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Abstract— An essential aspect for making robots succeed in
real-world environments is to give them the ability to ro-
bustly perform motions in continuously changing situations.
Classical motion planning methods usually create plans for
static environments. The direct execution of such plans in
dynamic environments often becomes problematic. We present
an approach that adapts motion plans by feeding changes of
the environment into a transformation of the plan in task
space. Furthermore, the progress in the plan is defined with
a phase variable that is updated adaptively according to the
actual task progress. This phase variable releases the strict
time compliance that many motion planning methods bring
along. The main benefit of our approach is the ability to do
this adaptation in a computational efficient manner during the
execution of the motion. Thus, the gap between the motion
planning and motion execution stage is bridged by continuously
transforming geometric and dynamic features of a reference
plan to the current situation. We evaluate the performance
of our approach by comparing it to alternative methods such
as dynamic motion primitives and continuous replanning on
several simulated benchmark tasks. Moreover, we demonstrate
the real robot applicability on a PR2 robot platform.

I. INTRODUCTION

There are many different ways of designing motion plans for
robots. The most widely used techniques include trajectory
optimization [1], human demonstration [2] and the manual
programming of movements [3]. In most cases, the outcome
of such techniques is a time-dependent trajectory, which
describes a motion of a robot that fulfills a task in a static
scenario. This trajectory is then usually passed on to a
controller that executes it. In scenarios where an exact model
of the environment exists and no unforeseen events happen,
such an approach is usually sufficient. An example for such
scenarios are many manufacturing tasks, where the robot
just has to execute the exact same motion in the same fixed
environment over and over again.
However, in real-world scenarios such an approach is often
unsuitable. One reason is that real-world scenarios are dy-
namically changing (e.g., humans or objects move). Another
reason is that some information may often not be available
during the planning phase (e.g., the exact object position can
only be measured accurately when the robot is in a certain
range to it). In such scenarios, the approach of planning and
subsequent tracking of trajectories often would lead to task
failure.
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Fig. 1. The Willow Garage PR2 robot moves with its right hand towards
the goal state, which is specified with the AR marker on the rod. The goal
state is moved during motion execution and the robot continuously adapts
a reference plan to the current situation.

To make robots also be able to succeed tasks in such real-
world scenarios, it is necessary to give them the ability to
react and adapt on changes. Therefore, methods are required
that can include state changes in a feedback-driven way into
the motion execution. Planning behavior that is reactive and
adaptive to continuous changes is non-trivial. One problem is
that the definition of a process of how the robot should react
to certain changes is more difficult than in static scenarios.
Especially if there are many changes or changes that cannot
be predicted well. Another problem is how such behavior
should be represented in a form that it is executable.
Instead of already taking changes in the planning phase into
account, we present in this paper an approach that is based
on creating the motion in static scenarios and generalizes
to state changes by adapting the plan continuously during
execution. Therefore it is still able to rely on classical motion
planning methods such as optimization or imitation for task
definition. Additionally, it can react during the plan execution
to occurring state changes. Thereby, we use the outcome of
such motion planners more as a guidance for achieving task
success and not as a trajectory that should be tracked exactly.
The adaptive behavior of our approach is achieved in two
fashions. First, state changes and online perception feed into
a transformation of geometric and dynamic features of the
reference plan in task space. Thereby, the shape of the refer-
ence plan is adapted to the new situation and it is guaranteed
that the robot and the goal state are always located on the



