
Learning Grounded Relational Symbols from Continuous Data for
Abstract Reasoning

Nikolay Jetchev, Tobias Lang, Marc Toussaint

Abstract— Learning from experience how to manipulate an
environment in a goal-directed manner is one of the central
challenges in research on autonomous robots. In the case of
object manipulation, efficient learning and planning should
exploit the underlying relational structure of manipulation
problems and combine geometric state descriptions with ab-
stract symbolic representations. When appropriate symbols are
not predefined they need to be learned from geometric data.
In this paper we present an approach for learning symbolic
relational abstractions of geometric features such that these
symbols enable a robot to learn abstract transition models
and to use them for goal-directed planning of motor primitive
sequences. This is framed as an optimization problem, where
a loss function evaluates how predictive the learned symbols
are for the effects of given motor primitives as well as for
reward. The approach is embedded in a full-fledged symbolic
relational model-based reinforcement learning setting, where
both the symbols as well as the abstract transition and reward
models are learned from experience. We quantitatively compare
the approach to simpler baselines in an object manipulation
task and demonstrate it on a real-world robot.

I. INTRODUCTION

How can autonomous robots learn to manipulate their
environment in a goal-directed manner? In natural envi-
ronments composed of objects, a robot has to reason on
a geometric as well as on an abstract level to learn and
plan sequences of motor primitives [1]. The geometric
level concerns mostly sub-symbolic perception and motion
generation where machine learning and robotics research
was greatly successful in the last decades. In contrast, to
efficiently determine an appropriate sequence of motions
from a given set of motor primitives requires learning and
reasoning on an abstract level. Symbolic relational represen-
tations are a promising approach to abstract reasoning. They
reflect the structure inherent in object manipulation tasks in
terms of abstract properties and relations between objects;
and they generalize over object identities to new situations
with previously unseen objects. For this reason, symbolic
representations have been investigated in machine learning
and artificial intelligence from their beginnings.

It is a key open challenge, however, how sub-symbolic
and symbolic learning and reasoning approaches can be
combined. To apply symbolic approaches in the physical
world, one needs to answer the fundamental questions:
“Where do the symbols come from?” and “How are the given
symbols grounded in the physical world?” This is known as
the symbol grounding problem in psychology and cognitive

The authors are with the Machine Learning and Robotics
Lab, FU Berlin, Arnimallee 7, 14195 Berlin, Germany {
nikolay.jetchev,tobias.lang,marc.toussaint}
@fu-berlin.de

Geometric features

Symbolic abstraction

Learning and planning

Fig. 1. An illustration of our approach: using continuous geometric features
y from its sensors the robot learns symbols σ and uses them in a symbolic
state description s for planning an action sequence maximizing the reward.
Our major contribution is the learning step indicated by the filled red arrow
which takes the whole robot performance into account.

science [2]. In our view, a core challenge to answer these
questions and to progress in the research on autonomous
agents is to leverage learning methods to bridge the gap
between continuous state descriptions and symbolic features.
Learning should bootstrap from continuous state descriptions
symbolic abstractions which are empirically useful as a basis
for symbolic learning and reasoning.

In this paper, we approach the problem by assuming that
the robot has a fixed set of motor primitives (corresponding
to symbolic actions) and perceives continuous geometric
properties and relations between objects. To be able to choose
and sequence appropriate actions, the robot has to learn
abstract state symbols which capture the general patterns
underlying the effects of its motor primitives on those
objects. We formalize this symbol learning problem in a
reinforcement learning (RL) framework where the goal of the
robot is to find motor primitive sequences which maximize
its future rewards. The suitability of learned state symbols
gets thereby directly linked to the robot’s ability to perform
goal-directed behavior.

We define a symbol as a relational predicate (initially
without semantics) paired with a mapping (classifier) from
the geometric features to a true/false value of the predicate.
Learning symbols then translates to learning appropriate
classifiers. We propose a loss function which favors symbols
that allow to consistently and discriminately predict the
effects of motor primitives and rewards on an abstract level.
We integrate this symbol learning procedure in a full-fledged
symbolic relational model-based RL approach: the symbols
(associated classifiers) as well as the abstract transition and
reward models are all learned from experience. Experiments
in a robot manipulation scenario, both in simulation and on
a real robot, show that this integrated approach allows an

autonomous robot to find a task-relevant structure in its state
observations which it can exploit for efficient planning of
sequences of motor primitives. Figure 1 illustrates our work.

