
Noname manuscript No.
(will be inserted by the editor)

Fast Motion Planning from Experience: Trajectory
Prediction for Speeding up Movement Generation

Nikolay Jetchev · Marc Toussaint

Received: date / Accepted: date

Abstract Trajectory planning and optimization is a

fundamental problem in articulated robotics. Algorithms

used typically for this problem compute optimal trajec-

tories from scratch in a new situation, without exploit-

ing similarity to previous problems. In effect, extensive

data is accumulated containing situations together with

the respective optimized trajectories—but this data is

in practice hardly exploited. This article describes a

novel method to learn from such data and speed up

motion generation, a method we denote Trajectory Pre-

diction.

The main idea is to use demonstrated optimal mo-

tion trajectories to quickly predict appropriate trajecto-

ries for novel situations. These can be used to initialize

and thereby drastically speed-up subsequent optimiza-

tion of robotic movements and improve the convergence

behavior of a conventional motion optimizer. Our ap-

proach has two essential ingredients. First, to generalize

from previous situations to new ones we need an appro-

priate situation descriptor – we construct features for

such descriptors and use a sparse regularized feature

selection approach to find well-generalizing features of

situations. Second, the transfer of previously optimized

trajectories to a new situation should not be made in

joint angle space – we propose a more efficient task

space transfer of old trajectories to new situations.

We present extensive results in simulation to illus-

trate the benefits of the new method, and demonstrate

it also with real robot hardware. Our experiments with

a reaching and obstacle avoidance task, and an object

grasping task, show that we can predict good motion

Nikolay Jetchev and Marc Toussaint are with Machine
Learning and Robotics Lab, FU Berlin, Arnimallee 7, 14195
Berlin, Germany
E-mail: nikolay.jetchev@fu-berlin.de, marc.toussaint@fu-
berlin.de

trajectories in new situations for which the refinement

is much faster than an optimization from scratch.

Keywords motion planning · machine learning ·
motion representation · articulated robotics

1 Introduction

Motion planning is a fundamental issue in articulated

robotics. It is a crucial component for many tasks, the

most basic of which, reaching to a target location with-

out hitting obstacles, will be used as example applica-

tion in this work. This article describes a method that

can speed up motion planning by improving the ini-

tialization used in stochastic optimal control planners.

This is a sensitive aspect of such local planners: they

can fall in multiple local optima and a good solution

is not guaranteed. Using the structure of encountered

environments can provide hints about movements that

are likely to be good in a given world configuration.

The animal and human ability to generate trajecto-

ries quickly is amazing. In typical every-day situations

humans do not seem to require time for motion plan-

ning but execute complex trajectories instantly. This

suggests that there exists a “reactive trajectory policy”

which maps “the situation” (or at least motion rele-

vant features of the situation) to the whole trajectory.1

Such a mapping (if optimal) is utterly complex: the out-

put is not a single current control signal but a whole

trajectory which, traditionally, would be the outcome

of a computationally expensive trajectory optimization

1 This is not to be confused with a reactive controller which
maps the current sensor state to the current control signal—
such a (temporally local) reactive controller could not explain
trajectories which efficiently circumvent obstacles in an an-
ticipatory way, as humans naturally do in complex situations.

2 Nikolay Jetchev, Marc Toussaint

process accounting for collision avoidance, smoothness

and other criteria. The input is the current situation, in

particular the position of relevant objects, for which it

is unclear which representation and coordinate systems

to use as a descriptor.

The goal of the current work is to learn such an (ap-

proximate) mapping from data of previously optimized

trajectories in old situations to good trajectories in new

situations. We coin this problem Trajectory Prediction

(TP). In Section 2 we will examine the basics of motion

planning as optimization task, and give an overview of

TP and how it is coupled with planning. Afterwards

we will proceed with Section 3 where we examine what

representations of states allow efficient generalization

of movements between situations. In Section 4 we will

present the Inverse Kinematics (IK) Transfer operator

we use, and discuss what task space representations are

appropriate for such transfer. The way we learn a pol-

icy used for predicting situation-appropriate trajecto-

ries will be explained in Section 5. In Section 6 we will

discuss connections between TP and imitation learn-

ing. Finally, in the experimental Section 7 we will show

our results for several simulated robot motion planning

scenarios.

The main contributions of our work can be summa-

rized as follows:

– the TP method for speeding up planning by learn-

ing a predictive model of motions appropriate to be

transferred to a new situation

– the definition of representations that allow accurate

mapping of situation to movement

– the notion of IK Transfer in task space, allowing

robust generalization of the predicted movements

between different situations

– quantitative results in three different motion plan-

ning tasks showing how TP can speed up motion

planning

We finish the current introduction with a brief overview

of relevant motion planning and learning methods.

1.1 Related Motion and Trajectory Generation

Methods

1.1.1 Local Planning Methods

Movement generation, one of the most basic robotic

tasks, is often viewed as an optimization problem that

aims to minimize a cost function. There are many differ-

ent methods for local trajectory optimization which use

the cost gradient information for minimization. Popular

approaches use spline-based representation and gradi-

ent descent (Zhang and Knoll 1995), covariant gradient

descent (Ratliff et al 2009), Differential Dynamic Pro-

gramming (DDP) described by Dyer and McReynolds

(1970); Atkeson (1993), a variant of DDP called iterated

Linear Quadratic Gaussian (iLQG) by Todorov and Li

(2005), and Bayesian inference (Toussaint 2009). Such

methods are usually fast and can obtain movements of

good quality, suitable for control of complex hardware

robots with many DoF. However, these local methods

can get stuck in local optima. TP aims to predict di-

rectly good trajectories such that local planners only

need to refine them.

1.1.2 Rapidly-exploring Random Trees (RRT) and

Other Sampling Methods

Another approach for finding good movement trajecto-

ries is sampling to find obstacle free paths in the config-

uration and work space of the robot, i.e. finding an ap-

propriate initialization of the movement plan. Popular

methods for planning feasible paths without collisions

are RRTs Bertram et al (2006) and probabilistic road

maps Kavraki et al (1995), where random sampling is

used to build networks of feasible configuration nodes.

These methods are powerful and can find difficult solu-

tions for motion puzzles, but also have the disadvantage

to be too slow for high-dimensional manipulation prob-

lems. Building an RRT takes some time, and a path to

the target in such a network often requires additional

optimization to derive an optimal robot trajectory. In

contrast, TP is much faster in providing an initial mo-

tion, and is designed also to work well in conjunction

with a motion planner for refinement.

1.2 Previous Use of Machine Learning Techniques to

Speed up Planning

1.2.1 Transfer in Reinforcement Learning

Concerning our problem of learning from previous op-

timization data, there exist multiple branches of re-

lated work in the literature. In the context of Rein-

forcement Learning the transfer problem has been ad-

dressed, where the value function (Konidaris and Barto

2006) or directly the policy (Peshkin and de Jong 2002)

is transferred to a new Markov Decision Process. Konidaris

and Barto (2006) discussed the importance of represen-

tations for the successful transfer. Although the prob-

lem setting is similar, these methods are different in

that they do not consider a situation descriptor (or fea-

tures of the “new” MDP) as an input to a mapping

which directly predicts the new policy or value func-

tion.

Fast Motion Planning from Experience: Trajectory Prediction for Speeding up Movement Generation 3

1.2.2 Robot Motion Databases and Learning from

Demonstration

Related work with respect to exploiting databases of

previous trajectories has been proposed in the context

of RRTs. Branicky et al (2008) constructed a compact

database of collision free paths that can be reused in fu-

ture situations to speed up planning under the assump-

tion that some of the previous paths will not be blocked

by future obstacles and can be reused for fast planning.