current plan. Second, a phase variable is used to measure task
progress. This phase variable is responsible for connecting
the current robot position and the corresponding position in
the reference plan. It guides the movement towards reaching
the goal and is adaptively increased depending on the actual
progress and state changes. Our approach is a compromise
between fully new planning and myopic trajectory following
control. It is computational efficient and provides smooth
transformations of the plan to the current situation.
Throughout this paper, we make two assumptions on the
task that need to be fulfilled, so that our approach can be
applied: (1) Reaching the final state is the main goal for
achieving task success. (2) Exact time compliance is not
essential for achieving task success. The first assumption
is not mandatory and a reformulation may also be eligible
for different variants (e.g., intermediate goals). The second
assumption is more strict, due to changes of the environment
an exact time compliance with respect to a reference plan
is very difficult to achieve. Both assumptions restrict the
class of possible tasks. Nevertheless, there are still many
tasks where the exact time execution is not essential and the
generalization abilities that come along with our approach are
more beneficial. For example, at grasping tasks it is usually
irrelevant if the execution time is 13 or 16 seconds and it is
more important that the object can be grasped reliably and
at different positions.
The rest of the paper is structured as follows: In Section II we
present first an overview of related work on different motion
adaptation approaches for dynamic scenarios. Afterwards, we
present in Section III our approach that is based on task
space transformation as well as phase space adaptation and
provide a concrete algorithmic implementation. Then, we
evaluate in Section IV our approach in multiple simulated
benchmark tasks and compare it to alternative methods.
Furthermore, we demonstrate the real robot applicability on a
Willow Garage PR2 (see Figure 1) by continuously adapting
a reference motion to the current goal state, which changes
during motion execution.

II. RELATED WORK OF MOTION ADAPTATION METHODS

In the following section, we present an overview of different
motion adaptation approaches. The main focus will be on
the adaptation technique and how the time handling is done
during the adaptation.
First, we give an overview of online replanning approaches
that adapt motions by continuously replanning again during
execution. Afterwards, we present different phase space
adaptation methods that avoid the strict time dependence by
substituting the time with a phase variable. Finally, we review
stationary controller approaches, where the next action is
chosen by purely depending on the current state.

A. Online Replanning

One of the most intuitive approaches is to continuously
replan the motion again during execution. For this, classical
motion planning methods are adapted in such a way that they

can be applied continuously during execution [4]. Rapidly-
exploring random trees have been modified to dynamic
scenarios by just repairing the invalid parts of the tree that
are affected from the dynamic changes [5]. Elastic strips
are an approach for reactive motion executing by adapting
planned motions to changes in dynamic scenarios [6]. They
are based on incremental modification of the planned motion
with energy functions.
Another approach on the control level is model predictive
control [7], which iteratively optimizes a cost function for a
finite horizon into the future. It has been used in different
areas of robotics like tracking mobile robots [8] or generating
walking gaits for humanoid robots [9].
Using online replanning methods has many advantages since
it extends well-known offline planning methods to dynamic
scenarios. Depending on the planning method it may often
even be possible to find completely new plans if the previous
plan is not executable anymore (e.g., because an obstacle
blocks the path). However, using online replanning in real-
world scenarios is not straightforward. Depending on the
planning algorithm and the complexity of the current scene,
the computational costs often restrict the online replanning
to a low frequency. Since most optimization algorithms need
multiple iterations for convergence, it is difficult to specify
an upper bound for the required computational time until
the algorithm converges. Therefore, it is difficult to integrate
them into a real-time motion execution framework with fixed
computational costs. Another drawback for using classical
planning methods in dynamic scenarios is that many of
them are still time-dependent. For example, most trajectory
optimization methods require a definition of the motion
duration, which is difficult to specify when changes in the
environment occur.

B. Phase Space Adaptation

Phase space adaptation methods use a phase variable s to
release the strict time dependency of motion plans. This
phase variable is a substitute for time that controls the
progress in the plan during execution. It usually has a
predefined start and end value, which represent the first
and last value of the motion plan. Each intermediate value
corresponds to exactly one entry of the plan and maps the
current robot position to a corresponding position in the plan.
The advantage of a phase variable is that the time evolution
of the phase can be modified easily.
The previous work that is most related to our approach are
movement primitives, which are parametrized representations
of movements. The main purposes of movement primitives
are to have a compact representation of the movement, to be
able to generalize the motion and to provide a way for gener-
ating control commands. Dynamic movement primitives [10]
are a widely used type of movement primitives. One reason
for that is their representation, which can be easily adapted
to new situations (e.g., time-scaling, goal change). Another
reason is that they are suitable for learning algorithms. For
example, they can be created via reinforcement learning [11]
and imitation learning [12]. Dynamic movement primitives



are based on a linear spring-damper system that is combined
with a nonlinear forcing function. The forcing function is
responsible for specifying the shape of the movement and
vanishes over time. Probabilistic movement primitives [13]
are a recent probabilistic approach to movement primitives.
They represent movements as probability distribution over
trajectories and achieve useful properties such as blending
and parallelizing of movements by using probabilistic oper-
ations. There exist different techniques of how to propagate
the phase variable in movement primitives. In the classical
form of dynamic movement primitives [10], the phase vari-
able s is initialized with 1 and is updated with

