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Abstract

Motion can be described in several alternative representations, including joint configura-
tion or end-effector spaces, but also more complex topology-based representations that imply
a change of Voronoi bias, metric or topology of the motion space. Certain types of robot
interaction problems, e.g. wrapping around an object, can suitably be described by so-called
writhe and interaction mesh representations. However, considering motion synthesis solely
in a topology-based space is insufficient since it does not account for additional tasks and
constraints in other representations. In this paper, we propose methods to combine and
exploit different representations for synthesis and generalization of motion in dynamic en-
vironments. Our motion synthesis approach is formulated in the framework of optimal con-
trol as an approximate inference problem. This allows for consistent combination of multi-
ple representations (e.g., across task, end-effector and joint space). Motion generalization to
novel situations and kinematics is similarly performed by projecting motion from topology-
based to joint configuration space. We demonstrate the benefit of our methods on problems
where direct path finding in joint configuration space is extremely hard whereas local opti-
mal control exploiting a representation with different topology can efficiently find optimal
trajectories. In real world demonstrations, we highlight the benefits of using topology-based
representations for online motion generalization in dynamic environments.

1 Introduction

Many relevant robotic tasks concern close interaction with complex objects. While standard
motion synthesis methods describe motion in configuration space, tasks that concern the in-
teraction with objects can often more appropriately be described in representations that reflect
the interaction more directly. For instance, consider the wrapping of arms around an object,
e.g. embracing a human. Described in joint space, such a motion is complex and varies greatly
depending on the embraced object. When describing the motion more directly in terms of the
interaction of arm segments with object parts (e.g. using the interaction mesh representation
that we will introduce below) we gain better generalization to objects of different shape or po-
sition and online adaptation to dynamic objects. Similar arguments apply to other scenarios,
e.g. multi-link articulated robots reaching through small openings and complex structures,
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Figure 1: KUKA LWR 4 robotic arm reaching through a hollow box with task being defined in
combined Writhe and interaction mesh space, showing an example of planning and dynamic
remapping using topology-based representations as described in Section 5.3.

surfaces wrapping around objects and fingers grasping objects. In such cases, the alternate
representations greatly simplify the problems of motion generalization as well as planning.

There are several formal views on the implication of an alternate abstract representation: 1)
In the context of randomized search, such representations alter the Voronoi bias or more gener-
ally the sampling strategy and therefore, the efficiency of RRT or randomized road maps. [14]
demonstrate this effect in the case of RRTs. 2) An alternate representation may imply a differ-
ent metric, such that a trajectory that is a complex path in one space becomes a simple geodesic
in another. 3) An alternate representation may change the topology of the space such that
local optimization in one space is sufficient for finding a solution whereas global optimization
(randomized search) would be needed in the other. 4) Finally, different representations may
allow us to express different motion priors, for instance, a prior preferring “wrapping-type mo-
tions” can be expressed as a simple Brownian motion or Gaussian process prior in one space,
whereas the same Brownian motion prior in configuration space renders wrapping motions
extremely unlikely.

In this paper, we propose methods that can combine the different representations at the ab-
stract as well as the lower (execution) level and plan simultaneously at these different levels to
efficiently generate optimal, collision free motion that satisfy constraints. Each representation
has their own strength and weaknesses and coupling them can help solve a wider range of
problems. More specifically, our contributions are:

• The introduction of topology-based representations tuned to the domain of robot motion
synthesis and manipulation, with a strong focus on interaction with and manipulation
of the environment.

• A principled extension of a stochastic optimal control framework that admits the capability
to combine various representations for motion synthesis. This is expressed in a graphical
model that couples motion priors at different levels of representations.

• A method for motion generalization (remapping) to novel situations via a topology-based
representation.

• Experiments that validate the benefit of Bayesian inference planning with topology-based
representations in problems involving complex interactions.
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In the context of this paper, we define the term topology-based space as any space that in
general abstracts away the geometric detail of work space. Not all the topology-based spaces
, therefore, strictly relate to a space with a novel topology — most of these spaces are in fact
Rn with the usual topology and they can be classified as universal covering spaces [16] of the
joint space. For example, the writhe scalar described in Section 2.1 is a homology invariant (see
Section 2.1.2) but the interaction mesh space defined in Section 2.2 is a metric space designed
to represent interaction between objects and to abstract away their geometric detail.

As opposed to the computer animation domain, where topology-based representation have
recently been used [8], synthesizing motion in such abstract spaces for planning and control of
robotic systems come with additional challenges. Typically, control tasks are specified in world
(or end-effector) coordinates, the obstacles may be observed in visual (or camera) coordinates,
and the joint limits of the actuators are typically described in joint coordinates. Therefore, the
general challenge is to devise motion synthesis methods that combine the benefits of reasoning
in topology-based coordinates while preserving consistency across the control coordinates and
managing to incorporate dynamic constraints from alternate representations seamlessly.

Here we extend our previous work presented in [30]. The novel contributions of this pa-
per are: (1) The definition of interaction mesh with per-edge weighting. (2) Describing the
topological properties of the writhe scalar. (3) Introducing winding numbers as simplification
of writhe coordinates. (4) Experiments demonstrating motion generalization using topology-
based representations.