Martin et al (2007) attempted to bias RRTs such that

after planning in a set of initial environments, the ob-

stacles can be rearranged and previous knowledge will

be used for faster replanning in the new scene; an envi-

ronment prior, that visits with higher probability states

visited in previous trials, is used to speed up planning

and use less tree nodes to achieve the final goal. In

both cases, the notion of our situation descriptor and

the direct mapping to an appropriate new trajectory is

missing.

Another interesting way to exploit a database of pre-

vious motions is to learn a “capability map”, i.e., a rep-

resentation of a robot’s workspace that can be reached

easily, see Zacharias et al (2007). While this allows to

decide whether a certain task position can be reached

quickly, it does not encode a prediction of a trajectory

in our sense.

Stolle and Atkeson (2007) predict robot locomo-

tion movements for navigation in new situations us-

ing databases of state-action pairs to make small steps

ahead. In a sense, such use of a database presents action

primitives extracted from data similar to TP. However,

unlike TP, Stolle and Atkeson (2007) adapt their algo-

rithm specifically to the locomotion navigation domain

by combining local step planning with global graph-

based search, and does not learn data-driven situation

feature representations.

The field of imitation learning (Argall et al 2009)

encompasses many approaches using demonstrated mo-

tions to learn behaviors: policies that map from situa-

tions to actions. The focus is usually to extract motions

from human demonstration of different tasks which can

be later repeated “exactly” by robots, e.g. see Cali-

non and Billard (2005); Shon et al (2007) .The demon-

strations, often complex gestures or manipulations, are

to be repeated accurately, possibly with some robust-

ness to perturbation. However, generalization to differ-

ent environments and collision avoidance with obstacles

there is rarely considered in the imitation process. This

is not surprising, since acquiring data in an interac-

tive way is costly and limits the variation of situations

and motions that can be encountered. In Section 6 this

comparison between TP and imitation learning will be

discussed in more detail.

TP approaches motion planning problems in a frame-

work to improve the convergence of local motion plan-

ners by predicting situation-appropriate motions. TP

predicts whole trajectories at once, not requiring addi-

tional global search routines. It seems reasonable that

good paths will go around obstacles, and TP can po-

tentially provide a way to start the motion planning

task with a path avoiding collisions, similar to RRT.

However, our prediction method will not be limited to

obstacle avoidance only: TP will predict motion trajec-

tories that improve the convergence of local planners

and deals with all aspects implicit in a low cost.

2 Planning Motion and Predicting Motion

We assume that the desired behavior of the robot is

to generate a motion trajectory good for some spec-

ified task. As mentioned in the introduction, such a

desired trajectory can be calculated by a planner mod-

ule minimizing a cost function. One can think of the

behavior of such a planner (and some heuristic for ini-

tialization) as a policy mapping a situation x to a joint

trajectory q. We propose to use experience in the form

of demonstrated optimal trajectories in different situa-

tions as initialization for local planners, resulting in a

better movement policy. This section will proceed by

first describing the planning by cost function motion

model and then formalizing TP.

2.1 Robot Motion Planning: a Basic Model

Let us describe the robot configuration at time t as qt ∈
RN , the joint posture vector. We define q = (q0, .., qT)

as a movement trajectory with time horizon of T steps.

In a given situation x, i.e., for a given initial posture q0
and the positions of obstacle and target objects in this

problem instance (we will formally define descriptors

for x in Section 3), a typical motion planning problem

is to compute a trajectory which fulfills different con-

straints, e.g. an energy efficient movement not colliding

with obstacles. We formulate this as an optimization

problem by defining a cost function

C(x, q) =

T∑
t=1

gt(qt) + ht(qt, qt−1) . (1)

that characterizes the quality of the joint trajectory in

the given situation and task constraints. We will spec-

ify such a cost function explicitly in our experiments

section. Generally, g will account for task targets and

collision avoidance, and h for control costs.

4 Nikolay Jetchev, Marc Toussaint

A trajectory optimization algorithm essentially tries

to map a situation x to a trajectory q which is optimal,

x 7→ q∗ = argmin
q

C(x, q) . (2)

For this we assume to have access to C(x, q) and local

(linear or quadratic) approximations of C(x, q) as pro-

vided by a simulator, i.e., we can numerically evaluate

C(x, q) for given x and q but we have no analytic model.

To arrive at the optimal trajectory q∗ (or one with a

very low cost C), most local optimizers start from an

initial trajectory q̃ and then improve it. We call O the

local optimizer operator and write q∗ = Ox(q̃) when

we optimize for a specific situation x.

Optimizing C is a challenging high-dimensional non-

linear problem. Many of the movement optimization

methods are sensitive to initial conditions and their

performance depends crucially on it. For example, ini-

tial paths going straight through multiple obstacles are

quite difficult to improve on, since the collision gradi-

ents provide confusing information and try to jump out

of collision in different conflicting directions, as men-

tioned by Ratliff et al (2009). RRT and sampling meth-

ods for motion planning are used for finding good paths,

but with the drawback of higher computational burden:

construction of tree with collision free steps and subse-

quent dynamic optimization of a whole trajectory from

one path in the tree.

2.2 Trajectory Prediction: Definition and Overview of

our Algorithm

In this section we first define the trajectory prediction

problem in general terms and outline how we break

down the problem in three steps: (i) finding appropri-

ate task space descriptors, (ii) transfer of motion proto-

types to new situations, and (iii) learning a predictive

model of which motion prototype is appropriate to be

transferred to a new situation.

The goal of TP is to learn an approximate model

of the mapping (2) from a data set of previously op-

timized trajectories. The dataset D comprises pairs of

situations and optimized trajectories,

D = {(xi, qi)
d
i=1} , qi ≈ argmin

q
C(xi, q) . (3)

The full sequence involved in TP, which we will explain

below, is the following:

x→ î→ Txxî
qî → OxTxîx

qî = q∗ (4)

TP takes as input an appropriately represented situa-

tion descriptor x, see Section 3. We then predict the

index î of a motion from D to be executed and transfer

it with the operator T from situation îx to x, described

in Section 4. We can view the subsequence

f : x→ Txîx
qî (5)

as the policy mapping situation to motion, and will ex-

plain it in Section 5. Finally, the above TP sequence

ends with applying the planning operator Ox. Predic-

tion without any subsequent optimization would cor-

respond to pure imitation, and our method is not de-

signed with such aim. TP is inherently coupled with a

planner that minimizes the cost function C, so the pre-

diction policy is designed to speed-up such a planner.

As an aside, this problem setup generally reminds

of structured output regression. However, in a struc-

tured output scenario one learns a discriminative func-

tion C(x, q) for which argmin
q

C(x, q) can efficiently be

computed, e.g. by inference methods. Our problem is

quite the opposite: we assume argmin
q

C(x, q) is very

expensive to evaluate and thus learn from a data set of

previously optimized solutions. A possibility to bring

both problems together is to devise approximate, ef-

ficiently computable structured models of trajectories

and learn the approximate mapping in a structured re-

gression framework. But this is left to future research.

In the next sections we will continue with detailed

description of the elements of TP.

3 Situation Representations and Descriptor

A typical scenario for articulated motion generation is

a workspace filled with objects and a robot. A situa-

tion (or problem instance) is fully specified by the ini-
tial robot posture q0 and the positions of obstacles and

targets in this problem instance. There are a lot of pos-

sible features we can construct to capture relevant sit-

uation information. For instance, positions of obstacles

could be given relative to some coordinate system in

the frame of some other object in the scene. We should

expect that our ability to generalize to new situations

crucially depends on the representations we use to de-

scribe situations.

We present two different approaches for modeling

x, appropriate for scenarios with different assumptions.

This section will proceed by describing these two mod-

els.