In the next section we discuss related and previous work
on symbol learning. Section III summarizes background on
relational reinforcement learning, on which our approach in
parts builds. Section IV then introduces our specific approach
to formalizing the symbol learning problem before, in Sec-
tion V, we define the loss function for learning the symbol’s
classifiers. In Section VI we demonstrate the approach on
a robot manipulation domain in simulation and in the real
world.

II. RELATED WORK

The origin of symbols that humans seem to use to structure
their life has been a subject of study for long [2]. In a
language acquisition context, linguists have researched spa-
tial predicate extraction from natural language instructions
in a supervised way. [3] learn the meaning of words like
“past” and “to” by analyzing motion trajectories and their
descriptions from a teacher. Approaches to extract rules and
non-relational symbols from a neural network trained for
supervised learning have been investigated in very simple
computer simulation scenarios [4], [5]. [6] showed that it is
important that grounded symbols are coupled and proposed
predictive, correlation and contrastive criteria for learning. In
a biological context, [7] showed that apes can learn symbols
from examples provided by a teacher who provides signifi-
cant guidance. In contrast to our work, all these approaches
do not focus on learning symbols to enable an autonomous
robot to act in a goal-directed way in a world with objects.

From their early beginnings, research in artificial intel-
ligence and cognitive science has investigated modeling
reasoning and learning of autonomous agents based on sym-
bolic relational representations of the world [8], not without
significant objections [9]. Over the last decade, symbolic
relational approaches have received new enthusiasm with the
advent of machine learning techniques in AI and cognitive
science [10], [11]. However, the critique of “where the sym-
bols come from” remains. Feldman [12] provides a formal
computational model of the conditions when a symbolic
representation can capture the variability of a continuous
environment. But how symbols can be learned and used for
reasoning has, to our knowledge, not been shown. Generally,
learning symbols in the context of actually working and
acting systems has seen only little progress. [13] investi-
gated how a real robot can learn to manipulate articulated
objects using a grounded relational representation, but did
not learn the kinematic symbols themselves. [14] discusses
that a robot needs to learn structured symbols according
to experience which reflect spatiotemporal correlations in
its sensory predictions, motor signals, and internal variables
(sensorimotor invariances in its actions). [15] present a study
of a real robot which learns non-relational symbols by means
of neural networks for manipulation tasks. To our knowledge,
our approach is the first attempt to learn symbols to enable
model-based relational reinforcement learning.

III. BACKGROUND ON RELATIONAL RL
In this section we review background on relational (esp.

model-based) reinforcement learning [10]—an area of re-
search which so far has been applied using predefined
symbolic representations. Consider an environment with M
objects. Learning transition models (the probabilistic effects
of motor primitives or actions) directly on a geometric
representation is in general hard. Natural environments are
profoundly structured in terms of their compositionality
by objects. A standard approach to describe the state of
multiple objects is in terms of a set of unary and binary
predicates P . For instance, given M objects, K unary
predicates and L binary predicates, the propositional state
description s ∈ {0, 1}ν is given by the ν = KM + LM2

truth values for the instantiations pk(om)k=1:K,m=1:M and
pl(om, om′)l=1:L,m=1:M,m′=1:M of all predicates with all
objects (in all permutations)—the propositional state space
is exponential in the number of objects.

Relational representations generalize over object identities
and thereby reflect the prior assumption that the effects of
actions should not depend on the explicit identity of an
object, but only on its properties and relations to other ob-
jects. Relational reinforcement learning developed methods
either for learning relational value functions [10] or learning
compact relational transition models P (s′ | s, a) [16] and
using them in a model-based RL setting for planning or
further exploration. This generalization greatly reduces the
amount of data necessary for an agent to find a good policy
and transition model in comparison to propositional learning
[17]. In our approach we will learn a transition model
(based on learned symbols) in the form of noisy probabilistic
relational rules [16] from concrete experience in the format
D = {(st, at, st+1)}t, where st, st+1 are propositional state
descriptions before and after the application of an action
at. We use the planning method PRADA [17] based on the
learned rules to find action sequences which maximize the
expected reward.

