {x1, ..,xK} ⊂ X : P( fx1 , .., fxK ) =
K

∏
k=1

h( fxk) (2)

⇐⇒ ∀A,∀T : P(y0:T ;A) =
T

∏
i=0

h(yi) (independent of A) (3)

The condition (2) on the left simply says that P( f ) factorizes identically2, which
means that every fx is mutually independent from every other fx′—nothing can be
learnt about fx′ from fx. The “for-all-finite-subsets” formulation we used is typi-
cal for continuous X and in analogy to the definition of Gaussian processes (see

2 On true subsets ⊂ X , but not all subsets ⊆ X . This weaker condition ensures that also the ⇐
holds; see proof for details.
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below). Additionally, the condition (2) says that every marginal distribution h( fxk)
(we called h : Y → R histogram of function values in [5]) is identical, independent
of the site xk. In other terms, the function values are identically independently dis-
tributed (independently refers to different sites x). Hence, no algorithm can predict
the observation at a new site based on previous samples better than with a constant
marginal that ignores previous samples and the location of the site. The inevitable
result is that the function values an algorithm observes is a random sequence inde-
pendent of the algorithm itself.

Proof. We first show (2)⇒(3): Up to some total time t we have the random vari-
ables f , x0:t , y0:t . Their joint is given by (1). Here, P(yt |xt , f ) is the probability of
observing a value yt when sampling at point xt given the function is f . This could
account for noisy function evaluations, but for simplicity here we simply assume
P(yt |xt , f ) = δyt , fxt

. Given this joint, we find

P(yt |x0:t-1,y0:t-1;A) = ∑
xt∈X

[
∑

f
P(yt |xt , f ) P( f |x0:t-1,y0:t-1)

]
P(xt |x0:t-1,y0:t-1;A)

= ∑
xt∈X

P( fxt =yt |x0:t-1,y0:t-1) P(xt |x0:t-1,y0:t-1;A)

= ∑
xt∈X

h(yt) P(xt |x0:t-1,y0:t-1;A) = h(yt) . (4)

The last line used the fact that the algorithm is non-revisiting and that P( f ) factor-
ized, such that P( fxt = yt |x0:t-1,y0:t-1) = P( fxt = yt) = h(yt). (For X continuous we
need to replace summations by integrals.) This means that a newly sampled func-
tion value yt is independent of the algorithm A and of the history x0:t-1,y0:t-1. By
induction over t = 0,1, .. we get the right hand side (RHS) (3).

We now show the inverse (2)⇐(3): To show ¬(2)⇒¬(3) let {x1, ..,xK} for which
P( fx1 , .., fxK ) does not identically factorize. We distinguish two cases: (i) In the case
that the marginals are not identical (h depends on the site) it is clear that two algo-
rithms that pick two different sites (with different marginals h) as the first search
point will have a different P(y0)—and the RHS (3) is violated. (ii) If all marginals
P( fx1) = h( fx1) are the same but P( fx1 , .., fxK ) does not factorize, then at least one
conditional P( fx1 | fx2 , .., fxK ) 6= h( fx1) is different from the marginal. Two algo-
rithms that deterministically first picks x2, ..,xK and then, depending on the con-
ditional P( fx1 | fx2 , .., fxK ) will pick either x1 or an outside point in X \ {x1, ..,xK}
(here we need the real subset {x1, ..,xK} ⊂ X rather than the ⊆ X) will have a dif-
ferent P(yK) than random search—and the RHS (3) is violated.

To link to more traditional presentations: The LHS (2) is related to sets of func-
tions which are closed under permutation. In particular, associating equal probabil-
ity to functions in a set closed under permutation leads to i.i.d. function values at
different points. The LHS (2) is equivalent to the so-called strong NFL conditions
in [5]. Further, one usually assumes some criterion C that evaluates the quality of an
algorithm A by mapping the sequence y0:t of observed values to a real number. Ob-
viously, if P(y0:t) is independent of the algorithm, then is also ∑y0:t

P(y0:t)C(y0:t). In
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traditional terms this means, averaged over all functions (in terms of P( f )) the qual-
ity of an algorithm is independent of the algorithm. For instance, every algorithm is
as good as random search.