3.1 General Geometric Descriptor

Our first approach is to define a very high-dimensional

and redundant situation descriptor which includes dis-

tances and relative positions w.r.t. many different frames

Fast Motion Planning from Experience: Trajectory Prediction for Speeding up Movement Generation 5

of reference. Training the predictive function then in-

cludes selecting the relevant features. Assume we have

a set of b different 3D objects (i.e. landmarks) in the

scene which might be relevant for motion generation:

A = (a1, .., ab) with each aj ∈ R3. We create features

by examining the geometric relations between pairs of

such objects. For b such landmarks we have b̂ = b(b−1)

such pairs. For each pair i = (i1, i2) ∈ {1, ..., b̂} we

measure the 3D relative difference between landmarks

in A in the frame of ai2 as pi = (pxi , p
y
i , p

z
i) and its norm

di = ‖pi‖. We also define the azimuths of the three axes

as ψi = {arccos(pxi /di), arccos(pyi /di), arccos(pzi /di)}.
We gather this basic geometric information in the 7 di-

mensional vector φi = (pi, di, ψi). The final descriptor

x comprises all these local pairwise vectors:

x = (φ1, ..., φb̂) ∈ R7b̂ (6)

Even more complex geometric descriptors are possible,

but the choice of (6) turned out to be sufficient in our

experiments. Given such a descriptor we can use a fea-

ture selection technique to infer from the data which of

these dimensions are best for trajectory prediction in

new situations. In the experimental Section 7 we will

show how extracting a sparse representation from this

redundant description provides an interesting explana-

tion of the important factors in a situation giving rise

to different motions.

3.2 Voxel Descriptor

The approach to model directly the distances between

object centers is appropriate for situations with few ob-

stacles with simple geometries, but it can have issues

with scaling when more objects are present. We also

present an extension appropriate for cluttered scenes

where obstacles are modeled from point clouds of 3D

sensor data, which can handle multiple objects easily.

We call this a sensor driven approach to trajectory pre-

diction. Since modeling each of these as an object with

coordinates in the descriptor x is impractical, we use

here voxel information to make the descriptor x.

We assume that a sensor (LIDAR or stereovision)

is available that provides information in the form of a

point cloud from detected objects, which can be then

converted to a voxel representation of a scene, see Elfes

(1989); Nakhaei and Lamiraux (2008). This informa-

tion representing the obstacles is crucial for the correct

task execution, an assumption appropriate for cluttered

scenes and navigation. Given a set of laser cloud points

P = {pi}, we construct a 3D grid system V = {vi} of

voxels. Each voxel is identified with its coordinates and

its occupancy probability p(vi) ∈ [0, 1]. The procedure

for calculating p(v) is straightforward:

1. Loop through all available measurements pi
2. Loop through all voxels vj
3. If pi ⊂ vj set p(vj) = 1− 0.9 ∗ (1− p(vj))

The idea is that for every measurement point within

some voxel bounds the occupied space probability of the

voxel increases. Elfes (1989) and Nakhaei and Lamiraux

(2008) use sensor models with state distributions for

free, unknown and occupied voxel space, but for our

tests only the occupied space probability model suffices

for collision avoidance.

To better explain the voxel descriptor, we will de-

scribe how it will look concretely in our experiments.

We define two such voxel grids, 15 voxels across each di-

mension, where each voxel is a cube with side 7cm. The

first grid is centered at the center of the workspace, the

second on the target location. Each voxel grid V has can

be described as a vector of dimension 153 = 3375 con-

taining the values of all its cells p(vi). We can compress

a voxel grid using standard Principal Component Anal-

ysis (PCA) to the 200 most significant dimensions, and

thus have the following grid descriptor v = V P ∈ R200

where P is the projection matrix calculated by PCA.

By taking only the columns of P with highest variance

one can get a relatively good variance preserving com-

pression of the voxel grids. In Figure 1 we show what

is the result of the PCA transformation used on the

voxel grid data. The PCA coefficients for each compo-

nent, the column vectors of the PCA projection matrix

P which have the same dimension as the uncompressed

voxel grids, can be interpreted as characteristic terrains

of the voxel grid. Larger values indicate larger proba-

bility that a terrain is occupied. Note that the PCA

decomposition for voxel data is useful to discriminate

between world configurations and represent general no-

tions like whether the left or right side of the workspace

is free. A lot of the detailed voxel information about

the world is lost by PCA, but TP is more efficient with

lower dimensional descriptors.

The final situation descriptor is than:

x = {d, v1, v2} ∈ R413 (7)

The entries v1, v2 are the two PCA compressed voxel

grid descriptors, and d ∈ R13 contains additional scene

information, the initial 7D robot arm joint position, the

3D endeffector position and target position.

4 Task Space Trajectory IK Transfer

In this section we will describe the exact way in which

we repeat and adapt a motion from the database to a

random new situation.

6 Nikolay Jetchev, Marc Toussaint

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

Fig. 1 The first 4 PCA components, visualized in the square
plain of size 15x15 voxels from a slice 7cm above the center of
the grid. Red areas are more likely to be occupied, and blue
areas are probably free.

4.1 Motion Representation for Output Trajectory

Task Space

As we mentioned in section 2 we will motion trajectories

transferred via some task space. The projection y of a

trajectory q into task space is defined as y = φx(q),

where φx is a kinematic mapping (depending on the

situation x) applied to each time slice, with a task space

for output.

Some obvious choices of task spaces are the joint

angle space Q (mapped by identity) and Y , the space

of world coordinates of robot hand endeffector (mapped

by the hand kinematics). However, these have the draw-

back of not generalizing well - a simple change in a

world situation like translation of some object would

make a movement prototype in such space unfeasible

for the changed situation. A reasonable choice of task

space can ensure at least some degree of generalizing

ability in a new situation. For example, we would also

consider the task space Ytarget of coordinates starting in

a world frame centered on the target, and Yobst, a world

frame starting in the center of the largest obstacle in

the scenes we examined.

Our current approach to task space selection is to

test empirically task spaces that seem reasonable, and

to select the space that allows the best planner ini-

tialization. This is a similar approach to Muehlig et al

(2009).

The question of what are suitable representations

of a physical configuration, in particular suitable co-

ordinate systems, has previously been considered in a

number of works. Wagner et al (2004) discussed the ad-

vantages of egocentric versus allocentric coordinate sys-

tems for robot control, and Hiraki et al (1998) talked

about such coordinates in the context of robot and hu-

man learning.

4.2 The Transfer Operator

Suppose we want to transfer the joint motion q′ which

was optimal for situation x′. A task space trajectory

y = φx′(q′) needs to be transformed back to a joint

space trajectory q in order to initialize the local mo-

tion planner in a new situation x, see the sequence of

Equation (4). Simply repeating the old motion with IK

is likely to be problematic, e.g. motion targets and ob-

stacles change between situations. Therefore we use IK

with multiple task variables (cost terms from the plan-

ning cost function from Equation 1) to transfer motions

and adapt to new situations. We generate a motion for

each time slice t = 1...T by iteratively finding the next

steps

qt = φ−1x (qt−1, q
′
t) = argmin

q
CIK(x, q, qt−1, q

′
t) (8)

This next-step cost CIK is defined as

CIK(x, qt, qt−1, q
′
t) = g(qt) + h(qt, qt−1) + ‖φx(qt)− φx′(q′t)‖2

(9)

where q′t is the motion being transferred, and qt are

time slices of the old motion being transferred q′ and

the result of this transfer q.

In effect, φ−1x (qt−1, q
′
t) roughly follows in the cur-

rent state qt−1 the next state of the transferred motion

φx′(q′t) in task space. The terms h and g ensure that the

next steps correct for collisions and other terms of the

cost function from Equation (1), fitting the movement

to the new situation. The mapping φ−1x : (y, q0) 7→ q

projects the whole task space trajectory to a joint space

trajectory in situation x, applying the IK operator φ−1x

for each time step t, starting from q0.

