
Dual Execution of Optimized Contact Interaction Trajectories

Marc Toussaint1 Nathan Ratliff1,2 Jeannette Bohg2 Ludovic Righetti2 Peter Englert1 Stefan Schaal2

Abstract— Efficient manipulation requires contact to reduce
uncertainty. The manipulation literature refers to this as fun-
neling: a methodology for increasing reliability and robustness
by leveraging haptic feedback and control of environmental
interaction. However, there is a fundamental gap between tra-
ditional approaches to trajectory optimization and this concept
of robustness by funneling: traditional trajectory optimizers
do not discover force feedback strategies. From a POMDP
perspective, these behaviors could be regarded as explicit obser-
vation actions planned to sufficiently reduce uncertainty thereby
enabling a task. While we are sympathetic to the full POMDP
view, solving full continuous-space POMDPs in high-dimensions
is hard. In this paper, we propose an alternative approach in
which trajectory optimization objectives are augmented with
new terms that reward uncertainty reduction through contacts,
explicitly promoting funneling. This augmentation shifts the
responsibility of robustness toward the actual execution of
the optimized trajectories. Directly tracing trajectories through
configuration space would lose all robustness—dual execution
achieves robustness by devising force controllers to reproduce
the temporal interaction profile encoded in the dual solution of
the optimization problem. This work introduces dual execution
in depth and analyze its performance through robustness
experiments in both simulation and on a real-world robotic
platform.

I. INTRODUCTION

Trajectory optimization has become a standard and effi-
cient method for robot motion generation. However, for robot
manipulation that requires constraint interaction with objects
and obstacles (e.g. sliding before grasping) there still is a
crucial gap between trajectory optimization frameworks and
the execution of the manipulation in real world. Typically,
the optimized trajectory in configuration (joint angle) space
is viewed as a reference which should be followed using
a controller that corrects for perturbations in configuration
space. This approach is successful when deviations between
the environmental model used during optimization and the
real world are small, but they display essentially no robust-
ness to more substantial variations.

A first approach to circumventing this problem is to try
to model the environment more precisely. Recently there
has been great progress in modeling and simulating contact
interactions much more accurately, e.g. using Linear Comple-
mentarity Problem (LCP) solvers or related contact models
[1], [2], [3], leading to incredibly impressive trajectories
for sequential manipulation [4]. However, we believe it is
absolutely non-trivial to actually execute them in real-world
environments.

1 <first>.<last>@informatik.uni-stuttgart.de
2 <first>.<last>@tuebingen.mpg.de
This work was supported by the EU-ICT Project 3rdHand 610878.

A second approach is to directly optimize reactive con-
trollers in a full POMDP (dual control) setting. In this
case, we explicitly represent all uncertainties that arise when
mapping from a model to the real world and optimize for
reactive policies that act optimally under such uncertainty,
including the information seeking behavior that is implicit
in optimal POMDP policies (e.g. moving to feel the position
of an uncertainly placed object). However, this approach can
be considered as even more challenging than the previous
one. We additionally require exact modeling of real-world
uncertainties and face great challenges in POMDP planning.
The next section discusses such approaches in detail.

A third approach is to acknowledge that what we optimize
can never truly match the real world. The optimization
problem we formulate—including the model of the en-
vironment, the robot’s kinematics and dynamics, and the
behavior we will see at the control level—can only be
an approximation or abstraction of what we see in reality.
Therefore, the optimization result cannot serve as a literal
reference in the real world. Instead, the onus lies in the
execution, which becomes a non-trivial interpretation of the
optimization result and a translation of its suggested behavior
to a reactive feedback controller for the real world. This view
of execution introduces a much broader tool set to our choice
of abstraction in optimization and corresponding execution.

This paper follows the last approach to develop techniques
for leveraging trajectory optimization to solve manipulation
tasks that involve direct force interaction with constraints.
More specifically:
• We propose specific cost terms in a constrained tra-

jectory optimization setup that mimic an information
seeking behavior: they implicitly reward establishing
contact with objects that have uncertain pose. This
term effectively promotes funneling behaviors within
trajectories by steering into constraints, anticipating
that the real world system’s controllers will use force
feedback to re-calibrate the task spaces (object poses)
on the fly during execution.