In the rest of this section, we will first review previous work on the use of topology-based
representations for character animation and abstract spaces used for robot motion synthesis.
Section 2 then introduces three specific types of alternate representations, two of which have
their origins in topological properties of strings—the writhe—and the winding numbers and
the third capturing the relative distances between interacting parts. We describe the implica-
tions of these representations in Section 2.1.2. Section 3 presents our approach to combining
topology-based and configuration space representations in an optimal control based planning
scheme implemented through the Approximate Inference Control (AICO) [27, 21]) framework
– with their specific motion priors coupled via the graphical model. Section 4 addresses the
topic of using these representations to generalize motion to novel situations by “remapping” it
using this more abstract space. Finally, in Section 5 we present experiments on using the pro-
posed methods to solve motion synthesis problems like unwrapping that are infeasible (e.g. for
RRT methods) without exploiting alternate representations and demonstrate generalizability
to novel, dynamic situations.

1.1 Previous Work

Controlling objects or robots with large degrees of freedom is a difficult problem. Previous
methods solve such problems by either reducing the dimensionality of the problem by ab-
stracting the state space or introducing a Voronoi bias into the sampling strategies of random
exploration methods methods. We review some of these methods next, followed by a discus-
sion on methods of implementing stochastic optimal control as a planner.

Dimensionality Reduction: There is a strong interest in reducing the dimensionality of the
state space of robots to simplify the control strategy. Machine Learning techniques such as
Gaussian processes have been successfully applied for such purposes[12]. In [3], a latent man-
ifold in joint angle space is computed using Gaussian process from sample configurations
produced by an expert. This manifold is, however, defined by samples from a valid trajec-
tory in joint angle space and it does not capture the state of the environment directly. As
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a result, when these methods are applied to problems of close interactions, artifacts such as
penetrations start to appear. This problem cannot be resolved by simply making use of effi-
cient collision detection (e.g., [10]) since qualitatively different movements such as avoiding
obstacles from opposite sides may end up being blended.

Abstraction based on Spatial Relations: Another way to reduce the dimensionality of the
state space is to explicitly specify the parameters for abstracting the state space. For example,
in order to cope with problems of close interactions, we can represent the state space based on
the spatial relations between the body parts and objects. Such representations can be found
in knotting robots [25, 28, 15, 23]. that describe the status of the strands based on its overlap
with itself, when viewing from a specific direction [5]. The obvious disadvantage of such
representations is its view-dependence and the difficulty in generating commands to actually
manipulate the elements, e.g., the rope.

Alternate topology-based representations that describe the relationships between 1D curves
using their original configurations have been used for motion synthesis [8, 26] and classifying
paths into homotopy groups [2]. Similarly, in [8], a representation called Topology Coordi-
nates that is based on the Gauss Linking Integral has been proposed to synthesize tangling
movements. The inverse mapping from the new coordinates to the joint angles are generated
by the least squares principle using inverse kinematics. In [26], the same representation is ap-
plied for controlling the movement of a robot that puts a shirt on a human. Here, the inverse
mapping is learned via human demonstrations. Such an approach is applicable only when
the desired movement is consistent and simple, but not when the planning needs to be done
between arbitrary sample points in the state space. An idea to abstract the paths connecting
a start point and the end point using homotopy classes in 2D based on complex numbers [1]
and in 3D based on the Ampere’s law [2] has also been proposed. However, this work stops at
classifying paths into homotopy groups and there is no recipe for mapping from the topology-
based representation to the low level control coordinates. Moreover, these representations are
only applicable for 1D curves and not for describing the relationship between 2D surfaces,
which is case often needed for controlling robots.

Another representation called interaction mesh that describes the spatial relationship of the
body parts is introduced in [9]. The relationship is quantified by the Laplacian coordinates of
the volumetric mesh whose points are sampled on the body parts composing the scene. The
advantage of this approach is that it is not restricted to describe the relationship between 1D
curves but is extendable to those between 2D surfaces. However, it is a discrete representation
which is only valid in the neighborhood of the posture from which the volumetric mesh is
computed.

Exploratory Motion Planning Methods Exploratory motion planning such as Probabilistic
Road Maps (PRM) and Rapidly exploring random trees (RRT) is another possible approach
for controling systems with many degrees of freedom. As the complexity of such methods are
exponential with respect to the degrees of freedom of the system, methods that introduce a
Voronoi bias into the sampling strategy in the task space [24, 14] have been proposed. Sam-
pling based planning that takes dynamics of the robot into account have been proposed [29].
The problem of planning in dynamic environments with multiple goals has been addressed in
[7]. Such methods, however, do not fully utilize the modified metric induced by the alternate
representations.

Stochastic Optimal Control: The field of stochastic optimal control has developed several
techniques such as iLQG that have previously been used for optimising robot motion with
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complex dynamics [13, 18, 4]. The stochastic optimal control problem can also be formulated as
Approximate Inference Control (AICO) [27]. This method has also been used for time optimi-
sation [20] and it is suitable for combining multiple representations by extending the graphical
model. Our approach is to combine multiple criteria based on spatial relations using AICO.

In summary, using a representation based on the spatial relations is a promising direction
to reduce the dimensionality of the control, although little work has been done for flexible
path planning or optimal control in such state spaces.

2 Topology-based representations

The topology-based spaces we will introduce significantly modify the metric and topology
of the search space. For instance, points that are near in the topology space might be far in
configuration space, or a linear interpolation in topology space may translate to complex non-
linear motion in configuration space. We are particularly interested in the change of topology,
such that the new representation will capture invariants that enable us to represent interac-
tions with the environment more effectively. The motion synthesis methods proposed in the
next section are independent of the specific choice of representation. Here we will introduce
three specific examples of topology-based representations (winding numbers, writhe coordi-
nates and interaction mesh) which we will also use in the experiments. These representations
have previously been used in the context of computer animation, namely the writhe repre-
sentation [8] that captures the “windedness” of one object around another, and the interaction
mesh representation [9] that captures the relative positioning of key points between interacting
objects.