IV. SYMBOL LEARNING PROBLEM FORMULATION

Consider an environment with M objects O =
{o1, . . . , oM} in state x. We assume that, given the state
x, the robot has access to a geometric state descriptor y
comprising features yi ∈ Rn for each object oi and features
yij ∈ Rn′

for each pair oi, oj of objects. For instance,
yi may represent the position and size of oi as computed
from the robot’s vision system; while a basic example for
pair-wise features is yij = yi − yj . The robot can execute
motor primitives a of different types A on target objects
o ∈ O; e.g., grab objects and put them on other objects. The
execution of motor primitives changes the configuration and
thus observed geometric features y of one or more objects.

We are interested in relational symbols to describe the
effects of motor primitives. We define a relational symbol
σ = (p, f) as a predicate p together with its grounding
f . The predicate on its own (without the grounding f) is
without semantics. A grounding f is a classifier that decides
for all possible permutations o of the objects (for instance,
in the case of a binary predicate for all pairs (oi, oj),

oi, oj ∈ O) whether the corresponding instantiation p(o) of
the predicate holds given the geometric features {yi, yij}
for o. For instance, we calculate the grounding of a unary
predicate instantiated with a single object oi from its features
yi by f1 : Rn → {0, 1} and similarly for binary predicates
for a pair oi, oj with features yij by f2 : Rn′ → {0, 1}.
The predicates together with their binary classifiers form the
set of relational symbols Σ. The symbolic relational state
s ∈ {0, 1}ν is a binary vector that represents whether specific
predicate instantiations can be successfully grounded in state
x: for each symbol σ ∈ Σ of arity b, there is an entry in s for
each permutation o of length b of the objects in O. The entry
corresponds to the truth value of pσ(o) which is calculated
by the classifier fσ from the geometric features {yi, yij} for
o. A set of symbols Σ thereby defines the state abstraction
function φ(x; Σ) → s which takes a physical world state x
and abstracts it to the relational symbolic state s.

The robot receives a continuous reward signal r ∈ R
in each state. It interacts with its environment in discrete
time-steps, resulting in a sequence x0, r0, a0, x1, r1, a1, . . .
. The task of the robot is to maximize its rewards R =∑T
t=0 γ

trt for discounting 0 < γ < 1. Our approach is to
learn symbols Σ that allow to abstract xt to its symbolic
relational representation st and then to reason in the abstract
representation about motor primitives. Hence, the problem
can be summarized as learning classifiers fσ that define
a set of symbols σ ∈ Σ such that model-based RL using
these symbols will be successful in maximizing the expected
future reward. Both, the set of symbols as well as the
symbolic transition and reward models, have to be learned
from experiences D = {(yt, rt, at, yt+1)}. This problem
formulation frames symbol learning as part of an overall rein-
forcement learning problem—in contrast to symbol learning
in a supervised fashion from a teacher.

V. LEARNING THE SYMBOL GROUNDINGS fσ

We define a loss function L(Σ;D) over data D to learn
symbols σ ∈ Σ, that is, to find classifiers fσ that minimize
this loss. The loss function needs to reflect our conception of
what good symbols are. As discussed in the previous section,
the goal of symbol learning is to give the robot the ability to
plan efficiently to high-reward states in the physical world.
Hence, we want symbols to (i) allow us to learn a transition
model which one can use to predict the structural effects
of executing motor primitives and discriminate between
predecessor and successor states; (ii) allow us to learn a
reward model to predict how the reward values (defining
tasks) are related to such structural changes; and (iii) be
compact so as to allow for efficient reasoning. We define
the loss function

L(Σ;D) = Ltransition(Σ;D) + Lreward(Σ;D) + ‖Σ‖2 . (1)

Learning symbols works by minimizing this loss. The next
subsections will explain in detail its three terms. As a
sidenote, in linear value function approximation the Bellman
error can similarly be decomposed in reward and prediction
terms [18].

A. Learning a transition model via Ltransition

Recall that st ∈ {0, 1}ν denotes the truth values of the
predicate instantiations in a world state xt for the given
symbols Σ and objects O. A model T can be learned by
abstracting the experiences D = {(yt, rt, at, yt+1)} to their
symbolic representation DΣ = {(st, rt, at, st+1)} based on
the symbols Σ. We define a loss term Ltransition which rewards
symbols that are suitable for transition model learning as

Ltransition(Σ;D) =
∑

(st,rt,at,st+1)∈DΣ

‖st − st+1‖1 (2)

−
∑

(st,rt,at,st+1)∈DΣ

logP (st+1 | st, at; T)

where P (s′ | s, a; T) is the transition probability according
to the potentially stochastic transition model T that is
estimated from D as well. This loss function incorporates
two different terms which we describe in the following.