τ ṡ = −αs (1)

in each time step until it reaches the value 0. Here, τ is a
scaling constant to make the movement slower or faster and
α is a predefined constant. An alternative update rule [14]
for the phase variable is

τ ṡ = αs 1

1 + β(y∗ − y)⊺(y∗ − y) , (2)

where β is a constant, y the current robot state and y∗ the
desired state. With this update rule the progress is slowed
down when the current state y is far away from the desired
state y∗. We will propose a phase adaptation mechanism that
monitors the actual progress in task space during execution,
and compare this to DMPs in our expriments.
Phase variables are widely used in robot walking motions
[15], [16]. In [15] a time-scaling control law is introduced.
The time is transformed by a constant-time scaling law

s = λt (3)

with a constant λ. A cubic polynomial time scaling function
is derived that leads the system from one constant-time scale
λ1 to another constant-time scale λ2. This constant time-
scaling approach has been applied on a biped robot to speed
up and slow down the walking motion.
In physics-based animations a phase variable has been used
for executing rotational movements (e.g., cartwheel, flip)
with animated characters [17]. They use the phase variable
to position the character in the revolution state. As phase
variable an angle between different body parts is used.
The phase variable is also used to divide the movement
in different stages. For each stage a different controller is
designed.
In [18] they design a distance indexed reference trajectory for
a helicopter robot. The reference trajectory is parametrized
with the distance to the goal state. This reference trajectory
is used in an outer loop of a cascade controller to provide
new targets for a low level position controller.
While these classical phase adaptation schemes usually focus
on cyclic movement we propose methods to adapt the
execution phase of a plan depending on feedback on task
progress and change in goal location.

C. Stationary Controller

Stationary controllers are an alternative to the previ-
ously mentioned approaches, since they provide a time-
independent mapping of the current state to a desired control
command. Their behavior depends just on the state, which
is in many tasks a more reasonable decision measure for
choosing the next action than absolute time (e.g., a grasping
task should not depend mainly on time, but more on the
state of the grasp, if it is stable or not). A classical form
of time invariant approaches are potential fields [19] where
a potential guides the robot towards a goal state. Recent
methods [20] are free from local minima and can incorporate
human demonstrations.
Stationary controllers also have been widely used in rein-
forcement learning algorithms. An example of a nonlinear
representation of state-feedback controller are radial basis
function networks. In [21] they are trained in a reinforcement
learning setup by simulating the system to learn a controller
that maximizes a reward function. An alternative to defining
a reward function was presented in [22] by learning the
controller from human demonstrations. Generalization can
be achieved in such controllers by also taking external states
(e.g., goal position) as an input to the controller function
[23]. A drawback here is that especially for high-dimensional
state spaces the training time with gradient descent methods
becomes computational expensive.
Another approach of time-independent control is space-
indexed dynamic programming [24]. There, a spatial index
variable is used to measure how far the robot moved along
the reference trajectory. Based on this spatial index, they
present space-indexed versions of the differential dynamic
programming and policy search by dynamic programming al-
gorithms. An approach based on learning from demonstration
is presented in [25], [26], which learns a time-independent
dynamic model of a set of movements in task space. They
learn a hidden Markov model to encode spatial and temporal
information of the demonstrated motions. Gaussian mixture
regression is used for reproducing the motion, which gets the
current position as input and computes a desired velocity.
The parametrization over states instead over time is very
intuitive since the controller always chooses an action based
on the current state. Therefore, when changes in the state
occur they are directly fed as input into the controller.
Drawbacks are the high computational training costs in
higher dimensional state spaces and the difficulty to verify
robust behavior of the nonlinear controller for all different
states.