• We employ an extension of the Augmented Lagrangian
method to cope with the inequality-constrained trajec-
tory optimization problem. The inner loop solves the
unconstrained problem with an efficient Gauss-Newton
method exploiting the band-diagonal structure in the
Hessian, leading to optimization times below a second
in our scenarios.

• We propose executing the optimization result using a
feedback controller on the dual variables of the solution,
a technique we call dual execution. Rather than focus
on the configuration space trajectory (the problem’s

primal solution), our approach emphasizes reproducing
the optimized profile of constraint interactions implicitly
encoded within the dual solution of the problem.

In the next section, we review in detail some of the related
work that motivates our approach. Section IV-A reviews our
general trajectory optimization setup and we introduce an
efficient state augmentation for the optimization in Section
IV-B that mimics an entropy reduction process in the belief
over environmental object poses during constraint interac-
tion. This augmentation enables us to propose a cost term
that rewards establishing contact with objects. Section V then
discusses the dual execution of the optimization result, where
we describe the objective function of a low-level operational
space controller that combines desired variables in the dual
space, the end-effector’s force space, and Cartesian position
space. Dual execution is a meta-controller that combines the
online (force) feedback and the optimization results to define
the desired variables for this low-level controller. Section VI
demonstrates this approach both in simulation and on a real-
world robot platform.

II. RELATED WORK

A. Exploiting contacts for manipulation

Our approach is motivated by a long history of results
emphasizing the benefit of exploiting contacts and environ-
mental constraints during manipulation. In [5] the importance
of first establishing and then maintaining contact (sliding)
is made explicit for problems such as peg-in-hole. The
DARPA ARM challenge [6] has singled out the importance
of contact: several teams have published reports emphasizing
that deliberate contact with the environment was key to the
robust manipulation of a diverse range of objects [7], [8], [9].
Similarly, Deimel et al. [10] presented an insightful study
on how humans exploit tactile feedback during grasping,
especially when their vision is impaired.

All these works motivate the importance of exploiting
contact with the environment to generate “funnels”, which
we understand here as overall system dynamics that reduce
uncertainty. The above mentioned approaches usually do not
use trajectory optimization methods to design these contact
strategies but instead design feedback controllers based on
expert knowledge. This work aims to integrate the idea of
exploiting contacts with efficient trajectory optimization.

B. Belief Planning

Planning under full POMDP formulations leads to policies
that reduce task-relevant uncertainty [11]. While solving
POMDPs is hard in general, several approaches have re-
cently been very successful in realizing belief planning in
robotics domains: Hsiao et al. [12] derive information seek-
ing “tactile exploration” policies from a POMDP framework,
and translated these ideas to robust grasp strategies [13].
Interestingly, Hsiao et al. [14] also explicitly consider the
execution problem—but given a complete optimized belief
plan. More recently, efficient approaches for belief planning
in (locally approximated) Gaussian belief space using iLQG
have been proposed [15], [16]. However, the running costs is

still O(n6) in the configuration space dimension. Typically,
these approaches are used for obstacle avoidance [17] instead
of seeking contact to reduce uncertainty.

Besides computational complexity, a full POMDP for-
mulation is also challenging as it requires exact model-
ing of real-world uncertainties. Our approach aims for a
simpler integration of information seeking contact behavior
with trajectory optimization, by proposing objective function
terms in standard (constrained) optimization that mimic the
information seeking effect for belief planning.

C. (Constrained) Trajectory optimization

It is beyond the scope of this discussion to review the
field of trajectory optimization. Recent methods that address
optimizing trajectories involving contact during walking and
manipulation are, e.g. [1], [18], [3]. These methods typically
involve solving Linear Complementarity Problem (LCP) for
closed kinematic chains and leveraging sequential quadratic
programming reductions. We will equally employ classical
optimization methods, proposing a slight extension of Aug-
mented Lagrangian [19] to efficiently reduce an inequality-
constrained optimization problem to a series of unconstrained
problems.

D. Robust execution of pre-planned paths

Designing controllers to execute a pre-planned path is
a classical topic in robotics. While the naı̈ve approach
directly aims to reproduce the planned configuration space
trajectory, several classical methods relax this by allowing
for an adaptive timing [20], [21], [22]. A further step to
make execution more robust is to only reproduce the plan
in a select task space, which facilitates exploiting online
feedback to influence the null space (e.g. for moving obstacle
avoidance) or re-calibrating the take space on the fly [23].
Dual execution integrates these ideas, but focusing on the
dual solution instead of a task space reproduction.