The first term in Eq. (3) rewards effect discrimination. This
is defined by the Hamming distance ‖st − st+1‖1 between
state pairs st, st+1. In the data D, motor primitives at always
change object configurations in the physical world, that is
yt,i 6= yt+1,i for at least one oi ∈ O. Learned symbols shall
reflect these changes to account for the structure inherent in
the world and the motor primitives.

The second term in Eq. (3) rewards prediction accuracy.
This is defined by the data-likelihood of the successor states
in DΣ given the current states and actions according to the
learned symbolic relational transition model T . This rewards
symbols which allow to predict successor states accurately.
Good relational symbols are not only those whose truth
values reflect the changes according to motor primitives, but
also symbols whose truth values identify relevant objects and
define contexts for the type of changes according to the motor
primitives.

In principle, any suitable relational method could be used
to learn the transition model, such as advanced relational
classification techniques and probabilistic relational rules. In
our experiments, we use a basic relational nearest neighbor
(NN) predictor. We use this efficient technique since we
need to estimate T frequently in every step of our overall
optimization procedure (described in Section VI) for Σ.
For a given state-action pair s, a, this NN predictor finds
the nearest neighbor ŝt, ât in the data DΣ and predicts
the according successor state ŝt+1. Relational generalization
over the objects in s, a is achieved by using a permutation-
invariant kernel that is described in the Appendix.

B. Learning a reward model via Lreward

It is crucial for planning that learned symbols allow to
determine state rewards (which define the robot’s task). This
is achieved by a relational regressor R : s → R and
motivates the loss term

Lreward(Σ;D) = −
∑

(st,rt,at,st+1)∈DΣ

logP (rt | st;R) . (3)

where P (rt | st;R) is the probability of reward rt in st
according to the potentially stochastic reward model R. This

loss reflects how well learned symbols Σ can be used to solve
the relational regression problem of predicting the reward rt
from the symbolic state representation st.

In our experiments, we again use a relational NN regressor
for R. For a given state s, this regressor looks through
the data DΣ for the nearest neighbor ŝt and predicts the
according reward r̂t. As above, relational generalization is
achieved by the permutation-invariant kernel described in the
Appendix.

C. Regularizing symbols Σ

The last term in the loss function in Eq. (1), ‖Σ‖2,
regularizes the learned symbols Σ. This regularization can
be used to formalize different requirements on symbols.
Our idea is that we want grounded symbols to represent
distinct geometric structures within physical states. This
is advantageous for model selection when the number of
symbols is unknown in advance: we can start learning with
multiple candidate symbols; if a symbol is not needed to
represent abstract state structures, it gets pruned from the
model due to regularization.

To specify the regularization we need to consider a
concrete function class for fσ to ground symbols. We use
radial basis function (RBF) classifiers which are defined by
a parameter vector w = (wc, ws) consisting of a center and
a standard deviation. A symbol σ = (p, w) is then defined
by the predicate p and the RBF parameters w. For a binary
symbol, for instance, we calculate the truth value of p(oi, oj)
from the activation function

g(yij ;w) = exp(−(yij − wc)> diag(w2
s)
−1(yij − wc))

(4)

based on the pair-wise geometric feature vector yij of the
objects oi and oj . If g(yij ;w) > 0.5, then p(oi, oj) is true.
The regularization now applies to the parameterizations w =
(wc, ws). We focus regularization on the widths ws which
control the activation areas of symbols defined by g(y)>0.5.
This regularization leads to a trade-off between predictive
power and small activation areas.

VI. EXPERIMENTAL EVALUATION

We investigated whether (a) our approach allows to learn
symbols from continuous geometric data, (b) the resulting
symbols are well grounded in the physical world, and (c)
the learned symbols enable planning on the symbolic level
leading the robot to higher rewards. For learning (approxi-
mately) optimal symbols Σ∗, that is the parameters w∗ for the
RBF classifiers fσ in our case, we use a stochastic search
algorithm (simulated annealing). To speed up convergence
we used an operator which swaps complete symbols (wc, ws)
at once between candidate solutions. About 105 loss function
evaluations were required to reach optima in the different
setups.