III. REACTIVE PHASE AND TASK SPACE ADAPTATION
FOR ROBUST MOTION EXECUTION

In the following section, we describe the technical details
of our approach. First, we present the notation and some
background on how to execute motions in task spaces. Then,
we describe the strategies used for the task space transfor-
mation and the phase space adaptation. Finally, we present
a concrete algorithmic implementation which combines all
these components.
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Fig. 2. The graphs show example motions of our approach. The top graphs shows task space transformation (see Section III-C) and the bottom graphs
show the corresponding phase adaptation (see Section III-B). The graphs with the same color in top and bottom graph correspond to the same motion.
The red graph shows in all graphs the reference plan τ ref. The adapted plans 1–3 show different executed plans τ plan. In the left box, the goal position
has an offset to the reference position before the execution starts. On the plots on the right side the goal position moved during the execution. Here, the
colored dots represent the movement of the different goal positions during execution.

A. Notation and Background on Motion Execution

Throughout this paper, we use the following notation:
● Joint state q ∈ Rn
● Task state y = φ(q) ∈ Rm
● Task goal state g ∈ Rm
● Action command u ∈ Rk
● Euclidean norm ∥ ⋅ ∥
● Trajectory in task space τ = {y0,y1, . . . ,yT }

Although trajectories are usually represented as a finite
sequence of states, we assume in the following that we can
also evaluate them like functions τ (t) for t ∈ [0, T ] by
interpolating them via quadratic B-splines.
In general, we assume that the input of our approach is
a reference plan τ ref in task space. Our approach adapts
this reference plan to changes of the environment during
execution. Representing motions in arbitrary task spaces has
many advantages. The design of motions with imitation
techniques (e.g., motion capture) or cost functions (e.g.,
distance to obstacles) is easier in task spaces than in the
configuration space of the robot. Some task spaces are also
robot independent (e.g., cartesian world coordinates), which
allows the transfer of task knowledge between different
robots. For executing motions that are defined in task spaces
a method is needed that computes the corresponding action
commands of the robot. Operational space control [27] is a

control method for executing motions in task space. Thereby,
it computes the control command u by minimizing at each
time step the optimization problem

u⋆ = arg min
u

∥u∥2
H + ∥Φ(q)∥2 (4)

with a task vector

Φ(q) =
⎛
⎜⎜⎜⎜
⎝

√
cpos(φ̈pos(q) − ÿ⋆pos)√
cdir(φ̈dir(q) − ÿ⋆dir)√
ccol(φ̈col(q) − ÿ⋆col)

⋮

⎞
⎟⎟⎟⎟
⎠
. (5)

Here, ÿ⋆ are desired accelerations in the various task spaces.
In our case, these desired accelerations are defined by
specifying a desired PD behavior within the task space,

ÿ⋆ =Kp (y⋆ −φ(q)) +Kd (ẏ⋆ − φ̇(q)) . (6)

A wide range of different task maps is possible. For ex-
ample, in Equation (5) the first line describes the distance
between the endeffector φpos(q) and the target y⋆pos. The
second line represents the distance between the orientation
of the endeffector φdir(q) and the target orientation y⋆dir.
The third task map is responsible for collision avoidance by
incorporating the distance of the robot to obstacles with the
term φcol(q). The cost weights c represent the importance
of the corresponding subtasks and have to be set manually



before execution. The parameter H in Equation (4) serves
as a regularization parameter for smooth transitions.
Fusing many different task spaces together leads to the
necessity that motion plans have to be adapted to the current
situation. This leads to the two main characteristics of our
approach:

1) Transformation of task space: The motion plan should
be adapted to the current situation (e.g., the avoidance
of an obstacle leads to a different motion shape).

2) Adaptation of phase space: The motion progress should
depend on the state of the environment (e.g., if the goal
moves far away, the duration should be increased).

Since some information is first available during motion
execution, both adaptations are performed online at a high
frequency rate.

RobotOperational 
Space Control

Motion Adaption 
Method

q, q̇y, ẏ

y?, ẏ?
u?

Fig. 3. Control diagram of the cascade controller.