The transfer operator is then the following function

composition:

Txx′q′ = φ−1x ◦ φx′(q′) (10)

Such a transfer gives our method better generalization

ability, since a motion which by itself is not optimal

for the motion task can still be followed in the new

situation will be followed and adapted with IK, and

can still lead to a good initialization.

For an illustration of the IK mapping φ−1x consider

a simplified example. Assume that h(qt, qt−1) = ‖qt −
qt−1‖2W , and g(qt) = ‖ϕx(qt) − ϕ∗x‖2C where ϕx is an-

other kinematic function with targets ϕ∗. The diago-

nal matrices C and W give the precision (i.e. weight-

ing) of the different cost terms. We linearize φx(qt) =

Fast Motion Planning from Experience: Trajectory Prediction for Speeding up Movement Generation 7

φx(qt−1)+J1(qt−qt−1) where J1 =
δφx(q)

δq
is the Jaco-

bian. Similarly, ϕx(qt) = ϕx(qt−1) + J2(qt − qt−1) and

J2 =
δϕx(q)

δq
. The optimal solution of Equation (8) with

this linearization is

Ĵ = [JT
1 J1 + JT

2 CJ2 +W]−1

qt = qt−1 + Ĵ [JT
1 (φx′(q′t)− φx(qt))

+ JT
2 C(ϕ∗ − ϕx(qt))]. (11)

5 Mapping Situation to Motion

Once we have defined appropriate situation descriptors

and the IK transfer method of adapting motions from

one situation to another, we can proceed to describe the

mapping f predicting “situation-appropriate” movements

that lead to quick motion planner convergence.

5.1 Gathering Data Demonstrating Behavior

The first step toward learning f is the gathering of op-

timal trajectories in different random situations. The

dataset D comprises pairs of randomly generated situ-

ations x and trajectories q, optimized offline to conver-

gence with a local planner with default initialization:

D = {(xi, qi)
d
i=1} (12)

Allowing the local planner to run for lots of iter-

ations and time makes getting an optimal trajectory

very likely, but failure is still possible, as our results

will indicate later. For the set D we retained only good

movements and discarded the failed attempts.

Then we can gather data D′ for the quality of the

initialization using the new actions in different situa-

tions, and how much additional refinement they need

from the planner. We measure this “refinement cost” as

F (x, q) = C(x,Oj
xq) (13)

Here Oj
xq is the trajectory vector found by the opti-

mizer after j iterations, starting from initialization q,

and j is a constant. Such a definition of F is a heuristic

to quantify the effect of initialization on convergence

speed looking only at few planner iterations, which is

possible because the planners we use iteratively improve

the solution making small steps.

The cross initialization dataset D′ is defined as:

D′ = {(xj , xi, F (xj , Txjxiqi)} , xj ∈ Dx, (xi, qi) ∈ D
(14)

That is, we evaluate the quality of initialization in

situation xj of a database movement qi transferred

from xi, and this is the data we will use to learn a

good mapping f . The set Dx has a new set of situa-

tions where we examine the cost of transferred motions

from set D.

We can examine potentially the effect on conver-

gence speed of every optimal movement demonstrated

in the set D, but in the experiments section we will

also test using smaller representative sets of motions

(e.g. by using clustering) to select smaller subsets of D

with different motion types. This would be a compres-

sion of the trajectory sets allowing to evaluate a smaller

number of costs for initializations.

Creating D requires d = |D| planner calls until con-

vergence to a local optima. Creating D′ requires |Dx|d
planner calls, each of which takes j iterations, and can

be made faster by running for fewer iterations j to eval-

uate F .

A difference between the datasets D and D′ is due

to the different initializations used to create them. For

the set D we use the planners with default initialization

without experience of previous situations as a module to

get optimal movements for the different situations, and

retain only the successful runs. In the second dataset

D′ we use examples of good motions from set D, and

use IK transfer to adapt the trajectories(actions) for

better generalization between situations. We measure

the convergence cost with the measure F for a limited

amount of iterations.

Once we have gathered data in the set D′ as de-

fined in Equation (14), we can use it to learn the tra-

jectory prediction mapping from Equation (5). This is

a supervised learning problem, and the next subsec-

tions describe two possible approaches to learning the

mapping f . As preprocessing for all prediction meth-

ods, we rescale each dimension of the descriptors x in

[0,1] by subtracting the minimum and rescaling, which

improves performance of prediction methods.

5.2 Nearest Neighbor Predictor

We assume we start with a descriptor vector x, which

is potentially redundant and high dimensional. We as-

sume that similar situations have similar optimal tra-

jectories. However, the usual notion of similarity as the

negative Euclidean distance may not be the best for the

high dimensional situation descriptors we have defined.

We want to learn a similarity metric w in the situa-

tion descriptor feature space that selects appropriate

features. Our learning method will allow to retain the

most representative and compact dimensions, in addi-

tion to improving the trajectory prediction quality.

8 Nikolay Jetchev, Marc Toussaint

We define the situation similarity function as:

k(x, xi) = exp{−1

2
(x− xi)TW (x− xi)} (15)

W = diag(w2
1, .., w

2
s) , (16)

The nearest neighbor predictor f for x is

f(x) = Txxî
qî , î = argmax

i∈D
k(xi, x) (17)

The probability to choose a specific trajectory i ∈ D
with such similarity is:

P (f(x) = Txixqi) =
1

Z
k(x, xi) (18)

with Z =
∑

i∈D k(x, xi) as normalizing constant.
We can define the expectation over the planner costs

in situation x when initializing with Equation 18 as:

E{F (x, f(x))} =
∑
i∈D

P (f(x) = Txxiqi)F (x, Txxiqi) (19)

Our goal is to find a similarity metric with low

expected motion planning costs over all situations for

which we have convergence information. We define the

following loss function L using the cross initialization

data D′:

L(w;D′) =
1

|Dx|
∑
x∈Dx

E{F (x, f(x))}+ λ|w|1 (20)

By minimizing this loss function we do feature se-

lection to improve the similarity metric used for nearest
neighbor classification. The purpose of the L1 regular-

ization is to get sparse similarity metrics using only few

situation features.

Learning a similarity metric that describes well which

situations have movements suitable for transfer has an

interesting property: we transfer knowledge of expected

costs for yet unseen movements, an action set of poten-

tially unlimited size. We will examine this in the exper-

iment section.

5.3 Trajectory Prediction via SVR

As an alternative to the above prediction scheme and

for empirical evaluation we also test a multi-linear Sup-

port Vector Regression (SVR) approach to TP. We can

learn regression models fi : x 7→ F (x, Txxi
qi) for the

convergence costs F for each trajectory qi ∈ Dy given

some situation descriptor x. Then we can use these mul-

tiple models to find the index of the trajectory with

lowest costs and the trajectory prediction model using

data D′ would be:

f(x) = Txxî
qî , î = argmin

i∈D
fi(x) (21)

This method allows to use any regression method to

predict the convergence costs when applying a trajec-

tory from D in a given situation. With more complex

models and enough training data we can learn complex

functions mapping situation to cost of movement ini-

tialization for each individual movement in D. A draw-

back is that the set D becomes a fixed action set and

the predicted trajectories will always come from it, so

we can’t generalize for motions outside of the set D. We

also don’t learn a general notion of situation similarity

and can’t interpret the features meaningfully with this

prediction method.