To evaluate our approach on two different tasks, manipu-
lating cubes and balls on a table, and playing bowling, and
performed a qualitative real-world experiment. The accom-
panying video includes a real-world experiment as well as a
video of our bowling simulation. For each task, we collected

traces ∆ = {
〈
yit, a

i
t, r

i
t

〉
}n,Ti=1,t=1 of n length-T -sequences of

random actions with random start states, i.e. nT data points.
These traces were used by the compared methods for learning
appropriate models and symbols for planning.

A. Compared methods

We compared four different methods based on either
continuous or symbolic representations. RANDOM performs
random actions. CONTINUOUS-NN (nearest neighbor) is
a baseline that exploits the available data in a relational
way but without using a symbolic representation. Geometric
states yit within these traces are assigned values V (yit) =∑3
d=0 γ

drit+d with a discount factor γ = 0.8. (The y actually
denotes the set of geometric features y = {yi, yij}. In this
method, yi are treated as states.) We set rt+d := rT for
t+ d > T . Given a new geometric state y the robot chooses
an action based on nearest neighbor retrieval from these
traces: the closest states to y in ∆ are retrieved based on the
relational permutation-invariant similarity kernel k(y, y′) in
continuous space (defined in the Appendix). Then the action
a∗ of the nearest neighbor y∗ with the largest value V (y∗) is
chosen, where the action arguments are assigned according
to the permutation-invariant kernel. SYMBOLIC-NN is equal
to CONTINUOUS-NN except that states in the traces are
represented abstractly using the learned grounded symbols
Σ and the permutation-invariant similarity kernel k(s, s′)
in S is used. The trace data ∆Σ = {

〈
sit, a

i
t, r

i
t

〉
}n,Ti=1,t=1

corresponds to paths through the abstract symbolic state
space. SYMBOLIC-PRADA is a relational planner which
uses learned noisy probabilistic relational rules to find appro-
priate symbolic actions (see Sec. III). Rules are learned from
the learned symbolic abstraction ∆Σ of the experiences—the
same data set used for SYMBOLIC-NN. To evaluate action
sequences, PRADA requires a symbolic description of the
rewards. We approximate the reward function with a simple
symbolic regression using relational decision trees with the
learned symbols.

We devised these methods to allow for performance com-
parison w.r.t. different aspects of the representations used.
Both CONTINUOUS-NN and SYMBOLIC-NN are relational
in the sense that they abstract over object identities via
the permutation-invariant kernel. Only SYMBOLIC-NN and
SYMBOLIC-PRADA use the learned grounded symbols, and
only SYMBOLIC-PRADA represents a full-blown model-
based relational RL approach. With this we aim to separate
out the effects of a relational representation and the use of
learned symbols.

B. Simulated robot manipulation scenario

In our first scenario, a physically simulated robot manip-
ulates balls and cubes on a table (Fig. 3(a)). The robot can
execute two motor primitives which are affected by noise: it
can grab an object or open its hand over some other object;
A = {closeHandAround(X), openHandOver(X)}. After
grabbing, the robot always retracts to a neutral “home”
position. The object observations of the robot are described
by continuous feature vectors yi ∈ R4 comprising the 3-
dimensional position of the center and the size of object oi.

 0.1

 0.2

 30 60 90 120 150

#Data for symbol learning

L
o

s
s
(S

y
m

b
o

ls
;

D
a

ta
)

random
learned

(a)

 0

 1

 2

 3

 30 60 90 120 150

#Data for symbol learning

R
e

w
a

rd

random
continuous NN

symbolic NN
symbolic PRADA

(b) Only cubes: 3 traces

 0

 1

 2

 3

 30 60 90 120 150

#Data for symbol learning

R
e

w
a

rd

random
continuous NN

symbolic NN
symbolic PRADA

(c) Only cubes: 9 traces

 0

 0.5

 1

 1.5

 2

 2.5

 3

 80 160

#Data for symbol learning

R
e

w
a

rd

random
continuous NN

symbolic NN
symb PRADA

(d) Cubes and balls
Fig. 2. Simulated robot manipulation scenario. (a) Symbol learning loss of
randomly defined and learned symbols on 400 test states. (b) / (c) Results
for scenario with cubes based on model learning with 3 / 9 traces. The
reward for performing no actions is 0. (d) Results for cubes and balls.

The task is to build towers. This is defined by means of a
reward function: the average discounted continuous height
of cubes over 10 time-steps.