In the following, we assume a motion execution framework
like represented in Figure 3 with two execution loops. The
inner loop is responsible for the operational space control
in task space and will usually run with a high frequency.
The outer loop runs with a lower frequency and provides
new targets in task space for the inner loop. Furthermore,
the outer loop is also responsible for adapting the plan to
the current situation.

B. Online Task Space Transformation

The current plan in task space that the robot should follow is
denoted with τ plan and parametrized over the phase variable
s ∈ [0,1]. We transform this plan during execution to changes
of the environment that differ from the static environment
of the reference scenario. This plan is updated continuously
during execution to two kinds of state changes: 1) The
goal state changes. For example, the goal moves before or
during execution of the movement or due to measurement
variance the task space coordinates are updated. 2) The robot
state is not on the plan. This situation can happen before
execution if the robot has a different start state. It also
naturally happens during execution as feedback regulators
can never follow a plan exactly. Later we will consider
an example wher an obstacle (that was unknown during
planning) occurred on the path that needs to be avoided.
The operational space controller accounts for the obstacle
online and pushes the robot off the plan. Another source of
perturbations is inaccuracy of the robot model, which we
certainly have in the case of our PR2 demonstration, where
the system does not accelerate as desired. We assume that
we have a measurement of the current robot state y and the
state of the goal g at each time step.
We propose to transform the current task space plan τ plan in
such a way that two conditions are afterwards fulfilled:

1) The current state y of the robot is on the plan:
τ plan(s) = y.

2) The current goal g is the last state in the plan:
τ plan(1) = g.

For achieving these conditions, the plan τ plan is transformed
for the remaining phase s̃ ∈ [s,1] with the update equation

τ plan(s̃) = τ plan(s̃) +∆g + (∆g −∆y) ⋅ s̃ − 1

1 − s . (7)

Here, ∆y = y−τ plan(s) is the distance that the robot is apart
from the plan and ∆g = g − gprev is the change of the goal
state.
The transformation properties are visualized in two-
dimensional example motions in Figure 2. The upper graph
in Figure 2(a) shows motions in a two dimensional task
space. The red graph is the reference plan. The blue, green
and black graphs are transformations of this reference plan
to different target positions (represented as circles) and are
computed with Equation (7). The upper graph in Figure 2(b)
shows another demonstration of our transformation. Thereby,
the goal moved during the motion execution (small dots show
movement of goals). The transformation of the plan was
performed continuously in each time step. The shape of the
reference plan is maintained and transformed to the current
situation.

C. Online Phase Adaptation

The phase variable is a substitute for time that measures
progress in the plan. The value s = 0 means that the robot
is at the beginning of the plan and s = 1 means that the
target state has been reached. The phase variable is updated
iteratively and always increases. In the following we propose
a phase dynamics that allows the execution to progress
with a speed that adapts to unforeseen events, such as an
obstacle that slows down the operational space controller, or
a goal transformation that elongates the distance to goal. We
propose the phase dynamics

s = s +∆sref ⋅ ∥g
ref − τ ref(s)∥
∥g − y∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δg

⋅ ∥y − y
prev∥

∥y⋆ − yprev∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

δy

. (8)

In Equation (8), the variable ∆sref is the reference step size,
y is the current robot state, yprev is the robot state of the
previous time step, y⋆ is the desired state of the current time
step, g is the current goal, gref = τ ref(1) is the reference goal
state.
The progression of the phase variable in Equation (8) de-
pends on two factors. The first factor δg is the ratio between
the distance to the goal in the reference plan and the distance
to the goal in the current situation. An intuition behind this
ratio is that if the goal is moving away from us, the update
of s should be smaller. The second factor δy in Equation (8)
sets the distance of the previous actual step in relation with
the distance of the previous planned step. If the planned step
is larger than the actual step, then Equation (8) would lead
to a smaller update of s.
As can be seen in Equation (8), if both factors are equal to
1 at each time step, we update the phase variable just with
the reference step size ∆sref, which would result in the exact



Algorithm 1 Adaptive Motion Execution (AMEX)
input:

Update rate ∆t
Robot position yprev = y0; Goal position gprev = g0

Reference trajectory τ̂ ref(t), for t ∈ [0, T ref]
initialization:

Phase variable s = 0
Reference step size ∆sref = ∆t

T ref

Remapped ref. trajectory τ ref(s) = τ̂ ref(s ⋅ T ref)
Planned trajectory τ plan(s) = τ ref(s), for s ∈ [0,1]

while s ≤ 1 run with frequency 1
∆t

1. Measure current state of system y and goal g
2. Update phase variable s (see Section III-C)
3. Transform trajectory τ plan (see Section III-B)
4. Compute next target state y⋆, ẏ⋆ (see Equation (9))
5. Send next state to the task

space controller (see Section III-A)
6. Save last state yprev = y and gprev = g

same temporal trajectory as our reference plan τ̂ ref. The case
occurs when the goal never moves and the robot executes all
control steps exactly as planned.
In Figure 2 the bottom graphs show the phase variable
s plotted over time. For simplicity, we assumed in both
examples that the robot is always able to execute the control
command exactly. In the motion visualized in Figure 2(a)
the targets have an offset before the execution starts and
do not move during execution. Here, the phase progress is
linear with respect to time. The linear scaling constant is
estimated with Equation (8) and is lower for targets that are
further away. In Figure 2(b) the targets are initially all in
the same position but move during the execution in different
directions with different velocities. In such cases the phase
progress is not linear anymore and depends on the movement
direction and speed of the target. The black motion graph
shows an example where the target first moves towards the
robot and the phase variable progresses faster. Then the goal
moves away from the robot and the phase variable progresses
slower.

D. Adaptive Motion Execution Algorithm

With the task space execution method, the transformation
of the task space and the phase adaptation we have all
ingredients to execute adaptive motions on robots in dynamic
scenarios. The Adaptive Motion Execution (AMEX) method
combines all these single steps and is summarized in Algo-
rithm 1.
The input of the algorithm is a reference trajectory τ̂ ref

in some task space, which describes a motion of duration
T ref. This reference trajectory describes a task for a specific
robot in a static environment scenario. Before starting the
execution, the reference trajectory τ̂ ref is reparametrized
from its parametrization over t ∈ [0, T ref] to a parametrization
over the phase variable s ∈ [0,1]. This reparametrization is
done by simply defining τ ref(s) = τ̂ ref(s⋅T ref). The reference
step size ∆sref is set to ∆t

T ref , where ∆t is the duration between

Fig. 4. This picture of the robot simulator shows a Task 3 scene of the
simulation experiments (see Section IV-A). The black ball is an obstacle.
The yellow balls represent the goal start and end state and the yellow line
between is the goal movement during execution. The red line shows the
reference plan τ ref that was created without any obstacle. The green (DMP),
blue (AMEX), and white (CR) lines show the adapted motion τ plan.

replanning. The current plan is initialized with this reference
plan τ plan = τ ref and the robot and goal are put into a start
state y0 and g0.
The while loop in Algorithm 1 contains the steps that are
executed with a frequency of 1/∆t. In step 1 of Algorithm 1
the current system state and goal state are measured and fed
as input into the update of the phase variable in step 2, which
is computed with Equation (8). Afterwards, the trajectory is
transformed with Equation (7) such that the current robot
and goal state are on the plan. In step 4 of Algorithm 1
the next target state is computed using the updated plan of
Equation (7) according to

y⋆ = y +∆sref ⋅ τ̇
plan(s)

∥τ̇ plan(s)∥ ⋅ ∥τ̇
ref(s)∥ (9)

with the velocities τ̇ plan(s) of the current plan and τ̇ ref(s) of
the reference plan. Thus, the robot moves into the direction
of the current plan with the magnitude of the reference plan.
Finally, this target state is passed on to the operational space
control method and the current state is stored for the next
iteration.
The steps 1–6 are repeated until the phase variable reaches
the value 1, which denotes that the robot reached its goal.