All three types of representations can be formalized by a mapping φ : q 7→ y from con-
figuration space to the topology-based space, where q ∈ Rn is the configuration state with n
degrees of freedom. To be applicable within our motion synthesis system, we need to be able
to compute φ and its Jacobian J for any q.

2.1 Writhe matrix and scalar

Figure 2: Illustration of the definition of writhe for two segments. One - ab - belongs to the
manipulator and another - cd - is a part of the obstacle.

The writhe [11] is a property of the configuration of two kinematic chains (or in the con-
tinuous limit, of two strings). Intuitively the writhe describes to what degree (and how and
where) the two chains are wrapped around each other, which is well suited for representing
winding and wrapping motion.
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Let us describe two kinematic chains by positions p1,21:K of their joints, where pik ∈ R3 is the
kth point of the ith chain. Using standard kinematics, we know how these points depend on
the configuration q ∈ Rn, that is, we have the Jacobian J i

k :=
∂pi

k

∂q for each point. The writhe
matrix is a function of the link positions p1,21:K . More precisely, the writhe matrix Wij describes
the relative configuration of two points (p1i , p

1
i+1) on the first chain and two points (p2j , p

2
j+1) on

the second where i, j are indexes of points along the first and the second chain respectively.
For brevity, let us denote these points by (a, b) = (p1i , p

1
i+1) and (c, d) = (p2j , p

2
j+1), respectively

(see Fig. 2). Then

Wij=

[
sin-1 n

>
and

|na||nd|
+sin-1 n

>
bnc

|nb||nc|
+sin-1 n

>
cna

|nc||na|
+sin-1 n

>
dnb

|nd||nb|

]
sign

[
ab
>
(ac×cd)

]
(1)

where na, nb, nc, nd are normals at the points a, b, c, d with respect to the opposing segment
(c.f. Fig. 2),

na=ac×ad , nb=bd×bc , nc=bc×ac , nd=ad×bd . (2)

The above equations for computing the Writhe are an analytical expression for the Gauss link-
ing integral along two segments. The solution of this integral is based on an analogy with
the solid angle formed by all view directions in which segments (a, b) and (c, d) intersect [11]
multiplied by an appropriate sign. Since the writhe matrix is a function of the link positions
p1,21:K we can compute its Jacobian using the chain rule

∂Wij

∂q
=
∂Wij

∂p1i
J1
i +

∂Wij

∂p1i+1
J1
i+1+

∂Wij

∂p2j
J2
j +

∂Wij

∂p2j+1
J2
j+1 . (3)

Fig. 8 illustrates 2 configurations together with their writhe matrix representation. Roughly,
the amplitude of the writhe (shading) along the diagonal illustrates which segments are wrapped
around each other. From the full writhe matrix we can derive simpler metrics, usually by sum-
ming over writhe matrix elements. For instance, the Gauss linking integral, which counts the
mean number of intersections of two chains when projecting from all directions, is the sum of
all elements of the writhe matrix. In our experiments, we will also use the vector wj =

∑
iWij

as a representation of the current configuration. Writhe, however, does not provide a unique
mapping to joint angles which is why we usually require additional constraints and cost terms.

2.1.1 Winding numbers

pc

Figure 3: Winding number of a point pc surrounded by the doubly wound curve: ŵ = 2.

If the problem can be simplified to planning a wrapping motion in 2D, we can use a special
case of the writhe representation. The winding number defines how many times a curve is
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wound around a point on a 2D plane (Fig. 3). We compute the Winding number using the
approximate algorithm derived in [19] which is based on calculating inverse trigonometric
functions of the scalar product of two normalized vectors, formed by consequent points pi
and pi+1 on a curve and a central point pc:

ŵ =
1

2π

n−1∑
i=1

arccos

(
(pi − pc)>(pi+1 − pc)
|pi − pc||pi+1 − pc|

)
(4)

where n is the number of points along the curve. This scalar continuous function can be thus
viewed as a simplification of a writhe representation defined in Section 2.1. In our experiments
that use the winding numbers, we assume that all joints and points lie within one plane. We
use the standard kinematics to define the points pi depending on the configuration q ∈ Rn.
We can therefore use the chain rule to compute the Jacobian of the winding number ∂ŵ

∂q .

2.1.2 Homotopy classes of robot configurations

The writhe scalar is a topology invariant [6] based on homotopy that exists between config-
urations of the robot. Let us assume we have one kinematic chain pik that depends on the
robot configuration q ∈ Rn such as the skeleton of a robot arm. We define m as the num-
ber of chains pjk that do not depend on the configuration but interact with the robot such as
skeletons of obstacles. We can now compute the writhe scalar wpi,pj between chains pik and
pjk. If there exists a homotopy between arbitrary two configurations of the robot, we can control
the robot to smoothly move between these two configurations without intersecting with the
skeletons of the obstacles and we say that these configurations belong to the same homotopy
class. If two chains p1 and p2 describing two configurations of a robot belong to the same homotopy
class and connect the same two points in space then the value of their respective writhe scalars is the
same: wp1,pj = wp2,pj . To prove this we concatenate these two chains to create a closed loop
p1 ∪ −p2. Here −p2 indicates that the orientation of the curve is reversed. The writhe scalar of
wp1∪−p2,pj is non-zero if the closed loop encloses the chain pj and it is zero otherwise. There-
fore, the writhe scalars of the chains p1 and p2 must be equal if the chains do not enclose a
third chain pj describing the obstacle. This also means that one of the chains can be smoothly
deformed into the other without intersecting pj . This argument extends tom chains describing
the obstacles individually. The consequences of using this representation for motion planning
are: (1) We can constrain the planning to a particular homotopy class (reach inside a loop as
described in Section 5.3). (2) Collision avoidance can be achieved by avoiding high values of
writhe that occur near the intersecting configurations.