In our first experiment there were 7 cubes of two distinct
sizes on the table. We learned one unary predicate u(X)
and one binary predicate b(X,Y). We tried learning more
symbols, but the regularization term of the loss function
would usually eliminate additional symbols. Our results are
shown in Figs. 2(a), 2(b) and 2(c). We learned symbols based
on increasing numbers of data in D, as given on the x-
axes of the diagrams. Fig. 2(a) shows how the validated
loss of the learned symbols improves with an increasing
number of training data. For learning models (traces for
the NN approaches and the probabilistic relational rules
for SYMBOLIC-PRADA), we used independent data sets
of size 30 (n = 3 traces with T = 10) (Fig. 2(b)) or 90
(n = 9 traces) (Fig. 2(c)). Each combination of learned
symbols and models was evaluated in three new starting
situations where all objects lay on the table. Thus, the
initial reward was 0. The hypothetically optimal reward in
the corresponding deterministic world was 2.963. To get
statistics, we performed 90 runs with different data split
into independent sets for symbol and model learning and
different random seeds. RANDOM is independent of symbol
and model learning; its performance is thus always the
same in Figs. 2(b) and 2(c). CONTINUOUS-NN performs
better than RANDOM with a sufficiently large number of
data for NN retrieval of actions. The symbolic approaches
show superior performance even with limited data for model
learning (Fig. 2(b)). Due to the learned symbolic abstraction,
SYMBOLIC-NN performs better with more data for NN
retrieval (Fig. 2(c)) as long as the learned symbols are
sufficiently accurate. In contrast, SYMBOLIC-PRADA is less
sensitive to noisy or less accurately learned symbols and
outperforms all other methods. This is due to the following
reason: in case of less accurately grounded symbols, sym-
bolic structures sometimes get overlooked in a state xit. For

instance, the unary symbol u(X) with the canonical meaning
X in hand may not be detected in xit although an object is
held in hand in xit. This is problematic for nearest neighbor
detection. In contrast, SYMBOLIC-PRADA is not bound to
NN retrieval in traces, but learns rules from breaking the
trace data into individual experiences. Individual faulty sym-
bolic state abstractions are handled by SYMBOLIC-PRADA
since the underlying probabilistic relational rules cope with
noisy outcomes of actions and identify the typical outcomes
of actions as required for effective planning.

In a second experiment, we investigated the four methods
in a scenario extended by balls (in addition to cubes; the
total number of objects was seven as above). Here, we
learned two unary and one binary symbol with our learning
approach. Our results for 80 and 160 data for symbol
learning are presented in Fig. 2(d). We used n = 8 traces
of T = 10 actions to learn models. The results confirm
the previous findings: the symbolic methods show superior
performance. The advantage of SYMBOLIC-PRADA is more
significant here since the NN approaches would require much
more traces for similar performance due to the increased
complexity of the situations.

Overall the results show the great potential of using
learned relational symbols for state abstraction in combina-
tion with sophisticated relational planning techniques. We
also examined briefly the setup of using point cloud data
from a Kinect sensor. For object features we used the mean
of the point cloud and the first 7 PCA components, hence
y ∈ R10. We were able to learn a symbol corresponding to a
spherical shape with our learning method which can be used
to predict when an object cannot be stacked.

Figure 3 illustrates what was learned as a binary predicate
b(X,Y) in two exemplary runs. In the first run, it can
be interpreted as representing that X is directly on top
of Y (specifically with a maximum difference in height
corresponding to the largest object size); in the second run,
that X has similar x/y coordinates as Y but may differ
in height—that X is in the tower stacked above Y . In
almost all of our runs, the learned unary predicate u(X)
could be interpreted as denoting that X is being held in the
robot’s hand. In a few cases, u(x) was learned to denote
that an object is reachable. In the experiments with balls, an
additional unary symbol learned to distinguish between balls
and cubes by means of the object size (which was different
for balls and cubes) since this is important in the decision
which objects to stack. Overall, the learned symbols appeal
to human intuition and reflect the task structure. For instance,
a binary symbol with the meaning “next-to” which could be
represented with RBFs was not learned since it does not help
to predict and collect rewards here.