6 Discussion

6.1 TP and Direct Policy Learning

Direct Policy Learning (DPL) is one of the fundamen-

tal approaches for imitation learning, see Argall et al

(2009) for an overview. DPL tries to find a policy π :

s 7→ a that maps state to action given observed state-

action pairs (s, a). Given a parameterization of the pol-

icy, DPL is usually a supervised classification or regres-

sion problem. Usually the data comes from observation

of an expert demonstration, and no assumptions of a

cost function characterizing good motions is made.

In the motion planning framework we can get large

amounts of demonstration data from simulation, and

use it to learn motion policies that can generalize to

various situations. We do not need to reproduce the

demonstrated movements perfectly with TP, since we

assume there is a cost function as in Equation (1) spec-

ifying what good motions are, and a planner will refine

these motions subsequently after the initial initializa-

tion by minimizing the costs. The essence of TP is to

find trajectories that can lead such a planner quickly to

good local optima of the cost function landscape.

6.2 TP as Macro Action Policy

Another important question is why we chose to have

whole trajectories as prediction output, macropolicy in-

stead of micropolicy. A micropolicy would be in this

case a mapping for every time step π : xt → yt. Here

yt is the predicted movement command in some task

space and xt is the current situation descriptor, possibly

changing at each time step. By iteratively predicting a

Fast Motion Planning from Experience: Trajectory Prediction for Speeding up Movement Generation 9

movement yt and recalculating the situation descriptor

xt after executing the movement, one can build whole

trajectories.

The mapping of a situation to such a small local

movement step is a challenging machine learning prob-

lem, since we have to account for global paths and the

locally shortest path to the target is a dead end if the

robot is trapped. A possible approach to remedy this

would be to build networks of states connected via lo-

cal actions Stolle and Atkeson (2007). However, this

can lead to jagged movements and fail to improve the

planner behavior, as our results with RRT planners will

show. Constructing such a network and searching for a

global solution is also computationally expensive.

Using trajectories as macropolicies makes sense for

our setup, since we use as data the local motion planner

output: whole trajectories q and their costs.

7 Experiments

We examine several simulated task setups in which our

robot, a Schunk LWA3 arm and a SDH hand, has to

achieve a task by minimizing a cost function. For all

scenario setups we examined, we generate random sce-

nario instances (situations) by moving randomly ob-

jects around the workspace. Trajectory prediction learns

from a set of demonstrated situations and movements

and learns to generalize this behavior to new situations

from the same generating distribution. For all tasks we

planned kinematically with T = 200 time steps, which

is reasonable time resolution for movements lasting a

few seconds. For training the SVR approach to TP we

used a polynomial kernel of degree 4 and penalty pa-

rameter c = 1. For training the similarity metrics and

minimizing the loss from Equation (20) we used the

Matlab optimization toolbox. The training time of both

TP approaches was a few minutes only, negligible com-

pared to the time for creating the datasets D′. For all

planning algorithms and IK we used our own C++ im-

plementation on a Pentium 2.4ghz computer. This sec-

tion will proceed with a description of the three tasks

we examined and the cost functions defining them. All

the cost functions were defined so that a movement with

cost less than 0.5 is good.

7.1 Reaching on Different Table Sides

7.1.1 Scenario Setup

In the first setup we examined, contains the robot arm

which has to reach a target across a table of size (1.2,0.7,0.1)

with the finger as endeffector, around an obstacle (the

table) as seen in Figure 12. We controlled the 7 DoF

of the arm, and the endeffector was defined as the tip

of the hand. Different scenarios are generated by uni-

formly sampling the position of the table in an area of

size (0.9, 02, 0.2), the target in area size (0.5, 0.2, 0.6),

and the initial endeffector position in (0.3, 0.3, 0.9).

Situations with initial collisions were not allowed. Too

easy situations where the endeffector was closer than

30cm to the target were discarded in order to avoid

trivial situations and to put a greater focus on more

challenging scenarios, where the endeffector must move

on the other side of the table to reach the target.

We used the standard cost function in equation (1)

for reaching, penalizing collisions, keeping within joint

limits and enforcing smoothness and precision at the

endeffector position. We chose the term h to enforce a

trajectory of short length with smooth transitions be-

tween the trajectory steps. We define h as

h(qt, qt−1) = ‖qt − qt−1‖2 (22)

The cost term g in (1) is defined as

g(qt) = gcollision(qt) + greach(qt) + glimit(qt) (23)

where gcollision penalizes collisions while executing the

grasp movement. The value of this collision cost is the

sum of the pairwise penetration depths ci of colliding

objects. Minimizing it moves the robot body parts away

from obstacles.

gcollision(qt) = 105
∑
i

c2i (24)

The task of reaching the target position with the end-

effector is represented in greach. We want the target to

be reached at the end of the movement, so we define

this cost function to have a higher value for t = T :

greach(qt) =

{
10−2d2 t < T

102d2 t = T
(25)

where d is the Euclidean distance between the endef-

fector and the target.

The cost term glimit puts limits on the joint angles:

glimit(qt) = 10−2
n∑

i=1

Θ(di − 0.1)2 (26)

where di is the distance of joint i from its limit (0 and

2 radians respectively), 0.1 is a margin, and Θ is the

heavyside function.

10 Nikolay Jetchev, Marc Toussaint

(a) Situation xa – move
hand under the table.

(b) Situation xb – move
hand over the table.

Fig. 2 Two situations; the goal is to reach the target.

7.1.2 Trajectory Prediction Setup

Since we have only one obstacle in this table reaching

scenario, we used the geometric descriptor defined in

Section 3.1, to see how well we can predict trajecto-

ries using high-dimensional geometric situation infor-

mation. Concretely, the descriptor x ∈ R770 is defined

as a 770-dimensional vector comprising all the infor-

mation relevant for this setup. We have 11 objects for

which we measure pairwise geometric information: 7

segments of the robot arm, the endeffector, the robot

immobile platform (similar to the world frame), the

largest obstacle object (a single table in our scenario)

and the reach target location, shown in Figure 3(a).

This makes 110 object pair combinations.

The first demonstration set D has 64 optimal situa-

tions and optimal movements. We also examined whether

smaller subsets from D (created using K-means clus-

tering and Euclidean distance on the task space tra-

jectories y) used for the creation of D′ as in Equation

(14) can also work well to provide initialization options.

Our results on the next figures show that as expected

more trajectories d lead to better possible initializa-

tions. However, small numbers d provides already a va-

riety of initial movements and allow good initialization

with TP, so this can be tuned as necessary for different

robot tasks with different computational costs.

To learn the similarity metric and predictor f we

measured the costs F of these initial movements qi in

all 1000 situations xj ∈ Dx = D, using j = 20 iterations

and early stopping as defined in Equation (13).

To validate the results for the predictor f , we split

the set D′ by dividing Dx in 800 situations for train-

ing and 200 for testing the predictors. This way we can

reason about generalization to new unseen situations of

our predictors, or in other words transfer to new situa-

tions of motions evaluated on the train set situations.

The possible choices for prediction methods, includ-

ing both trivial and trained TP predictors, are

– NNOpt staying for the nearest neighbor predictor

from Section 5.2, with λ = 0.0001

– NNEuclid for nearest neighbour without training,

with w = 1 the default Euclid metric

– SVR regression for method in Section 5.3

– best corresponding to a predictor always taking the

trajectory from set Dy with smallest cost F

– mean for a predictor choosing a random trajectory

Figure 4(a) shows 3 different task spaces and their

usefulness for initialization. The space Ytarget represents

movements relative to the target. The space Yobst (with

best performance in Figure 4(a))consists of endeffector

coordinates relative to the largest obstacle, see figure

3(c). The joint space Q had poor performance, which

confirms the hypothesis that joint space coordinates

generalize poorly.