III. DUAL EXECUTION: OVERVIEW

We start by defining the notion of Dual Execution as:
Executing the dual solution to a trajectory opti-
mization problem in the real world by designing
feedback controllers that track the constraint inter-
action profile of the optimized trajectory.

The word “dual” here does not refer to other notions like
dual control or Kalman duality [24], [25], but to the dual
solution.

Let x(t) ∈ Rn be the optimized joint configuration of an
n-DoF robot. Typically certain task spaces are relevant to a
given task, which are defined by a task map φ : Rn → Rd,
where φ(x) may represent end-effector coordinates, distances
to objects, relative orientations, or a concatenation of such
kinematic features. Task-space execution aims to reproduce
the task space trajectory y(t) = φ(x(t)) during the real-world
execution.

Now assume that the trajectory is the result of a con-
strained optimization problem, where in each time slice we
have dg constraints represented by a constraint function

g : Rn → Rdg (more details below). The dual solution will
then be a dg-dimensional trajectory λ(t) ∈ Rdg of Lagrange
multipliers. This dual trajectory captures the temporal profile
of “interaction” with the constraints, that is, exactly when
each constraint is active along the optimal solution. In our
case, the constraint functions g will describe the contact of an
end-effector with an object in the environment, e.g. a table.
In attempting to reproduce the dual trajectory λ(t) during
real-world execution, we can reproduce the temporal profile
of contact with these objects.

This core idea of dual execution means that we can for-
mulate optimization problems that explicitly involve contact
with the environment—that, in fact, reward contact with
the environment due to the implied information gain—and
have controllers that aim to reproduce this optimized contact
profile rather than the joint configuration trajectory.

In the following, we will first give technical background
on the constrained optimization framework we propose and
discuss how to formulate objective functions that will lead
to trajectories that seek for contacts. Thereafter, we focus on
the execution control itself.

IV. OPTIMIZATION AND OBJECTIVE FUNCTIONS THAT
REWARD FUNNELING

A. Optimization Problem Formulation

In this section, we briefly cover our optimization
framework—more details on this and our application of the
Augmented Lagrangian method can be found in supplemen-
tary material.1

Let xt ∈ Rn be a joint configuration and x = x1:T =
(x1, . . . , xT) a trajectory of length T . We consider the
optimization problem

min
x

∑T
t=0 ft(xt−k:t)

>ft(xt−k:t) (1)

s.t. ∀t : gt(xt) ≤ 0 ,

where xt−k:t = (xt−k, .., xt−1, xt) are k + 1 tuples of
consecutive states, ft(xt−k:t) ∈ Rdt are arbitrary first-order
differentiable non-linear k-order cost terms, and gt(xt) ∈
Rmt are mt non-linear inequality constraints for each t
(totaling M =

∑
tmt constraints in all). By appropriately

defining the k-order cost terms ft, we can optimize for
squared torques and arbitrary tasks in each time slice—see
the supplementary material for details2.

For both ft and gt, we assume to have access to their
Jacobians, but not the Hessians.

Instead of using log-barrier methods we choose to mod-
ify standard Augmented Lagrangian (AL) method [26] to
account for inequalities.2 Generally, AL leads to better
conditioned unconstrained problems than log-barriers. The
details of this are given in the supplementary material.1

1http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/optim.pdf
2 While [26] reduce inequality constraints to simpler, but higher-

dimensional, bound-constrained problems (that in turn still require special-
ized bound-constrained solvers), our approach retains the original problem
dimensionality and can leverage in the inner loop traditional unconstrained
solvers.