C. Simulated bowling scenario

For our second scenario we implemented a variant of
bowling with the ODE physical simulator, trying to model
as accurately as possible the setup of a ten-pin bowling
game. There are 10 pins placed inside an equilateral triangle
with a side length of 60cm. Each pin is described by a
feature vector yi ∈ R6 composed of the position dimensions

(a)

(b) (c)
Fig. 3. Simulated robot manipulation scenario. (a) Simulator. (b) / (c) Two
exemplary groundings of a relational symbol b(o1, o2) learned in different
runs. The red volumes denote the isosurface of the activation function of
g(x) = 0.5 which is calculated from the continuous features y1,2 = y1 −
y2, see Eq. (4); the axes are in meters. In (b), b(o1, o2) captures that o1 is
directly on top of o2 such as b(oblue, oorange). In (c), o1 is above o2 in
the same stack such as b(ogreen, oblue).

and the z-axis vector, see Figure 4(a). The action set was
A = {throwAtCenter(X), throwRightOfCenter(X)}:
the first is a ball-throw straight (aligned with the y-axis) at
the center of the target pin X , the second 7.5cm to the right
of the center of X . This small translation has an effect on
the ball trajectory, which is often deflected after collisions.
The ODE simulation also has some noise in the collisions
between ball and pins.

Our symbol learning method learned 1 unary and 3 binary
symbols to describe the world, using training data D of 80
random ball throws in smaller worlds with 5 pins placed
randomly on a subset of the 10 ball positions. We gathered
traces of random throws with n = 25, 50, 100 and T = 2,
i.e. the points are counted after 2 hits. We compared the
performance of our methods in 100 bowling games with 2
hits each. Figure 4(b) indicates that the learned relational
symbols capture essential information of the bowling world:
SYMBOLIC-NN is the superior method. Figure 4(c) shows
examples of a binary symbol we learned: it represents the
basic geometric relation of two pins being on the same line
w.r.t. the straight ball trajectories. Such a relation makes it
likely that throwing the ball at one pin will also knock out the
other. Another learned symbol can be interpreted as “behind
and 15cm to the left”, which is related to the possible ball
deflections. The unary symbol could usually be interpreted
as denoting “upright” pins.

D. Qualitative real-world experiment

We also performed also a qualitative study on a real
robot platform, depicted in Fig. 1, which consists of a
Schunk Light Weight arm with 7 DoF, a Schunk Dextrous
Hand with 7 DoF, 6 × 14 tactile arrays on each of the
6 finger segments and a Bumblebee stereo camera. The
robot is placed in front of a table with four different
cans which it can recognize based on their color. The

(a)

 6.5

 7

 7.5

 8

 8.5

 9

25 50 100

#traces for model learning

R
e

w
a

rd

random
continuous NN

symbolic NN

(b)

(c)
Fig. 4. Simulated bowling scenario. (a) The goal is to knock down 10
simulated pins. The black line shows the ball path before deflections. (b)
Results. (c) Exemplary learned binary symbol which indicates whether two
objects have the same x-coordinate, i.e.“in the same column” for a ball hit.

robot has motor primitives to grab and release cans. One
unary and one binary relational symbol is learned from
the experience of 30 random actions. Based on the learned
symbols, the robot learns to plan efficiently sequences
of motor primitives for building towers of cans. A video
of this study can be found at http://dl.dropbox.com/

u/17220615/RSS-Submission/RSS-Extra-Material.html.
http://dl.dropbox.com/u/17220615/RSS%20Submiss
ion/RSS%20Extra%20Material.html.

VII. CONCLUSIONS AND FUTURE WORK
Symbolic representations are a promising approach to

abstract reasoning of robots about sequences of motor
primitives. But where do these symbols come from? We
have proposed a bootstrapping approach to learn relational
state symbols from geometric object features assuming the
existence of a given set of motor primitives. We have
demonstrated in an integrated system that our approach opens
a door for real-world robots to leverage methods developed in
AI for symbolic reinforcement learning and planning. These
methods rely crucially on accurately grounded symbols.

Future work can combine our approach with active learn-
ing with a teacher where the robot generates situations in
which it is uncertain about the symbolic grounding. Another
major question is how to combine motor primitive learning
methods with our symbol learning approach, aiming towards
a mutual bootstrapping of motor primitives and respective
symbolic representations.