In Figure 4(b) we examine the performance of the

different predictors f using data from the task space

Yobst. SVR and NNOpt have similar performance, and

improve on both mean and NNEuclid. However, they

are still away from the lower bound of performance best,

which means that more complex models for similarity

or regression can improve the performance further. The

graphic also illustrates the trend that more motions in

set D lead to better initializations. The regularization

used for NNOpt also managed to compress the descrip-

tor quite well: from 770 to 25 dimensions, as shown in

Figure 3(b). The best features are the big table obsta-

cle, the target, and the endeffector, which seems intu-

itively appealing interpretation of the reaching around

table scenario.

We also tested varying the number of train situa-

tions of set D′, as shown in Figure 4(c), and testing

on the same 200 test situations. A difference between

SVR and NNOpt is that NNOpt required significantly

less training data for good performance. With as few as

25 situations on which all 64 movements are evaluated

NNOpt can reach good prediction quality. In contrast,

SVR needs at least 400 train situations to get good

prediction quality on the validation set.

7.1.3 Planning Results

We present results for the average motion planning costs

of the local optimizers and initializations as time pro-

gresses. The results presented are for 200 random test

situations on which we already validated the predic-

tors in the previous subsection. We evaluated 6 differ-

ent motion generation methods by combining different

initializations and planners. We tested three different

initialization methods:

– LINEAR

– TP

– RRT

Fast Motion Planning from Experience: Trajectory Prediction for Speeding up Movement Generation 11

platform

target

table

endeffector

m3
m4

m5

m6
m7

m8m9

(a) The 11 landmarks used for the
descriptor x: the centers of the 11
marked objects in the scene.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

Feature Rank

w
ei

gh
t w

2

endEff|target|pz

target|table|ψz

m9|table|px

m4|table|px

m7|table|ψy

(b) The 25 nonzero features in the
learned metric NNOpt, and the geo-
metric information of the top 5.

(c) Visualization of endeffector move-
ment trajectories from D in space
Yobst, centered on table.

Fig. 3 Table reaching scenario: geometric landmarks, extracted features, and stored trajectory dataset

 1 2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

d

F

 Q best

Q NNEuclid
Y

obst
 best

Y
obst

 NNEuclid

Y
target

 best

Y
target

 NNEuclid

(a) The 3 trajectory task spaces com-
pared: joint space Q is worst.

 1 2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

d

F

best
NNEuclid
mean
NNOpt
SVR

(b) Different prediction strategies for
f(x) in space Yobst: number of move-
ments d vs convergence costs F .

 5 10 25 50 100 200 400
0.5

1

1.5

2

2.5

training situations

F

NNEuclid
NNOpt
SVR

(c) Varying the number of situations
used for training predictors f(x) in
space Yobst.

Fig. 4 Table reaching scenario: convergence costs F averaged over 200 test situations and using d motions for initialization.

LINEAR is the default option, where the start and goal

endeffector positions are connected with a straight line

path, which is followed by the robot hand using IK

for initialization. TP uses the NNOpt nearest neigh-

bour predictor in the task space Yobst. Both trajectory

prediction and straight line initialization require an IK

operator from the endeffector path to joint space. The

time for the IK operator φ−1 was 0.07s. The TP predic-

tion itself is practically instantaneous. RRT initializa-

tion uses our implementation of a standard algorithm

for sampling collision free joint states. The RRT algo-

rithm always works from scratch and does not require

any training experience of the situations one can en-

counter. The creation of a RRT tree with 2000 nodes

takes 8s, which is already a drawback for real time ac-

tion and much slower than the other two initializations.

However, we include RRT for performance comparison

of the usefulness of such initial random collision free

paths, ignoring this huge initialization time, assuming

that some more efficient implementations of the RRT

algorithm can do this faster.

The 3 initializations are combined with 2 different

planner methods:

– iLQG

– AICO

For iLQG an initial trajectory q̃ is already a part of

the algorithm. For AICO we had to use q̃ in a different

way: only for the first iteration we use instead of C(x, q)

the cost C̃(x, q, q̃) = C(x, q)+‖q− q̃‖2. This forces the

solution to be near q̃ and changes the belief states of

AICO respectively.

Both iLQG (Todorov and Li 2005) and AICO (Tou-
ssaint 2009) are local planners well suited for motion

planning, as mentioned in the introduction. We set the

iLQG convergence rate parameter ε = 0.8; performance

was robust with respect to different values of ε. For

AICO we used instead of a fixed step parameter a sec-

ond order Gauss Newton method to determine the step.

One iteration of each of the planners took 0.07s, the

bulk of which goes to collision detection and that is

why the timings are similar for different planners.

We also tested direct gradient descent in joint space

with the RPROP general optimization algorithm (Igel

et al 2005), but its performance was an order of mag-

nitude worse than the other 2 planners, so we did not

add it to the final results.

The results in Figure 5 show the convergence be-

haviour of the planners for 7 seconds, and they allow

us to make the following observations:

– TP is the best initialization for both AICO and

iLQG, both speeding up convergence in the first

12 Nikolay Jetchev, Marc Toussaint

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time (s)

C

LINEAR−iLQG
RRT−iLQG
TP−iLQG
LINEAR−AICO
RRT−AICO
TP−AICO

Fig. 5 Performance of different methods in table reaching
scenario. The average cost C of the planners during their
convergence is plotted versus time in seconds.

initializations, and allowing to reach solutions with

lower costs overall. Sometimes a first feasible solu-

tion is reached in less than a second for TP-iLQG,

in comparison to 3 seconds for LINEAR-iLQG.

– TP-AICO also benefits greatly from a TP initial-

ization. Note that the data D′ for prediction was

gathered only with iLQG planner data, so our pre-

dictors could transfer successfully to a new planner.

– The RRT path initializations are unexpectedly poor

choices for planner initialization: they start collision-

free and with lower costs, but they are difficult for

the planners to improve and after some planner iter-

ations even LINEAR finds better overall solutions.

– AICO is potentially very sensitive to initialization:

with improper initialization (from any of the 3 ini-

tialization methods we examined) it can converge

to bad solutions, which are unlikely to be improved.

iLQG is more robust in this sense: with more itera-

tions bad solutions can still be improved.

7.2 Reaching in Cluttered Scene.

7.2.1 Scenario Setup

In the next setup, the table (from the previous experi-

ment) is cluttered with 4 obstacles. Rectangles of vari-

ous sizes and on random positions stand in the way of

a target to be reached, as shown in Figure 6. We con-

trolled the 7 DoF of the arm, and the endeffector was

defined as the tip of the hand. The obstacle positions

are randomly put over the table surface, and the target

is put over the table to a place unoccupied by obstacles.

We took the reaching cost defined in Section 7.1.1.

7.2.2 Trajectory Prediction Setup

For such cluttered situations we decided to test the sen-

sor voxel descriptor x ∈ R413 from Section 3.2, since it

is a compact way to represent the obstacle information.

In the simulations we simulated an arm-mounted laser

sensor delivering point cloud information to the scene,

similar to Jetchev and Toussaint (2010).

For task space we examined again the 3 choices from

the previous experiment: joint space Q, table relative

coordinates Yobst and target relative coordinates Ytarget,

shown in Figure 9(c). Ytarget worked the best for this

scenario.Some of the situations required complex avoid-

ance paths, so the linear initialization failed often to

find any solutions. Thus for the database D of optimal

movements we had to use RRT initialization, otherwise

the dataset D′ was created identically as in Section 7.1.

In Figure 7(a) we compare the same 5 prediction

methods defined in the previous section. For this task

the SVR approach worked better than the nearest neigh-

bour approaches. One possible explanation is that the

Gaussian model for the similarity in equation (15) is

not the optimal for such descriptors.