Each inner loop optimization of the Augmented La-
grangian method solves an unconstrained nonlinear opti-
mization problem. The specific form of our problem given
by Equation 1 results in a generalized least-squares inner
loop optimization that can be solved using a Gauss-Newton
method, and specifically one with a banded symmetric
positive-semidefinite pseudo-Hessian R = 2∇ψ>∇ψ with
band-width (k+1)n across the full trajectory x0:T , where
n = dim(xt). The banded-ness is crucial for efficient
computation of the Newton step and has its origin in the
k-order chain structure of Equation 1. The inversion of R
(or rather, computation of ∆ = −R-1∇ψ>ψ) is very efficient
using appropriate matrix packings and well-studied band-
diagonal solvers. In fact, the computational complexity of
such a Gauss-Newton step is identical to that of a Kalman
or Riccati sweep. In practice, we damp the Gauss-Newton
iterations following the Levenberg-Marquardt methodology
[26] if non-linearities in ft or gt lead to non-decreasing steps.

B. Objective functions that reward (uncertainty) funneling
and contact interaction

The inequality constraints gt correspond to contacts with
objects in the environment. The dual solution represents
when constraints are active, that is when the solution is
in contact. While typical optimization approaches want to
avoid contact, here we want to propose cost terms that
explicitly favor funneling behavior by touching or sliding
along constraints.

For this we propose two cost terms in this section. First,
we define a simple potential that pulls the trajectory into
constraints, thereby rewarding sliding contact in general.
Second, we derive a method that augments the state space x
by a single scalar uncertainty variable (for each constraint),
defining a form of uncertainty dynamics that describe how
uncertainty decreases with constraint contact, and then plan-
ning trajectories that reach a final state with low uncertainty.

1) Potentials pulling into constraints: The first approach
is very simple: to the cost at each time slice ft(xt−k:t) we
append a term

−g(xt) + α (2)

which implies a squared potential (g(xt)−α)2 for each t in
the overall objective, which pulls the value of g towards the
positive (constraint violating) parameter α. In the Karush-
Kuhn-Tucker (KKT) conditions, this term induces (via ∇f)
exactly the same terms as the Lagrange terms—but pulling
into the constrained with “force” 2α2(g(x) − 1) instead of
pushing out with force λ. We will demonstrate this objective
later.

2) Abstracted uncertainty dynamics and planning towards
low final uncertainty: The second approach augments the
state xt with a single scalar (for each constraint) b ∈ R
which represents a subjective degree of uncertainty. Let us
first consider a generic form of uncertainty dynamics before
discussing its semantics: We consider

ḃ = −ξ(x, b) b+ b0 (3)

which states that uncertainty reduces with a rate ξ(x, b) that
depends on the current configuration (in real-world: sensor
feedback) but increases continuously with a small drift b0.
This can be seen in analogy to the evolution of the variance in
a Kalman filtering process: b0 captures a permanent increase
in variance as in the prediction step; −ξ(x, b) b captures a
variance reduction as in the likelihood (“Kalman gain”) step.
In fact, choosing ξ(x, b) = (a/(b+a)−1.) exactly reproduces
the variance reduction of a 1D Gaussian if multiplied with
a Gaussian observation of variance a (for instance a → ∞
implies no reduction in variance b). In the following, we
consider b� a and therefore drop the dependence of ξ(a, b)
on b.

Following expert knowledge, we propose to assume that
uncertainty reduces whenever the robot is near a constraint.3

We translate this into the following simple type of uncer-
tainty reduction rate,

ξ(xt) = α σ(g(xt)/m+ 1) , ∂xξ = α σ(1− σ)/m ∂xg
(4)

where m is a margin parameter, α a decay parameter, and σ
is the sigmoid function. For g = 0, b decays fast with ≈ α;
for g = −m, b decays slower with α/2; for g = −2m, b
decays slowly. In brief: only if we are near, or ideally at the
constraint, uncertainty reduces fast.

Eqs. (3) and (4) together define the uncertainty dynamics.
We augment the state xt with the uncertainty scalar and en-
force the uncertainty dynamics in the trajectory optimization.
We do so by penalizating deviations from these dynamics,
by appending to time slice costs ft(xt−k:t, bt−k:t) a term
proportional to

[bt − (1− τξ(xt-1)) bt-1 − τb0] . (5)

The Jacobians ∂xt-1,bt-1,btft are straight-forward.
Finally, now that we have the uncertainty simply as part

of the state, we can plan trajectories to reach any desired
uncertainty state, in particular low uncertainty. We do so
by appending a term bT /σb to the final time cost term
fT , which implies a simple additional squared penalty for
bT > 0. This second approach is an instantiation of the idea
of funneling—here in the sense of using contacts to explicitly
funnel uncertainty.