We call the writhe a topology-based representation because it is directly related to homo-
topy classes. The writhe scalar is, however, not a homotopy invariant but rather a homology
invariant. Here we use homology as approximation of homotopy [22]. Homology is a weaker
topology invariant which means that if two configurations are homotopic they are also homol-
ogous but not necessarily the other way around. As a result the statement: ”If two configurations
of a kinematic chain have the same writhe scalar they belong to the same homotopy class.” is not true
universally. An example of such scenario is shown in Fig. 4 where the configurations p1 (solid
black) and p2 (dashed) have the same value of writhe scalar but they belong to different homo-
topy classes with respect to the two skeletons of the obstacles (circles). In a motion planning
scenario, if the task was to reach the goal configuration while maintaining the end-effector
position constraint, it would be necessary to break this constraint in order to reach the goal
configuration, with a potential danger of local minima.
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p
1

p
2

Figure 4: An example of two configurations of a kinematic chain represented by a solid black
curve (p1) and a dashed curve (p2) that are homologous but not homotopic with respect to
both obstacles (circles). As a result it is not possible to deform the black curve into the dashed
one without intersecting at least one of the circles.

2.2 Interaction mesh

The writhe can only represent interaction between a pair of kinematic chains. The authors
of [9] have, however, proposed a representation called interaction mesh that can be used to
capture the spatial interaction of the robot with its environment. The interaction mesh is a
function of a graph connecting a set of landmark points on the robot and in the environment.
More precisely, assume we have a set of points P = {pi}i including landmarks on a kinematic
robot configuration and on objects in the environment. Let G be a (bi-directional fully or
partially connected) graph on P . To each vertex p ∈ G in the graph, we associate the Laplace
coordinate

LG(p) = p−
∑

r∈∂Gp

rwpr∑
s∈∂Gp wps

(5)

wpr =
Wpr

|r − p|
, wps =

Wps

|s− p|
(6)

where ∂Gp is the neighbourhood of p in the graph G and wpr is the weight inversely propor-
tional to the distance of points p, r and multiplied by the manually chosen edge importance
weighting Wpr. The weights are then normalized over the neighbouring nodes in the graph
s ∈ ∂Gp. The collection of Laplace coordinates of all points,

M = (LG(p))p∈P , (7)

is a 3|P |-dimensional vector which we denote as interaction mesh. As with the writhe matrix,
we assume the Jacobian of all robot landmarks in P is given and the Jacobian of other envi-
ronmental landmarks is zero. The Jacobian ∂M

∂q of the interaction mesh is given via the chain
rule.

We would like to point out that the squared metric in M -space has a deformation energy
interpretation [9]. To see this, consider a change of position of a single vertex p to a new
position p′. The deformation energy associated to such a change in position is defined based
on the neighbourhood in a tetrahedronisation T of the point set:

ET (p
′) =

1

2
‖LT (p

′)− LT (p)‖2 (8)

where LT (p) are the Laplace coordinates of p w.r.t. the tetrahedronisation T . The difference
to our definition of the interaction mesh is that we consider Laplace coordinates LG w.r.t. the
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Figure 5: Interaction mesh created from points set P depending on positions of the obstacles
(striped spheres), the goal (solid sphere) and the links of the KUKA LWR 4 arm. Edges of the
interaction mesh are shown as lines connecting the points. Edges between the obstacles have
been removed.

fully connected graphG instead of only T , which is a sub-graph of the fully connected graphG
computed using tetrahedronisation of points P . Since different configurations lead to topolog-
ically different T , usingLG has the benefit of more continuous measures (deformation energies
as well as Jacobian). Neglecting this difference, minimizing squared distances in M -space (as
is implicit, e.g., in inverse kinematics approaches as well as the optimal control approaches
detailed below) therefore corresponds to minimizing deformation energies. The choice of a
particular graph connectivity G and the edge importance weights Wpr should reflect the de-
sired interaction of the robot with the environment.

3 Optimal control combining topology-based and configura-
tion space representations

The motivation for introducing topology-based spaces is that they may provide better met-
rics or topology for motion synthesis, ideally such that local optimization methods within
topology-based space can solve problems that would otherwise require more expensive global
search in configuration space. In this section, we describe our method for exploiting topology-
based spaces for motion synthesis in an optimal control context. We formulate the approach
within the framework of Approximate Inference Control [21], which is closely related to differ-
ential dynamic programming [17] or iLQG [13] (see details below), and will allow us to use a
graphical model to describe the coupling of motion estimation on both representations. In the
following Section, we first briefly introduce this framework before we explain how to couple
additional representations in the probabilistic inference framework.

3.1 Approximate Inference Control

Approximate Inference Control (AICO) frames the problem of optimal control as a problem
of inference in a dynamic Bayesian network. Let xt be the state of the system—we will al-
ways consider the dynamic case where xt = (qt, q̇t). Consider the problem of minimizing (the
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expectation of) the cost

C(x0:T , u0:T ) =

T∑
t=0

cx(xt) + cu(ut) (9)

where cu describes costs for the control and cx describes task costs depending on the state (usu-
ally a quadratic error in some task space). The robot dynamics are described by the transition
probabilities P (xt+1 |ut, xt). The AICO framework translates this to the graphical model

p(x0:T , u0:T ) ∝ P (x0)
T∏

t=0

P (ut)

T∏
t=1

P (xt |ut-1, xt-1) (10)

·
T∏

t=0

exp{−cx(xt)} .