In Figure 7(b) we examine how many PCA com-

ponents are necessary to create voxel descriptors good

enough for predictive purposes. With 200 components

(covering 99 % of the variance) the SVR regression

achieves the best result. The NNOpt method can’t han-

dle well the voxel grid PCA components features and

more components don’t help.

7.2.3 Planning Results

The results presented are for 200 random test situa-

tions, different than the train situations. We tested the

same 6 motion generation methods, but used instead of

NNOpt the SVR approach for the trajectory prediction

function in the task space Ytarget. Each planner itera-

tion and IK operation costs 0.15s. This is more than in

the previous scenario due to more expensive collision

check operations with more objects. This was the tim-

ing using the object models in the simulator. If we were

to use the voxel representations obtained from analysis

of point cloud data the timings would rise even more.

Figure 7(c) summarizes our planning experiments:

– for both AICO and iLQG planners, TP has lower

costs than the RRT and LINEAR initializations.

(a) (b)

Fig. 6 Typical situations on cluttered tables with red point
as target and table and 4 obstacles.

Fast Motion Planning from Experience: Trajectory Prediction for Speeding up Movement Generation 13

 1 2 4 8 16 32 64
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

d

F

 best

NNEuclid

mean

NNOpt

SVR

(a) Different prediction strategies for
f(x): number of movements d vs con-
vergence costs F .

1 2 3 4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

PCA dimensions

F

NNOpt
SVR

(b) Varying the number of PCA com-
ponents used for v = V P vs conver-
gence costs F (with d = 64 motions).

0 2 4 6 8 10 12 14
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time (s)

C

LINEAR−iLQG

RRT−iLQG

TP−iLQG

LINEAR−AICO

RRT−AICO

TP−AICO

(c) The average cost C of the plan-
ners during their convergence is plot-
ted versus time in seconds.

Fig. 7 Costs in a cluttered table scenario and task space Ytarget.

This is to be expected since LINEAR is often start-

ing in collisions. RRT is collision free, but suffers

from the random nature of the path construction,

see Figure 9.

– LINEAR-AICO is prone to failure even after many

iterations: the many obstacles make for a highly

nonlinear cost surface with multiple local optima,

and AICO gets stuck in suboptimal solutions.

We also tested a setup with 3 more obstacles, more

difficult because obstacle avoidance paths become more

complex. TP remained the fastest initialization even

with this more cluttered setup, a transfer of useful be-

havior from the training setup with 4 blocks. This showed

that the descriptors x and the predictor f can transfer

knowledge to a more diverse set of scenarios without

modification, since the occupancy of the workplace is

represented well by the voxel descriptor x. On the other

side, when considering the potential effect of adding

even more objects in the scenario (e.g. more than 20),

RRT has the best chance to solve such puzzles. The

design of the scenario has big effect on performance.

In addition to simulation, we also did hardware tests

as in Figure 8, and had robust performance in real

scenes with different obstacles on tables.

7.3 Grasping a Cylinder

7.3.1 Scenario Setup

We also tested TP on tasks more complex than reach-

ing. Grasping is one such task. The grasp setup we de-

vised contains a long target cylinder of radius 5cm that

has to be grasped by the robot, see Figure 10. For the

random situations we translated the cylinder center in a

rectangular area (0.9, 0.5, 0.4) and rotated it around its

radial axis by random angles in (0, 2π). We also moved

the hand at random starting position similar to the pre-

Fig. 8 The Schunk robot arm, the SDH hand and an arm-
mounted Hokuyo URG-04LX laser.

vious scenarios. We controlled both the arm and hand

for this setup, resulting in a 14DoF joint space q ∈ R14.

The cost function had the same smoothness term h,

but a different term g:

g(qt) = gcollision(qt) + glimit(qt) + gsurface(qt) (27)

where the collision and joint limit terms are the same as

before. The term gsurface measures the distance from

the target surface to some markers on the robot body

and forces the robot to move these markers on top of

the surface. We defined 12 such markers, 3 on each of

the 3 robot fingers, and 3 on the wrist. By taking a

configuration of 3 markers near the surface of the fingers

we force the robot to also align the fingers with the

grasp target object, which leads to better grasps. The

definition of gsurface is:

gsurface(qt) =

{
10−3

∑18
i=1 η

2
i t < T

102
∑18

i=1 η
2
i t = T

(28)

where each ηi stays for distance to target cylinder sur-

face of each of the 18 markers. This cost function is

similar to the one used by Dragiev et al (2011).

14 Nikolay Jetchev, Marc Toussaint

(a) A RRT of random colli-
sion free samples accessible
from the start position.

(b) The shortest path in
this tree to the target is
very inefficient if we want a
smooth movement.

(c) Movement trajectories
from D in space Ytarget.

(d) A smooth movement
from TP prediction (black).
LINEAR (green) goes
straight to the target and
has high collision costs.

Fig. 9 A visualization of different initializations for a clut-
tered situation reaching task.

(a) (b)

Fig. 10 Typical situations in the grasping scenario: the cylin-
der is rotated and translated randomly.

The target can be grasped anywhere with this cost,

but the challenge lies in positioning the robot fingers

on the surface without colliding with it.

7.3.2 Trajectory Prediction Setup

We used here the geometric descriptor from Section

7.1.2, but with a slightly different object set: the 7

robot arm segments, the endeffector, the target cylin-

der center targetC, and a marker on top of the cylinder

targetE. This results in 90 pairwise object distance de-

scriptors and a situation descriptor x ∈ R630.

We examined 2 task spaces. First, the joint space

Q ∈ R14. Second, Yqhand+target ∈ R10 consisting of the

7 hand joints and the 3D relative position of the arm

in the target frame. The sizes of datasets D and D′

were as in the previous experiments, with the only dif-

ferent being that we needed j = 40 planner iterations

0 5 10 15 20 25 30 35
0

5

10

15

20

25

Feature Rank

w
ei

gh
t w

2

m9|targetC|ψx

m5|targetC|ψx

targetC|m8|pz

targetC|m3|d

targetE|m9|ψy

Fig. 11 Grasping task: the 17 nonzero features in the learned
metric NNOpt, and the geometric information of the top 5
features.

to measure cost F , which made data gathering slower.

Yqhand+target is better task space, see Figure 13(a): the

relative positions of the hand in the target frame gen-

eralize well to target rotations and move the hand to

positions which can be grasps near the cylinder surface,

and the finger joint information moves the fingers in an

appropriate pregrasp shape.

The regularization used for NNOpt also managed

to compress the descriptor quite well: from 630 to 17

dimensions, as shown in Figure 11.

In Figure 13(b) we compare the 5 different predic-

tors for good trajectory. The SVR predictor was the

best, closely followed by NNOpt.

7.3.3 Planning Results

We tested 4 combinations of planner and initialization:

AICO and iLQG combined with LINEAR initialization

(with target the center of the cylinder) and TP ini-

tialization. We did not test RRT for grasping, since it

would require major modifications to the default RRT

algorithm.

In this scenario the time for a single planner iter-

ation and IK transfer was 0.15s, and optimization to

convergence required sometimes as much as 100 itera-

tions and was with a high failure rate, so this problem

has the potential to gain a lot from TP. Figure 13(c)

shows our results for this more complex task:

– the combination TP-AICO finds the best solutions

overall: 2 seconds planning time with the TP initial-

ization vs 14 seconds for LINEAR-AICO. TP-iLQG

is similarly superior to the default LINEAR-iLQG.

– for the grasping task AICO is better than iLQG.

A possible explanation can be the different task

essence: for grasping the challenge is to coordinate

multiple body parts to do a more complex move-

ment, whereas for the previous two tasks the chal-

lenge is to avoid collisions. It seems that the infer-

ence algorithm of AICO can handle complex mo-

tions better than collision avoidance.