IV. EXPERIMENTS

In the following section, we evaluate the performance of the
AMEX method described in Algorithm 1 on simulated and
real robot benchmark tasks. In all experiments, the reference
plan is created with a trajectory optimizer that uses quadratic
cost terms and a Gauss-Newton optimizer. We designed a
cost function that is composed by the sum of squared joint
accelerations, an obstacle avoidance term and the distance to
the final robot state.
We executed this reference plan with operational space
control (see Section III-A) and used as task spaces the
position of the robot endeffector, the orientation of the
robot endeffector, an obstacle avoidance term and a term
to prefer smooth transitions in configuration space. We use
the collision detection package SWIFT++ 1 to compute the

1http://gamma.cs.unc.edu/SWIFT++

http://gamma.cs.unc.edu/SWIFT++


Success Final Time Sum of Squared Acc. Computational Time

Task 1
AMEX 1 4.17 ±0.77 6.52e+03 ±7.09e+03 1.02e-04 ±1.64e-05
DMP 1 3.70 ±0.09 2.95e+04 ±4.33e+04 3.28e-05 ±1.96e-06
CR 1 3.63 ±0.05 4.54e+03 ±6.46e+03 8.23e-03 ±1.24e-03

Task 2
AMEX 0.99 4.11 ±1.15 7.08e+03 ±7.27e+03 1.01e-04 ±1.48e-05
DMP 0.99 5.77 ±2.53 1.73e+04 ±2.48e+04 3.39e-05 ±1.96e-06
CR 0.99 3.65 ±0.15 5.65e+03 ±5.46e+03 1.22e-02 ±3.47e-03

Task 3
AMEX 0.91 5.32 ±3.45 3.97e+04 ±4.67e+04 9.24e-05 ±2.36e-05
DMP 0.91 5.89 ±3.56 1.27e+05 ±3.79e+05 3.39e-05 ±3.53e-06
CR 0.94 3.67 ±0.54 3.88e+03 ±5.83e+03 2.25e-02 ±8.51e-02

Task 4
AMEX 0.92 4.93 ±3.22 6.62e+04 ±2.30e+05 9.44e-05 ±3.09e-05
DMP 0.93 5.86 ±3.24 2.17e+05 ±5.07e+05 3.97e-05 ±1.15e-04
CR 0.92 3.72 ±0.55 4.23e+03 ±6.17e+03 2.27e-02 ±1.28e-01

Fig. 5. Evaluation results of the simulation task with mean and two times
the standard deviation of the data.

distances to obstacles, which is integrated in the task vector
in Equation (5).

A. Simulated Benchmark Tasks

In the following experiments, a simulated DLR light weight
robot arm with convex shapes is used (see Figure 4). The
robot has seven degrees of freedom and the goal of the
task is that the robot reaches a desired target state with its
endeffector. Thereby, changes in the environment happen and
the robot has to adapt its motion.
We compare three methods for motion adaptation:
Adaptive Motion Execution (AMEX): This is the approach
proposed in this paper based on task space transformation
and phase adaptation (see Algorithm 1).
Dynamic Movement Primitives (DMP): This is an alterna-
tive phase space adaptation method mentioned in Section II-
B. We implemented the standard formulation for static move-
ments [10] and used Equation (1) for updating the phase
variable.
Continuous Replanning (CR): This is a continuous re-
planning approach that uses a trajectory optimizer in each
adaptation loop. It is the same trajectory optimizer with the
same cost function that also created the reference plans for
the DMP and AMEX method. Thereby, the previous plan is
used as a starting point for the next iteration to speed up
optimization.
All these methods are updated in an outer loop at 100 Hz
and the operational space controller runs in an inner loop at
1 kHz (see Figure 3). In all tasks there is a fixed reference
target position to which a reference plan is computed that is
used as input in all motion adaptation methods. We created
4 benchmark tasks with different properties:
Task 1: The target was placed at a position that differs from
the reference target position.
Task 2: Same as Task 1 plus the target moves during
execution in a direction.
Task 3: Same as Task 2 plus there is an obstacle in the scene
that the robot has to avoid.
Task 4: Same as Task 3 plus that the obstacle is also moving.
For each task 150 different environments were created. The
position of the target, position of the obstacle, movement
directions and movement speeds were thereby sampled from
Gaussian distributions. An example scene is visualized in
Figure 4. The red line represents the reference plan τ ref.
The yellow balls are the goal start and end position and
the yellow line is the goal movement during the execution.