A note on continuous spaces:

The LHS condition (2) is interesting in the case of continuous search spaces, which
touches deeply into the notion of well defined measures over functions in contin-
uous space. Naively, the LHS condition (2) describes something like a Gaussian
process with a zero covariance function C(x,x′) = 0 for any x 6= x′. At first sight
there seems to be no problem in defining such a distribution over functions also in
continuous space, in particular because the definition of a Gaussian process only
makes reference to function value distributions over finite subsets of the domain.
However, [1] make the point that this “zero-covariance GP” is actually not a proper
Lebesgue measure over the space of function. This means any P( f ) which fulfils the
LHS (2) is not a Lebesgue meassure. Inversely, if we assume that P( f ) is a Lebesgue
meassure—and [1] imply that this is the only sensible definition of meassure over
functions in continuous space—then it follows that NFL does not hold in continuous
domains.

A note on generalization in statistical learning theory:

The NFL theorem, as we formulated it, is closely related to the issue of general-
ization: can the algorithm generalize knowledge gained from sites x1:T-1 to a new
site? NFL says that this is not possible without assumptions on the underlying func-
tion. On the surface this seems to contradict the classical foundation of statistical
learning theory, stating that generalization to “new” data is possible without making
assumptions about the underlying function. The origin of this seeming contradiction
is simply the use of the word “new data” in both contexts. The prototypical setup
in statistical learning theory considers a joint distribution P(X ,Y ) = P(Y |X) P(X)
from which data {(xi,yi)}N

i=0 was sampled i.i.d. In that context, a “new” data point
x∗ is one that is equally sampled from the same source P(X) as the previous
data—without ruling out re-visitation of the same site. Statements on generaliza-
tion roughly state that, in the limit of large N, generalization to new data is possible.
If the domain X is finite, the limit of large N implies that new data points are likely
to coincide with previously observed sites and the possibility of generalization is
obvious. If the domain is continuous, the chance to revisit exactly the same site is
zero and it seems that re-visitation is not an issue and NFL holds—however, as we
discussed in the previous section, w.r.t. standard Lebesgue measures over functions,
NFL does not hold in continuous spaces.
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3 Some background on POMDPs

Our formulation of NFL states that, assuming a fully factored distribution over func-
tions, any search algorithm will have the same expected performance. Inversely this
implies that when we assume a non-factored distribution over functions—which we
call function prior—then the algorithm has at least a chance to exploit previous ob-
servations x0:t ,y0:t to decide “intelligently” (better than random search) about the
next sample xt+1.

Partial Observable Markov Decision Processes (POMDP) give us a clear descrip-
tion of how an optimal (fully Bayes rational) algorithm would choose the next sam-
ple point based on previous observations. The point in referring to POMDPs will not
be that we will in practice be able to design fully Bayes optimal search algorithms—
this is in any realistic case computationally infeasible. However, the POMDP frame-
work provides us with two important aspects: First the notion of a belief, which can
be shown to subsume all the information from the history of observations x0:t ,y0:t
that is necessary to make optimal decisions. And second, the POMDP framework
provides us with primising approximate decision heuristics, for instance iteratively
using the optimal 2-step lookahead strategy as an approximation to the optimal T -
step lookahead for a problem of horizon T , as will be discussed in detail in section
5.

We briefly introduce POMDPs and the notion of beliefs in POMDPs here. For
more details see [9], for instance.

A POMDP is a stochastic model of the interaction of an agent with an environ-
ment where the agent does not fully observe the state st of the environment but only
has access to (“partial”) obervations yt . For every time step t the environment is
in state st , the agent chooses an action at+1, the world transitions into a new state
according to a conditional probability P(st+1 |at+1,st) and the agent gets a new ob-
servation according to P(yt+1 |st+1,at+1).