The control priorP (ut) = exp{−cu(ut)} reflects the control costs, whereas the last term exp{−cx(xt)}
reflects the task costs and can be interpreted as “conditioning on the tasks” in the following
sense: We may introduce an auxiliary random variable zt with P (zt =1 |xt) ∝ exp{−cx(xt)},
that is, z = 1 if the task costs cx(xt) are low in time slice t. The above defined distribution is
then the posterior p(x0:T , u0:T ) = P (x0:T , u0:T | z0:T = 1). AICO in general tries to estimate p,
in particular the posterior trajectory and controls. In [27], this is done using Gaussian message
passing (comparable to Kalman smoothing) based on local Gaussian approximations around
the current belief model. In [21], theory on the general equivalence of this framework with
stochastic optimal control is detailed. Generally, the approach is very similar to differential
dynamic programming [17] or iLQG [13] methods with the difference that not only backward
messages or cost-to-go functions are propagated but also forward messages (“cost-to-reach
functions”), which allows AICO to compute a local Gaussian belief estimate b(xt) ∝ α(xt)β(xt)
as the product of fwd and bwd message and utilize it to iterate message optimization within
each time slice.

3.2 Expressing motion priors in topology-based spaces and coupling spaces

To estimate the posterior, the controls ut can be marginalized, implying the following motion
prior:

P (xt+1 |xt) =
∫
u

P (xt |ut-1, xt-1) P (ut) du . (11)

This motion prior arises as the combination of the system dynamics and our choice of control
costs cu(ut) in x-space; for LQ systems it is a linear Gaussian.

The motion prior is a unique view on our motivation for topology-based representations.
In the introduction, we mentioned the impact of representations on the Voronoi bias, the met-
ric, or the topology. In other terms, successful trajectories are likely to be “simpler” (easier to
find, shorter, local) in an appropriate space. In Machine Learning terms, this is expressed in
terms of a prior. In this view, topology-based spaces are essentially a means to express priors
about potentially successful trajectories—in our case we employ the linear Gaussian prior in
a topology-based space to express the belief that trajectories may appear “simple” in a suited
topology-based space.

However, using AICO with a linear Gaussian motion prior in topology space is not suf-
ficient to solve general motion synthesis problems: 1) The computed posterior in topology
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configuration space

control

topology−based space

tasks

y0 y1 y2 yT

u2u1 uTu0

z0 z1 z2 zT

x0 x1 x2 xT

b̂(xT )

Figure 6: AICO in configuration and topology-based space. The grey arcs represent the ap-
proximation used in the end-state posterior estimation.

space does not directly specify an actual state trajectory or control law on the joint level. 2) We
neglect the problem of minimization of control and task costs originally defined on the joint
level. To address these issues, we need mechanisms to couple inference in topology-based and
state space. We do so by coupling topology-based and joint state representations in AICO’s
graphical model framework.

Fig. 6 displays a corresponding graphical model. The bottom layer corresponds to the
standard AICO setup, with the motion prior P (xt+1 |xt) =

∫
u
P (xt |ut-1, xt-1) P (ut) du implied

by the system dynamics and control costs. Additionally it includes the task costs represented
by P (zt =1 |xt) = exp{−cx(xt)}. The top layer represents a process in topology-based space
with an a priori given linear Gaussian motion prior P (yt+1|yt). Both layers are coupled by
introducing additional factors

f(xt, yt) = exp{−1

2
ρ||φ(qt)− yt||2}, (12)

which essentially aim to minimize the squared distance between the topology-based state yt
and the one computed from the joint configuration φ(qt), weighted by a precision constant ρ.
Note that for Gaussian message passing between levels using a local linearisation of φ (hav-
ing the Jacobian of the topology-based space) is sufficient. These factors essentially treat the
topology-based state yt as an additional task variable for the lower level inference, analogous
to other potential task variables like end-effector position or orientation. In our setup, we gen-
erally distinguish between configuration space, task space and topological space. While the
task space generally describes a space sufficient to describe cost or rewards 1 the role of the
topological space is to provide alternative metrics (and topology) for trajectory optimization.
In our experiments, we build only two layers of hierarchy between the configuration space
and the topology-based spaces (such as writhe coordinates and interaction mesh space). Since
these spaces provide simple priors that capture the task well there is no need for a more struc-
tured graphical model. It is, however, possible to build more complex hierarchies by extending
the graphical model.

The choice of topology-based spaces and their weighting depends on the task — in our
experiments, these are chosen manually. For example the winding numbers are suitable for
tasks where the expected motion is a winding motion that can be projected on a 2D plane (see
Section 5.1). If 3D winding is required and both the robot and the skeletons of the obstacles
can be represented by kinematic chains, then writhe space should be used (see Section 5.2).
When preserving local interactions, between the robot and the environment is necessary, the

1More precisely, we may define a task space as a projection of configuration space for which we apriori know that
costs (other than transition costs) depend only on this task space.
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interaction mesh should be used. It is, however, possible to arbitrarily combine these repre-
sentations if, for example, the task requires both preserving the nature of interaction as well as
planning a wrapping motion (see Section 5.3).