The black ball is an obstacle that was put there after the
planning phase. The AMEX motion is visualized as blue
line, the DMP motion as green line and the CR motion as
white line. The CR motion avoids the obstacle already very
early, since it is included in the trajectory optimization cost
function. The DMP and AMEX motions react later on the
obstacle. It can be seen that the DMP motion first avoids the
obstacle and then comes back to its original path. But the
AMEX motion avoids the obstacle and transforms the plan
such that it does not move down again, which comes closer
to the behavior of the CR method.
The table in Figure 5 shows the results of the simulated
experiments. We computed for each task and method differ-
ent metrics that are given with the mean and two times the
standard deviation over the 150 different environments. The
success rate describes the ratio of in how many of the 150
environments the robot was able to reach the target state with
a distance below 0.03 m. As it can be seen in the table, all
methods reach a high success rate above 0.9, which shows
that AMEX reaches a similar robustness to DMP and CR.
The final time represents the duration of the actual robot
motion. Our approach AMEX reaches a higher deviation
in motion duration than CR, which comes along with the
adaptive phase adaptation. So the motion takes longer if the
goal moved away from the robot and vice versa. The sum
of squared acceleration is computed from the resulting joint
space accelerations. As expected, the continuous replanning
approach reaches the best result. But our approach reaches
a lower value than the DMP motions. The computational
time is the time for one iteration of the computations that
the adaptation method has to perform to compute the next
target. As it can be seen, the CR approach takes longest, has
a large deviation and increases with more complex tasks.
Reducing the motion adaptation frequency would also lead
to longer planning times for CR, since the changes in the
environment will be bigger.

B. PR2 Reaching Motion

We implemented Algorithm 1 on a Willow Garage PR2
robot platform. We used the right arm of the PR2 for our
experiments, which consist of seven rotational joints. The
task was to reach a target position with the right hand of
the PR2. The experimental setup is visualized in Figure 1.
Each joint was controlled with a real-time torque controller
at 1kHz. The motion adaptation loop communicated with
this real-time controller at 20 Hz. We used the ROS package
ar track alvar2 for tracking the target state during execution.
This package tracks the position of AR tags with the Kinect
camera on the head of the robot. The duration of the motion
was 10.6 s. The resulting motion is visualized in Figure 6.
The red line τ ref shows the reference motion of the PR2s
right arm. The blue line represents the executed motion τ plan,
which was adapted during execution to the target change. The
tracked targets are visualized as blue circles. As it can be

2http://wiki.ros.org/ar_track_alvar

http://wiki.ros.org/ar_track_alvar
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Fig. 6. The graphs shows motions of the PR2 experiments (see Section IV-
B). The graphs show the motion of PR2s right hand in task space. The red
line shows the reference motion τ ref created with a trajectory optimizer.
The blue line shows the adapted executed motion τ plan of the robot to the
new goal position. The blue dots represent the goal state movement during
the motion execution.

seen, the transition from the reference motion to the adapted
motion is smooth and works on real robots.

V. CONCLUSION

In this paper, we proposed an approach for continuously
adapting pre-planned motions during their execution to
changes in the environment. The motion plan is adapted in
two manners: 1) The motion is transformed in task space,
such that it is guaranteed that the robot and the goal are
always located on the current plan; 2) The phase space is
adapted in such a way that it relaxes the motion from a
strict time dependency. We derived a phase update rule that
includes the actual task progress and the change in goal
location. We provided a concrete algorithmic implementa-
tion, which combines our approach with a low level task
space controller. We demonstrated on simulated benchmark
tasks that our method reaches a similar performance such
as alternative motion adaptation methods. Additionally, we
showed on a PR2 platform the real robot applicability of
our approach, which is given through the low computational
costs and the smooth transformation of the plan in task
space. A limitation of the approach is to deal with situations
where the goal moves out of the geometrical possible range
of the robot or the obstacles are in such a constellation
where no free path is possible anymore. In such cases,
global replanning methods are required. In that respect,
our approach bridges between such higher level planning
methods and the fast control of motions. Future research
might consider the prediction of future goal positions based
on their past movement (e.g., with a Kalman filter) or the
integration of additional environment feedback like contacts.
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