Fast Motion Planning from Experience: Trajectory Prediction for Speeding up Movement Generation 15

(a) A grasping movement: first ap-
proach (black line)

(b) Finally the fingers should close on
the object surface

(c) Trajectories: arm and hand move-
ments relative to the target frame.
The arm movement is visualized.

Fig. 12 An example grasping movement and the set of initializations visualized in space Yqhand+target.

 1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d

F

 Q best

Q NNEuclid

Yqhand+target best

Yqhand+target NNEuclid

(a) The two trajectory task spaces Q
and Yqhand+target: number of move-
ments d vs convergence costs F .

 1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d

F

best
NNEuclid
mean
NNOpt
SVR

(b) Different prediction strategies for
f(x): number of movements d vs con-
vergence costs F .

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time (s)

C

LINEAR−iLQG
TP−iLQG
LINEAR−AICO
TP−AICO

(c) The average cost C versus time in
seconds for different planners.

Fig. 13 Costs of different methods in cylinder grasping scenario in the task space Yqhand+target.

8 Conclusion

In this paper we proposed a novel algorithm to im-

prove local motion planning methods. Trajectory pre-

diction can exploit data from previous trajectory op-

timizations to predict reasonable trajectories in new

situations. We proposed two key aspects to solve this

problem: an appropriate situation descriptor and a task

space transfer of previously optimized trajectories to

new situations. Concerning the situation descriptor, we

demonstrated that learning a (L1-regularized) metric

in a high-dimensional descriptor space significantly in-

creases performance of the mapping. Interestingly, this

means that we can extract features of a situation (e.g.,

choose from a multitude of possible coordinate systems)

that generalize well w.r.t. trajectory prediction. The ex-

tracted features allow for an intuitive explanation of the

crucial latent factors to choose one movement over an-

other. The task space transfer – that is, first projecting

an old trajectory to a task space and then projecting it

back in the new situation, allows an adaptation to the

new situation implicit in the inverse kinematics.

Speeding up local planners is crucial for fluid robot

interaction with the world and humans. The TP frame-

work for movement prediction is of great practical util-

ity for many motion planning tasks, as shown by our

experiments. A good initialization makes the planner

converge faster. Additionally, the planners can converge

to potentially better solutions which are not likely to

be discovered by a naive initialization not using the ex-

perience of movement and situations incorporated by

the trained predictors.

Future work will focus on making trajectory pre-

diction less dependent on designer choices. In our cur-

rent implementations, selecting the task space for mo-

tion transfer is important for the performance of the

method. Developing data-driven methods for finding

such task spaces using the demonstrated optimal mo-

tions will be a step further toward understanding the

latent structure of motions.

Another possible direction is applying trajectory pre-

diction to more complex and realistic scenarios, with

sensor uncertainty and moving obstacles in the workspace

under strict time constraints. Speeding up motion plan-

ning in such situations will be of even greater utility,

especially if combined with parallel exploration of al-

ternative predicted trajectories.

Acknowledgements This work was supported by the Ger-
man Research Foundation (DFG), Emmy Noether fellowship
TO 409/1-3.

16 Nikolay Jetchev, Marc Toussaint

References

Argall BD, Chernova S, Veloso MM, Browning B

(2009) A survey of robot learning from demonstra-

tion. Robotics and Autonomous Systems 57(5):469 –

483

Atkeson CG (1993) Using local trajectory optimizers to

speed up global optimization in dynamic program-

ming. In: NIPS, pp 663–670

Bertram D, Kuffner J, Dillmann R, Asfour T (2006) An

integrated approach to inverse kinematics and path

planning for redundant manipulators. In: IEEE Int.

Conf. on Robotics and Automation (ICRA), pp 1874–

1879

Branicky M, Knepper R, Kuffner J (2008) Path and tra-

jectory diversity: Theory and algorithms. In: IEEE

Int. Conf. on Robotics and Automation (ICRA), pp

1359–1364

Calinon S, Billard A (2005) Recognition and reproduc-

tion of gestures using a probabilistic framework com-

bining PCA, ICA and HMM. In: 22nd Int. Conf. on

Machine Learning (ICML), pp 105–112

Dragiev S, Toussaint M, Gienger M (2011) Gaussian

process implict surface for object estimation and

grasping. In: IEEE Int. Conf. on Robotics and Au-

tomation (ICRA)

Dyer P, McReynolds SR (1970) The Computation and

Theory of Optimal Control. Elsevier

Elfes A (1989) Using occupancy grids for mobile robot

perception and navigation. Computer 22(6):46–57

Hiraki K, Sashima A, Phillips S (1998) From Egocentric

to Allocentric Spatial Behavior: A Computational

Model of Spatial Development. Adaptive Behavior

6(3-4):371–391

Igel C, Toussaint M, Weishui W (2005) Rprop using the

natural gradient. Trends and Applications in Con-

structive Approximation International Series of Nu-

merical Mathematics 151:259–272

Jetchev N, Toussaint M (2010) Trajectory prediction

in cluttered voxel environments. In: Int. Conf. on

Robotics and Automation (ICRA)

Kavraki LE, Latombe JC, Motwani R, Raghavan P

(1995) Randomized query processing in robot path

planning. In: Twenty-seventh annual ACM Sympo-

sium on Theory of Computing (STOC), pp 353–362

Konidaris G, Barto A (2006) Autonomous shaping:

knowledge transfer in reinforcement learning. In:

23rd Int. Conf. on Machine Learning (ICML), pp

489–496

Martin S, Wright S, Sheppard J (2007) Offline and on-

line evolutionary bi-directional RRT algorithms for

efficient re-planning in dynamic environments. In:

IEEE Int. Conf. on Automation Science and Engi-

neering (CASE)., pp 1131–1136

Muehlig M, Gienger M, Steil JJ, Goerick C (2009) Au-

tomatic selection of task spaces for imitation learn-

ing. In: IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), pp 4996–5002

Nakhaei A, Lamiraux F (2008) Motion planning for hu-

manoid robots in environments modeled by vision. In:

8th IEEE-RAS Int. Conf. on Humanoid Robots, pp

197–204

Peshkin L, de Jong ED (2002) Context-based policy

search: Transfer of experience across problems. In:

ICML-2002 Workshop on Development of Represen-

tations

Ratliff N, Zucker M, Bagnell A, Srinivasa S (2009)

Chomp: Gradient optimization techniques for ef-

ficient motion planning. In: IEEE Int. Conf. on

Robotics and Automation (ICRA)

Shon A, Storz J, Rao R (2007) Towards a real-time

bayesian imitation system for a humanoid robot.

In: IEEE Int. Conf. on Robotics and Automation

(ICRA), pp 2847–2852

Stolle M, Atkeson C (2007) Transfer of policies based on

trajectory libraries. In: IEEE/RSJ Int. Conf. on In-

telligent Robots and Systems (IROS), pp 2981–2986

Todorov E, Li W (2005) A generalized iterative LQG

method for locally-optimal feedback control of con-

strained nonlinear stochastic systems. In: Proc. of the

American Control Conference, vol 1, pp 300–306

Toussaint M (2009) Robot trajectory optimization us-

ing approximate inference. In: 26th Int. Conf. on Ma-

chine Learning (ICML), pp 1049–1056

Wagner T, Visser U, Herzog O (2004) Egocentric qual-

itative spatial knowledge representation for physi-

cal robots. Robotics and Autonomous Systems 49(1-

2):25 – 42

Zacharias F, Borst C, Hirzinger G (2007) Capturing

robot workspace structure: representing robot ca-

pabilities. In: IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), pp 3229–3236

Zhang J, Knoll A (1995) An enhanced optimization ap-

proach for generating smooth robot trajectories in

the presence of obstacles. In: Proc. of the European

Chinese Automation Conf., pp 263–268