Since each single observation yt gives only partial information about the state, it
is in general suboptimal for the agent to use only yt to decide on an action at+1. A
better alternative for the agent would be to take the full history (y0:t ,a0:t) as input
to choose an action—since this provides all the information accessible to the agent
at the time this in principle supports choosing optimal actions. However, it can be
shown [9] that a sufficient alternative input to choose optimal actions is the posterior
distribution P(st |y0:t ,a0:t). This should not surprise: given the Markovian structure
of the world itself, if the agent would have access to the state st then optimal policy
would map st directly to at+1. If, as in POMDPs, the agent does not have access
to st , then the state posterior P(st |y0:t ,a0:t) provides all the information about st
accessible to the agent, i.e., that can be inferred from previous observations and
actions.

The state posterior is also called the belief bt = P(st |y0:t ,a0:t). To summa-
rize, Figure 1 illustrates the stochastic process of a (belief-based) agent interact-
ing within a POMDP as a Dynamic Bayesian Network. The environment is de-
scribed by the state transition probabilties P(st+1 |at+1,st), the observation probabil-
ities P(yt |st ,at), and the initial state distribution P(s0). The agent is described (in
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y1 y2

b0 b1 b2

a1 a2

s0 s1 s2 R

aT

sT

Fig. 1 Dynamic Bayesian Network for the stochastic process of a (belief-based) agent interacting
within a POMDP—for simplicy in the case of finite horizon and final reward only.

POMDP Bayesian Search Game
world state st objective function f
action at choice of search point xt
observation yt function value yt = f (xt-1)
belief state bt = P(st |y0:t ,a0:t) belief bt = P( f |y0:t ,x0:t)

Table 1 Translation of the search game as a Partially Observable Markov Decision Process.

the belief-based case3) by the policy π : bt 7→ at+1 that maps the current belief state
to the action. In each step, after executing action at+1 and observing yt+1, the agent
updates the belief using Bayes rule:

bt+1(st+1) = P(st+1 |y0:t+1,a0:t+1)

∝ P(yt+1 |st+1,y0:t ,a0:t) P(st+1 |y0:t ,a0:t)

= P(yt+1 |st+1,at)
[
∑
st

P(st+1,st |y0:t ,a0:t)
]

= P(yt+1 |st+1,at) ∑
st

P(st+1 |st ,at) bt(st) (5)

This equation is called belief update. The prior belief b0(s0) is initialized with the
initial state distribution P(s0).

4 From NFL to beliefs and the Bayesian Search Game

Table 1 summarizes how one can draw a relation between the problem of optimiza-
tion and POMDPs. The action at of the agent/algorithm correspond to the next site
xt that the algorithm explores. The state st of the environment corresponds to the
unknown underlying function f —a difference here is that in POMDPs the environ-
ment state is manipulated by actions whereas in search exploring a site xt does not
change the function f of the environment. But as in a POMDP, the environment
state f is not fully observable. Only a partial observation P(yt | f ,xt) is accessible to
the agent/algorithm depending on the site it explores.

3 Alternatives to represent agent policies are, for instance, Finite State Controllers [11].
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As in POMDPs, the belief bt( f ) captures all information about the state f that is
accessible to the algorithm. The P( f ) defined in the previous section provides the
prior belief b0( f ) := P( f ); in equation (4) we also referred to the posterior belief at
time t,

bt( f ) := P( f |x0:t ,y0:t) . (6)

NFL says that if the prior belief factorizes in identical marginals, then there is no
way to derive a smart sampling heuristic from this belief. The reason is that in the
NFL case the belief cannot be updated in a useful way. Why is this? Given a new
observation yt at xt we can update the belief in the sense that now we explicitly know
the function value at xt—but we cannot update the belief about function values at
yet unexplored sites because the NFL conditions do not allow us to generalize to
unexplored sites. Hence the belief over yet unexplored sites always remains i.i.d.
with marginals h(y).