3.3 End-state posterior estimation

Probabilistic inference in the full factor graph given in Fig. 6 would require joint messages
over configuration and topology-based variables or loopy message passing. We approximate
this inference problem by a stage-wise inference process:

1. We first focus on approximating directly an end-state posterior b̂(xT ) for the end-state
xT which fulfils the task defined in configuration space. We explain the method used for
this below.

2. Accounting for the coupling of this end-state posterior to the topology-based represen-
tation, we compute a trajectory posterior in topology-based space.

3. We then project this down to the joint level, using AICO in configuration space coupled
to the topology-based space via factors introduced above.

Clearly this scheme is limited in that the initial inference in topology space only accounts for
the task at the final time step. To overcome this limitation, we would have to iterate inference
between levels. For the problems investigated in our experiments, the approximation scheme
above is sufficient.

End-state posterior estimation computes an approximate belief b̂(xT ) ≈ P (xT | x0, z0:T =1)
about the final state given the start state and conditioned on the task. This approximation
neglects all intermediate task costs and assumes linear Gaussian system dynamics of the form

P (xt | xt-1) = N(xt | Atxt-1 + at,Wt) . (13)

We integrate the system dynamics,

P (xT | x0) =
∑
x1:T -1

T∏
t=1

P (xt |xt-1) , (14)

which corresponds to the grey arc in Fig. 6. For stationary linear Gaussian dynamics, we have

P (xT |x0) = N(xT |ATx0+

T -1∑
i=0

Aia,

T -1∑
i=0

AiWA
′i
) , (15)

where superscript on A stands for a power of matrix, defined iteratively Ai = A ∗ Ai−1. To
estimate b̂(xT ), we condition on the task,

P (xT | x0, z = 1) =
P (zT =1 | xT ) P (xT | x0)

P (zT =1 | x0)
. (16)

Since we assume P (xT | x0) to be Gaussian, using a local Gaussian approximation of the task
P (zT =1 | xT ) around the current mode of b̂(xT ), P (xT | x0, z = 1) can be approximated with
a Gaussian as well. We iterate this by alternating between updating the end-state estimate
b̂(xT ) and re-computing the local Gaussian approximation of the task variable. A Levenberg-
Marquardt type damping (depending on monotonous increase of likelihood) ensures robust
and fast convergence.
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4 Generalisation and re-mapping using a topology-based space

The optimal control approach presented in the previous section exploits the additional topology-
based space to generate an optimal trajectory (and controller). However, the computed opti-
mal trajectories may no longer be valid when there is a change in the environment, e.g. the ob-
stacles have moved. In order to cope with this issue, we need a dynamic replanning method.
The topology-based representations are invariant to certain changes in the environment. The
replanning at the topology level is therefore not necessary when the representation generalizes
the desired motion. We propose a per-frame re-mapping approach in which the optimal tra-
jectory in the topology-based representation y∗0:T is inverse-mapped to the configuration space
according to the novel condition of the environment.

Technically, this is done by computing the configuration of the system per-frame such that
the remapping error from the original optimal topology-based trajectory y∗0:T is minimized.
However, topology-based representations such as the writhe matrix or the interaction mesh
are very high-dimensional—often higher dimensional than the configuration space itself. This
is in strong contrast to thinking of y∗0:T as a lower dimensional task space like an end-effector
space. Therefore, following y∗0:T exactly is generally infeasible and requires a regularisation
procedure that minimizes the 1-step cost function:

f(qt+1) = ||qt+1 − qt − h||2 + ||φ(qt+1)− y∗||2C , (17)

argmin
qt+1

f(qt+1) = qt + J](y∗ − yt) + (I − J]J)h (18)

with J] = J>(JJ>+ C-1)-1

where C describes a cost metric in y-space.
For the case of the interaction mesh, we mentioned the relation of a squared metric C in

M -space to the deformation energy. Therefore, using the per-frame remapping to follow an
interaction mesh reference trajectoryM∗0:T essentially tries to minimize the deformation energy
between the reference M∗t and the actual φ(qt) at each time step. This implies generalizing
to new situations by approximately preserving relative distances between interacting objects
instead of directly transferring joint angles. In conjunction with the use of feedback gains, the
methodology proposed here is able to cope with dynamic environments (see Section V-C) and
bounded unpredictable changes.

The bottleneck for a feedback controller using this methodology is forwards mapping of
the topology-based representations. The forward mapping of the winding numbers has the
computational complexity of O(n), n being the number of linear segments approximating the
curve being wound. Computing the writhe coordinates requires O(nm) number of operations
(each operation is defined by Equation 1), where n and m are number of segments of the two
kinematic chains respectively. Computing the interaction mesh has the computational com-
plexity of O(2n) where n is the number of vertices of the mesh. The performance is therefore
mainly defined by granularity of the approximation of the geometry of the robot and the en-
vironment. The experiment in Section 5.2 shows that computation overhead (e.g. the average
running time is about 10 seconds on standard 4 core 2.40GHz computer with 4 GB memory)
becomes affordable when the task is relatively complex. On the other hand, the experiments
in Section 5.3 and Section 5.4 show that an interaction mesh with a small number of vertices
can be used in a feedback loop to provide real time control.
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5 Experiments

5.1 Paper folding using winding numbers

Figure 7: Initial (left) and final (right) state of simulation of box folding using winding numbers
representation. The two skeletons that are being wound around the centre of the box are
overlaid over the sides of the box.