APPENDIX
In several contexts we use a relational kernel k(s, s′)

which measures the similarity of states. While we could
use more elaborated existing relational kernels, here we
resorted to a simple kernel that achieves generalization by
exhaustively testing all permutations with respect to the
identities of objects in the symbolic states. Let Π be the set of
permutations of all M objects, containing M ! permutations
π ∈ Π. Let κπ : {0, 1}ν → {0, 1}ν denote the reordering s

http://dl.dropbox.com/u/17220615/RSS-Submission/RSS-Extra-Material.html
http://dl.dropbox.com/u/17220615/RSS-Submission/RSS-Extra-Material.html

according to the order of objects in π and thus of their pred-
icate instantiations pk(om), pl(om, om′). We define a kernel
k based on Π as k(s, s′) = minπ∈Π exp(‖s − κπ(s′)‖2).
This is the distance between s and the most similar permuted
variation of s′. A similar relational kernel can also be applied
on continuous features y, y′ ∈ Rq composed of object
features yi. Let κπ : Rq → Rq denote the reordering of
the features yi according to the permutation π. We get the
kernel k(y, y′) = minπ∈Π exp(−‖y − κπ(y′)‖2) , showing
that relational methods are not limited to symbolic discrete
representations.

ACKNOWLEDGMENTS

This work was supported by the German Research Foun-
dation (DFG), grants TO 409/1-3 and TO 409/7-1.

REFERENCES

[1] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011, pp. 1470–1477.

[2] S. Harnad, “The symbol grounding problem,” Physica D, vol. 42, pp.
335–346, 1990.

[3] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward understanding
natural language directions,” in HRI, 2010, pp. 259–266.

[4] F. J. Kurfess, “Neural networks and structured knowledge: Rule
extraction and applications,” Applied Intelligence, vol. 12, pp. 7–13,
January 2000.

[5] A. Cangelosi, A. Greco, and S. Harnad, Symbol Grounding and the
Symbolic Theft Hypothesis. Springer, London, 2002.

[6] D. Billman and J. Knutson, “Unsupervised concept learning and value
systematicity: A complex whole aids learning the parts,” Journal of
Experimental Psychology: Learning, Memory, and Cognition, vol. 22,
no. 2, pp. 458 – 475, 1996.

[7] V. Truppa, E. Piano Mortari, D. Garofoli, S. Privitera, and E. Visal-
berghi, “Same/different concept learning by capuchin monkeys in
matching-to-sample tasks,” PLoS ONE, vol. 6, no. 8, p. e23809, 08
2011.

[8] A. Newell and H. Simon, “Gps: A program that simulates human
thought,” in Computers and Thought, Feigenbaum and Feldman, Eds.
McGraw-Hill, New York, 1963.

[9] H. Dreyfus, What Computers Can’t Do: The Limits of Artificial
Intelligence. New York, USA: MIT Press, 1972.

[10] S. Džeroski, L. de Raedt, and K. Driessens, “Relational reinforcement
learning,” Machine Learning Journal, vol. 43, pp. 7–52, 2001.

[11] J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman, “How
to grow a mind: Statistics, structure, and abstraction,” Science, vol.
331, no. 6022, pp. 1279–1285, 2011.

[12] J. Feldman, “Symbolic representations of probabilistic worlds,” Cog-
nition, vol. 123, pp. 61–83, 2012.

[13] D. Katz, Y. Pyuro, and O. Brock, “Learning to manipulate articulated
objects in unstructured environments using a grounded relational
representation,” in RSS, 2008, pp. 254–261.

[14] K. F. MacDorman, “Grounding symbols through sensorimotor inte-
gration,” Journal of the Robotics Society of Japan, vol. 17, no. 1, pp.
20–24, 1999.

[15] E. Chinellato, A. Morales, E. Cervera, and A. P. D. Pobil, “Sym-
bol grounding through robotic manipulation in cognitive systems,”
Robotics and Autonomous Systems, vol. 55, no. 12, pp. 851–859, 2007.

[16] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Journal of Artificial Intelligence
Research (JAIR), vol. 29, pp. 309–352, 2007.

[17] T. Lang and M. Toussaint, “Planning with noisy probabilistic relational
rules,” Journal of Artificial Intelligence Research (JAIR), vol. 39, pp.
1–49, 2010.

[18] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman,
“An analysis of linear models, linear value-function approximation,
and feature selection for reinforcement learning,” in Proceedings of
the 25th Int. Conf. on Machine learning, ser. ICML 08, 2008, pp.
752–759.

	Introduction
	Related work
	Background on relational RL
	Symbol learning problem formulation
	Learning the symbol groundings f
	Learning a transition model via Ltransition
	Learning a reward model via Lreward
	Regularizing symbols

	Experimental evaluation
	Compared methods
	Simulated robot manipulation scenario
	Simulated bowling scenario
	Qualitative real-world experiment

	Conclusions and future work
	References