Inversely, the belief is a generic and exhaustive way to capture all of what we can
possibly know about the underlying function given the observations made so far. In
particular, when NFL condition (2) does not hold, then an observation yt at some
site xt tells us something about the function at other sites. The belief state is an exact
description of this information about yet unexplored sites.

The stochastic search processes of a belief-based algorithm, which pick new
search points based on a policy πt : bt-1 7→ xt , can be depicted as the Dynamic
Bayesian Network (DBN) as in figure 2. This process can be viewed as a (single
player) game: The game starts with the player picking a specific prior belief b0 over
the space of functions, and with the environment choosing a specific function f from
some function prior P( f ). For simplification, we assume that the player is informed
on P( f ) such that his prior belief coincides with the function prior, b0( f ) = P( f ).
This initialization of the game corresponds to the first two nodes on the left in the
DBN.

In the first time step, it will use the policy πt : bt-1 7→ xt to pick a first site at
time x1 = π1(b0). The environment responds by returning the function evaluation
y1 = f (x1). The player updates its belief as in (5). Since in our case the function f
is not influenced by the action xt the belief update simplifies to

bt( f ) = P( f |x0:t ,y0:t)

∝ P(yt | f ,x0:t ,y0:t-1) P( f |x0:t ,y0:t-1)

= P(yt |xt , f ) bt-1( f ) (7)

The game continues like that until, at some final deadline T , a reward R is emitted
depending only on the last sample.

Drawing the connection to POMDPs does not directly lead to new efficient solu-
tion methods. However, some simple facts from POMDPs help us understand also
the problem of search better: (1) We know that the optimal policy in POMDPs
is a deterministic function from beliefs to actions. This notion of optimality in
POMDPs is very general and implies optimal solutions to the so-called exploration-
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x1 y1 x2 y2 xT

Rf

b0 b1 b2

Fig. 2 The Dynamic Bayesian Network describing the search game. f is a function sampled
from P( f ). bt is a belief over functions that the player maintains; it is initialized deterministically
to b0 = P( f ). xt ∼ πt(bt) is the player’s sample action at time t and yt = f (xt) the evaluation
feedback.

exploitation problem [12] or strategies to gain information for later payoff. Clearly,
such strategies are also relevant in the context of search. (2) A POMDP can be re-
formulated as a Markov Decision Process (MDP) with world state s̃t = (st ,bt)—that
is, when we think of the tuple (st ,bt) as the new (embedding) world state. This also
implies that optimal policies can be found by computing a value function V (st ,bt)
over this embedding space. Note that this value function is a function over the space
of distributions—and thereby of extremely high complexity. Point-based Value It-
eration methods follow this approach by exploiting a sparse structure of the value
function [9].

5 Belief-based Search Policies

In this section we consider some basic heuristic policies to choose the next search
point based on the current belief. For simplicity we consider a finite horizon T where
the reward is exactly the function value f (xT ) ∈ R of the last site. The objective is
then: find a policy πt : bt 7→ xt+1 (different for each t) that maximizes the expectation
of f (xT ).

The problem the player is faced with is obviously a problem of planning ahead,
i.e., taking samples that allow him to learn as much as possible about f (shaping
its belief favorably) such that at the deadline T he is as well informed as possible
to pick the final sample. But what are computationally feasible policies in practice?
Let us define some basic policies here:

The k-step lookahead policy:

πk : bt 7→ xt+1 is defined as the optimal policy for picking xt+1 based on bt assuming
that the horizon T = t + k is k steps ahead. For large k, computing this policy is
infeasible. For k = 1 or k = 2 approximations may be feasible.
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The greedy policy:

πk=1 is the 1-step lookahead policy which picks the point xt+1 that maximizes the
predictive mean f̂t(x) =

∫
f f (x)bt( f )d f , that is, the mean function given the current

belief bt ,

π
k=1(bt) = argmax

x
f̂t(x) . (8)

Thereby, the greedy policy is the optimal policy for the final pick of xT based on
bT-1.