Our first experiment is a toy example of how topology-based representations can be used to
solve the planning problem. Being the most intuitive topological representation, the winding
number essentially captures a degree of windedness of a chain around a central point. In order
to demonstrate the elegance and simplicity of this abstraction, we simulated a folding a box
from layout experiment (See Fig. 7). Instead of controlling all joint angles directly (although
trivial in this case), we set only two scalar goals for our optimization problem — degrees of
twist for the two chains. Close up or folding motion is then achieved by the same algorithm
as in other experiments — approximate inference in dynamic Bayesian network. Winding
number has good generalization properties (e.g. it is invariant w.r.t. number of elements in
chain) and can be used in arbitrary combination with other topological or geometrical goals.
The video of this experiment is included in Extension 1.

5.2 Manipulator unwrapping and reaching using writhe space

As an example of a possible application of the writhe space abstraction, we simulated a ma-
nipulator, consisting of 20 segments and a hand with three fingers, making in total 29 DoF.
Initially this rope-like manipulator is twisted two and a half times around a striped pole, giv-
ing us approximately 900◦ of writhe density (See Fig. 8(a)).

The task is to plan a trajectory which should grasp the black cylinder without colliding with
the striped stick (Fig. 8(a),8(b) and video included in Extension 1). Clearly, a local feedback
approach using Inverse Kinematics will experience failure in this task. As a result AICO with
end-effector task variable and collision avoidance task variable is unable to converge to a so-
lution due to a deep local minima in this space. To solve this planning problem in end-effector
space, we have to use exploratory motion planning methods such as RRTs. On the other hand,
a successful trajectory can be well captured as a linear interpolation in writhe space and pro-
jected back to the configuration space using the coupling described in Section 2.1. Fig. 8(e)
illustrates an example of a unwrapping trajectory in topology-based space when all rows of
writhe matrix are summed up into one column, representing the current state.

Hierarchical AICO conditioned on the end-state in writhe space yT was able to generate
locally optimal trajectories, consisting of 50 time steps, in only few iterations, requiring a rela-
tively small number of expensive collision checks (less than 1000). Comparison with Rapidly-
exploring Random Tree (RRT) planning for this reaching task revealed a dependence of the
performance on distance between end-effector and object position. Moreover, total costs of
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Figure 8: The experimental task is to grasp the object without collisions. Corresponding writhe
matrices (c, d) are depicted below the configurations (a, b) - the darkness represents the am-
plitude of the writhe value. Each row in writhe space evolves over time as shown in (e).

obtained trajectories were on average 100 times higher than those generated with the local
optimizer. Here, the end-state in configuration space qT was given as a target for RRTs.

For more systematic evaluation of our planning platform, we have designed a sequence
of unwrapping trajectories - gradually increasing the relative angle to be unwrapped. This
sequence of final states was given as goals to uni- and bi-directional RRT planners. The results
demonstrate that for simple trajectories (e.g. in case of nearby lying objects) all methods have
no difficulties, whereas starting with one and a half of full twist, unidirectional search fails
and bi-directional significantly slows down. (See Fig. 9.)

In this comparison, the RRTs solved a somewhat simpler problem than our system: For the
RRTs we assumed to know the final state qT in configuration space – we take our final pose
estimate from Section 3.3 as the target qT for RRTs. This is in contrast to our planning platform,
where we use the final pose estimate only to estimate a final topology-based state yT and then
use the hierarchical AICO to compute an optimal trajectory (including an optimal qT ) condi-
tioned on this final topology-based state. Therefore, the RRT’s problem is reduced to growing
to a specific end state. We applied the standard method of biasing RRT search towards qT by
growing the tree 10% of the time towards qT instead of a random sample of the configuration
space. Knowing qT also allowed us to test bi-directional RRTs, each with 10% bias to grow
towards a random node of the other tree. Even under such a simplified condition, the RRT-
based planners require significantly more computation for interpolating the configurations
when complex writhing is required. Further, RRTs output non-smooth paths whereas AICO
produces (locally) optimal dynamic trajectories since it minimizes dynamic control costs. 2

2AICO can also be applied on the kinematic level, where xt = qt and with the control ut = qt+1− qt being just the
joint angle step. This would reduce the computational cost further.
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Figure 9: Performance of planning algorithms for unwrapping task. Computational time is
proportional to the number of collision detection calls.

5.3 Dynamic reaching through a loop using writhe and interaction mesh

Writhe space is a suitable representation for tasks that involve interactions with chains—or
loops—of obstacles. We have altered the task from Section 5.2 to reaching through a hollow
box, where the rim of the box forms a loop of segments, see Fig. 10(b). Classically this problem
would be addressed by exploiting the end-effector position collision avoidance. This is, how-
ever, a classical example of a bug trap problem in configuration space. The advantage of using
writhe as a description of the interaction is in defining the task as a relative configuration of
the robot and the loop—this relative description remains effective also when the box is moved
dynamically. The writhe matrix corresponding to the final configuration peaks around the last
link which passes through the box (see Fig. 1 and 10). This target in writhe space does not
uniquely define the task for all arbitrary positions of the box (unlike the unwrapping task in
Section 5.2) which allows for defining sub-goals such as precisely controlling the endeffector
position via another task variable. We can therefore achieve accurate manipulation within a
spatially constrained dynamic environment.

In this demonstration we use interaction mesh representation in addition to writhe coor-
dinates which is well suited to represent reaching movement while maintaining relative posi-
tions of robot links w.r.t. the obstacles. In this case, the explicit collision avoidance was then
superfluous. We coupled all three representations—writhe, interaction mesh, and joint config-
uration space—using AICO (see Equation 12) by extending the graphical model to efficiently
generate motions for varying positions of the obstacles.