The 2-step lookahead:

policy πk=2 is

π
k=2(bt) = argmax

xt+1

∫
yt+1

max
xt+2

f̂t+1(xt+2) P(yt+1 |xt+1,bt) (9)

f̂t+1 =
∫

f
f (x)b( f ;yt+1,xt+1,bt)d f (10)

where b( f ;yt+1,xt+1,bt) is the belief when updating bt with the new observations
according to equation (7). The term maxxt+2 f̂t+1(xt+2) is the expected reward when
the greedy policy is applied in the next step. The integral over yt+1 accounts for all
possible outcomes (and corresponding belief updates) for the sample xt+1. In that
sense, the 2-step lookahead policy can imply explorative strategies: one might want
to pick xt+1 such that the outcome yt+1 contains crucial information for the belief
update such that the final (greedy) pick has maximal expected reward.

A simple exploration policy πexplore is to always pick the site xt+1 that maximizes
the predictive variance σ̂t(x)2 =

∫
f [ f (x)− f̂t(x)]2bt( f )d f of the belief. This strategy

aims at learning as much as possible about the function, but neglects that we are
interested in high function values and should thus learn as much as possible about
regions where we hope to find high function values.

A simple exploit-explore policy πEE is to pick the site xt+1 that maximizes
gt(x) = f̂t(x)+ασt(x), that is, a combination of the predictive mean and variance.
gt(x) can be interpreted as an optimistic function value estimate: the value could
potentially be α standard deviations above the current mean estimation.

Another heuristic combining exploration and exploitation is the expected im-
provement policy πEI. Let Yt = max{y1:T} be the maximum value observed so far.
We can compute for each site x the expected improvement qt(x)=

∫
f f (x)δ f (x)>Yt bt( f )d f ,

where δ is the indicator function. This expected improvement computes a mean
value, as with f̂t , but only over function values greater than Yt .



The Bayesian Search Game 11

6 Experiments with Gaussian processes as belief representation

The belief update (7) is a simple equation, but for a concrete algorithm it requires
to represent a distribution over function space and be able to multiply the likeli-
hood term P(yt |xt , f ) to the belief to become a new belief. What is a family of
distributions over functions can which we can represent in computers and which is
conjugate (that is, if the old belief is element of this family, then also the updated
belief will be element of this family)?

Gaussian processes (GPs; [13]) are such a family of distributions over continuous
functions. They can be defined as follows. Let f ∼ GP(µ,C) be a random function
sampled from a Gaussian process with mean function µ(x) and covariance function
C(x,x′). Then, for any finite set of points {x1, ..,xN}, the vector ( f (x1), .., f (xN)) is
distributed joint Gaussian with mean vector (µ(x1), ..,µ(xN)) and covariance matrix
C(xi,x j), i, j = 1..N. Since this definition describes the behavior of random functions
on finite subsets it fits nicely with our formulation of NFL.

The covariance function C(x,x′) is typically decaying with the distance |x− x′|
such that points close to each other are strongly correlated. This leads to smooth
functions. Often C(x,x′) is chosen squared exponential C(x,x′) = ν2 exp{−(x−
x′)2/2ν2}+ δx=x′ρ

2 with correlation bandwidth ν (and observation standard de-
viation ρ). Figure 3 displays a number of functions sampled independently from a
GP prior with constant mean µ(x) = 0 and bandwidth ν = 1

2 . This should illustrate
what it means to assume such a prior: we believe a-priori that functions typically
look like those in figure 3, in particular w.r.t. the type of smoothness. (GPs are re-
lated to cubic splines, see [13].)

It is a common approach to use GPs as a representation of the belief b for search
and optimization problems; in geology this method is also called Kriging [2, 7, 6].
One often assumes that a single function evaluation is expensive (e.g., drilling a hole
to get a geological probe) and therefore extensive computational cost to evaluate a
policy is acceptable.

To demonstrate the use of Gaussian Processes to represent beliefs we imple-
mented a Bayesian Search Game, which can be downloaded from the author’s web-
page4. Here we report on some quantitative experiments. We implemented the poli-
cies πk=1, πk=2, πEE, πEI, πexplore simply by evaluating the respective integrals over
a grid. This becomes expensive already for k = 2

We performed some experiments with Gaussian Process beliefs to illustrate and
evaluate the different policies defined in the previous section. The objective is to
find the optimum of a function sampled from a Gaussian process with bandwidth
ν = 1

2 . The search is constrained to the interval [−1,1].
Table 2 displays the results when we allow the algorithms to take only T = 10

or T = 5 samples to find the optimum. The objective is the final loss: the difference
between the last sampled value f (xT ) and the true optimum of the function. We also
report on the average loss during the T samples. Although this is not the objective

4 http://userpage.fu-berlin.de/mtoussai/07-bsg/
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Fig. 3 Ten sample functions from a Gaussian Process prior with bandwidth ν = 1
2 .

policy final loss for T = 10 avg loss (T = 10) final loss for T = 5 avg loss (T = 5)
πk=1 0.632 ± 0.006 0.764 ± 0.006 0.648 ± 0.006 0.891 ± 0.006

πEE, α = 1 0.051 ± 0.002 0.492 ± 0.003 0.254 ± 0.004 0.834 ± 0.005
πEE, α = 2 0.0039 ± 0.0004 0.687 ± 0.002 0.256 ± 0.004 0.970 ± 0.004
πEE, α = 4 0.0026 ± 0.0001 0.952 ± 0.003 0.296 ± 0.004 1.079 ± 0.004

πEI 0.0015 ± 0.0001 0.926 ± 0.003 0.299 ± 0.004 1.063 ± 0.005
πexplore 0.0015 ± 0.0001 0.926 ± 0.003 0.303 ± 0.004 1.069 ± 0.005

Table 2 Performance for different policies for finding the optimum of a function sampled from
a GP prior with bandwidth ν = 1

2 , constrained to the search interval [−1,1]. We measure the loss
as the difference between the last sampled value f (xT ) and the true optimum of the function.
The algorithm is only allowed to take T = 10 (respectively T = 5) samples. Mean and standard
deviation are given for 10 000 random functions.

it indicates whether the algorithm tends to sample good points also in intermediate
steps.

For T = 10 we find that the expected improvement policy πEI and the simple
exploration policy πexplore perform best. Both of them are rather exploratory, which
is evident also from the high average loss. In contrast, πEE with α = 1 is less ex-
ploratory, focuses on a (local) optimum earlier, leading to higher final loss but lower
average loss.

For comparison we also tested for only T = 5, where the greedier πEE with α = 1
performs slightly better than the other policies.

Finally, we also want to demonstrate the effect of 2-step lookahead planning. It is
not easy to find a problem class for which this policy performs better than the others.
Here is a slightly constructed example: We sampled random functions from a GP
prior with large bandwidth ν = 1 (very smooth functions) which were additionally
conditioned on f (x) = 0 at the sites x = −0.9,0,0.9. Figure 4 displays 10 random
samples from this prior.

Table 3 displays the results for all policies with only T = 2—that is the algorithm
only has one sample to learn as much as possible about the function before placing
the final sample which decides on the final loss. First, we find that all algorithms
πEE, πEI, πexplore have the same performance. This is because they all first sample
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Fig. 4 Ten sample functions from a Gaussian Process prior with bandwidth ν = 1 conditioned on
f (x) = 0 for x =−0.9,0,0.9.

policy final loss for T = 2
πk=1 0.0144 ± 0.0003

πEE, α = 1 0.0116 ± 0.0002
πEE, α = 2 0.0116 ± 0.0002
πEE, α = 4 0.0116 ± 0.0002

πEI 0.0116 ± 0.0002
πexplore 0.0116 ± 0.0002
πk=2 0.0095 ± 0.0002

Table 3 Performance for different policies for finding the optimum of a function sampled from
a GP prior illustrated in figure 4. The algorithm is only allowed to take T = 2 samples. Mean and
standard deviation are given for 10 000 random functions.

the site x = −0.45 or x = 0.45, which have maximal entropy, and then sample the
last point using the greedy policy. Hence, they are all equivalent for T = 2.