The computation of the optimal trajectory using this methods required 3 to 6 AICO itera-
tions on average. We then used the same target in writhe space and randomly displaced the
hollow box. Our method was able to plan collision-free trajectories for all test scenarios. We
compared our method with AICO using only classical representations: end-effector position
and collision avoidance. This required 20 to 30 AICO iterations on average and in 90% of
the trials the algorithm failed to find a collision-free path. The remaining 10% of trials were
successful because the the box was placed in a position where the bug trap problem did not
manifest, e.g. the open side of the box was facing the robot.

We also tested online remapping as described in Section 4 using both the writhe and inter-
action mesh space to test behavior of the system when the box position is changed dynamically
on the fly. For this, the position of a hollow box defining the loop was tracked using magnetic
motion tracking system. We initially recorded the full trajectory in the topology-based space in
a static environment. We then dynamically updated the robot’s position in real time. We were
able to reach inside of the hollow box without any collisions even when the box was moving.
The video of this experiment is included in Extension 1.

16



Target for entering loop in writhe space

Robot segments

L
o

o
p

 s
e

g
m

e
n

ts

 

 

1 2 3

1

2

3

4

0

0.05

0.1

0.15

0.2

(a) (b)

Figure 10: (a) Writhe space target for passing the last link of a robotic arm through a loop. (b)
The configuration corresponding to the target in Writhe space. The loop was built by connect-
ing the corners of the rim of the hollow box. The chains representing the robot and the obstacle
are overlaid.

5.4 Motion generalisation using interaction mesh space

Finally, we present an experiment in which we show examples of motion generalisation when
using topology-based representations. We used the KUKA LWR4 arm with 7 DOF and created
a scenario common for factory environment where the arm is supposed to reach between items
moving on a conveyor belt. The obstacle was a wall with two windows moving in front of the
robot and obstructing the path to the goal (See Fig. 11(d)). We computed the initial trajectory
in the static environment using AICO and the classical representations including end-effector
position and collision avoidance. These representations are suitable for the simplified case
where one of the windows is located in front of the robot. We used a forward mapping as
defined in Eq. 6 to compute the reference trajectory in interaction mesh space.

We then used the remapping technique described in Section 4 to update the motion in real
time while still fulfilling the task. Fig. 11(b) shows that the interaction mesh generalizes the
motion well. When the wall moves to the left, the path eventually gets obstructed and the task
cannot be fulfilled any more. We detected this by measuring the distance of the end-effector
from the goal and using collision detection. In this case, re-planning is necessary. Fig. 11(c)
shows the result of replanning.

In the second part of this experiment, we replaced the KUKA LWR4 arm with generic 7DOF
manipulator with different kinematic structure. In order to demonstrate that plans in topology
space can generalize across kinematic differences, we have manually defined correspondences
of the landmarks points between the KUKA LWR4 and the generic manipulator. Fig. 12 shows
that the result of re-using the plan in topology space with a modified inverse mapping. The
higher DOF manipulator is able to also perform the task when the wall/opening is moving.
The video of this experiment is included in Extension 1.

6 Conclusions

Different motion representations have different strengths and weaknesses depending on the
problem. For certain interaction problems, there exist suitable topology-based representations
in which the interaction can be described in a way that generalizes well to novel or dynamic sit-
uations (as with the interaction mesh), or where local optimization methods can find solutions
that would otherwise require inefficient global search (as with the writhe representations).
However, considering motion planning only in a topology-based representation is insufficient
in order to additionally account for tasks and constraints in other representations.
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(a) (b) (c)

(d)

Figure 11: (a) Initial plan for the robot arm reaching for a goal (sphere) avoiding the wall
(striped). (b) Remapping the interaction mesh trajectory after moving the wall to the left. (c)
Replanning when the generalisation fails due to the wall being moved too far from its original
position. (d) Real time remapping on the real robot.

Previous work with such representations has only tested basic approaches for inverse map-
ping of fixed topological trajectories to the joint configuration [5, 8, 26]. In contrast, in this pa-
per, we presented methods that combine the different representations at the abstract and lower
level for motion synthesis. For instance, the reaching task in an end-effector space is coupled
with a writhe space that allows a local optimization method to generate an unwrapping-and-
reaching motion. Considering such a problem solely in joint configuration and end-effector
space leads to “deep local minima” that are practically infeasible to solve—as our comparison
to RRTs in Section 5.2 demonstrated. Considering such a problem only in writhe space would
not address the actual reaching task.

We chose to formulate our approach in the framework of optimal control as an approx-
imate inference problem since this allows for a natural extension of the graphical model to
incorporate multiple representations. Alternative formulations are possible, for instance as
a structured constraint optimization problem (MAP inference in our graphical model) that
could be solved by methods such as SNOPT. What we coined as a motion prior in topology-
based spaces would here correspond to pseudo control costs for transitions in topology-based
space. Which formulation will eventually lead to computationally most efficient algorithms
is a subject of active research. As an outlook, we aim to apply the proposed methods for
dexterous robot manipulation (including grasping) of more complex, articulated or flexible
objects, where we believe that multiple parallel representations will enable more robust and
generalizable motion synthesis strategies.
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Figure 12: (left) Kinematic chain of the KUKA LWR4 robot used for planning. (right) Remap-
ping the reaching trajectory onto robot with different kinematics. The points used for defining
the interaction mesh and the corresponding part of the kinematic chain of the robot are over-
laid.
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7 Appendix A: Index to Multimedia Extensions
The multimedia extensions to this article can be found online by following the hyperlinks from www.ijrr.org.

Extension Type Description
1 Video Experiments demonstrating the advantages of using topology-based

representations for motion planning.
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