The 2-step lookahead policy behaves differently: It first samples a point very near
by x = 0 (approximately x = .05). The observation at this point implicitly allows the
algorithm to infer the slope of the true function around x= 0, which implies a “better
informed” GP posterior of the function which has more certainty about the function
on both sides rather than only on one side of x = 0. As a consequence, the final
(greedy) pick of xT is better than with the other algorithms.

This rather constructed example demonstrates on the one hand the intricate im-
plications of lookahead strategies—how they pick points based on how their knowl-
edge for future picks is improved. On the other hand, the minimal differences in per-
formance and given that we had to construct such complicated scenarios to demon-
strate the advantage of a 2-step lookahead strategy argues against such strategies.
Note that πk=2 is computationally orders of magnitudes slower than the other poli-
cies.
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7 Discussion

In this chapter we presented a discussion of three seemingly unconnected topics: No
Free Lunch, POMDPs, and Gaussian Processes. However, we hope it became clear
that these topics are closely related:

NFL & Gaussian Processes: In our formulation, the NFL condition (2) is that the
function prior identically factorizes on any finite subset {x1, ..,xK} ⊂ X . Only if this
condition is violated we can hope for an efficient search algorithm. Violation of this
constraint implies that function values on finite subsets are dependent—a Gaussian
Process by definition describes exactly this correlation of values on finite subsets.
Therefore, in our view, a GP is a very natural and simple model of how the violation
of NFL conditions. At this point one should note that, although Gaussian processes
are typically formulated for continuous X with continuous covariance function, they
can of course also be applied on discrete spaces, e.g., with a covariance function
depending on the Hamming distance or other similarity measures.

NFL & POMDPs: The reason we discussed POMDPs in the context of NFL
is that the POMDP framework explicitly states what the optimal search algorithm
would be. In particular, the POMDP framework clarifies that the notion of a belief is
a sufficient representation of all the knowledge gained from previous explorations,
in the sense that the optimal algorithm can be viewed as a policy mapping from the
belief to a new search point. Generally, we do not want to over-stress the discussion
of truly optimal search algorithms. The POMDP framework formulated here leads to
optimal search (given the assumption of the prior belief). [4] has discussed universal
optimality (where the role of the prior is replaced by a complexity measure over al-
gorithms (Solomonoff complexity)). In both cases the computational complexity of
evaluating the optimal policy is exponential and the key is to have good approximate
policies. However, the notion of the belief leads naturally to the existing literature
on optimization using heuristics like the expected improvement policy.

Let us also mention EDAs (Estimation of Distribution Algorithms) [8]. It has
been argued before that EDAs implicitly learn about the problem by shaping the
search distribution [14]. From our perspective, EDAs (and also GAs) try to perform
two tasks at once with the search distribution: they use it to accumulate information
about the problem (representing where optima might be), and they use it to describe
the next sample point. The belief framework suggests to disentangling these two
issues: the belief is used to represent all knowledge and a separate policy maps it to
a new samples. From a Bayesian perspective the benefit is that there is no loss in
information in the belief update.

Finally, let us discuss related literature. [2, 7, 6] discuss global optimization using
response surfaces (also called surrogates, or Kriging). Our Gaussian Process search
algorithm is an instance of such global response surface modelling. However, this
work has not made the connection to POMDPs, NFL and lookahead planning. Only
the maximizing immediate measures (figures of merit) like the expected improve-
ment has been discussed in this context.

Another branch of research focusses on local models of the fitness function [15,
10, 3]. These methods are very effective when many samples can be taken (where
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a global model would become infeasible). However, lookahead heuristic or a well-
defined Bayesian belief update has not been discussed in this context.
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