The effects of using the squared potentials vs. planning
with the uncertainty dynamics is demonstrated and discussed
for the most basic 1D case in Section VI-A.

V. DUAL EXECUTION & THE CONTROL ARCHITECTURE

In the previous section, we described how we can define
optimization objectives that favor contact and information
gain behavior and yield a primal x(t) and dual λ(t) solution.
We now address the question of how to execute these plans
in a way that is (online) adaptive to environmental changes
not accounted for during optimization—the core idea is to
aim to reproduce the constraint contact pattern implied by
the dual solution λ(t).

3This could be made more formal: considering the information gain of a
truncation of a Gaussian that arises from binary tactile feedback [27]; but
this is beyond the scope of the current presentation.

offline
optimization

execution
controller

force
controller

Fig. 1. Assumed control architecture: The offline optimizer returns primal
and dual trajectories x(t), λ(t); the execution control loop (∼100Hz)
translates these, together with information on the currently sensed force
f , end-effector y, ẏ and joint configuration state x, ẋ, into desired force,
end-effector and nullspace references f∗, y∗, ẏ∗, x0, ẋ0 that the operational
space/force controller (∼1kHz) uses to compute motor commands.

We generally assume a hierarchical control architecture
distinguishing between the outer loop execution controller
running with about 20-100Hz on a non-real time machine,
and an inner loop operational space position and force
controller running at 1kHz on a real-time machine connected
to the robot, see Figure 1. We believe this two-level control
structure is appropriate in most realistic robotic systems:
Every robotic system has its own low-level motor control
infrastructure, being tuned to robustness by engineering
expertise—this is certainly true for our real-world robotic
system, see below. Our approach does not aim to change
or replace this low-level control infrastructure but work with
any interface as long as it allows us to send desired positions
and interaction forces.

In the following we describe two different low-level force
controllers: the first being the actual control infrastructure
running on the Apollo robot that we use for our experiments,
the second an idealized operational space controller that
illustrates more formally our idea about how force control
is realized. These descriptions clarify the interface to the
execution controller, which we describe last.

A. Force controller on the Apollo robot
On the real robot, we use the existing position and force

control architecture as described in [9] that allows to control
both positions and forces in operational space with good
tracking performance. It consists of an inverse dynamics
controller with joint position control augmented by a position
and force controller in operational space (using Jacobian
transpose control laws).

The desired joint position, velocities and accelerations
are computed through inverse kinematics given the desired
position and velocity reference y∗, ẏ∗ in task space and an
optional nullspace motion ẋ∗. They are then sent to the
inverse dynamics and joint PD controllers. In addition, the
task space feedback controller ensures accurate tracking of
task space positions and forces.

The controller allows to set a desired end-effector force
vector f∗ ∈ R3 along arbitrary directions. The feedback
controller then ensures the tracking of this reference force
in operational space while positions are tracked in the other
directions. The details of the control architecture and a
discussion on its performance can be found in [9].

In conclusion, the controller allows us to set online with
high frequency a desired end-effector force f∗, desired end-
effector motion y∗, ẏ∗, and optional nullspace motion ẋ∗,
in this hierarchical order. The execution controller sends
these control objectives at a lower frequency. Therefore, we

use splines to interpolate between them and ensure smooth
control commands.

B. Idealized operational space force controller

For our simulation experiments we choose to have a
simpler controller, allowing reproducibility. A general form
of operational space force control for fully actuated systems
can be described via the objective function

F (ẍ) = ||Mẍ+ h+ J>gλ
∗||2H + ||Jφẍ− c||2C + ||Jgẍ− b||2B

(6)
ẍ∗ = (M>HM + J>gBJg + J>φCJφ)-1×

[−M>H(h+ J>gλ
∗) + J>gBb+ J>φCc] .

The first term is a squared penalty of motor torques u =
Mẍ + h + J>gλ

∗ where M is the inertia matrix, h gravity
and Coriolis forces, and λ∗ desired constraint contact forces
translated into joint space via the constraint Jacobian J>g .
The second term, by choosing c = ÿ∗ − J̇φẋ, is a squared
penalty of desired accelerations in a task space defined by
φ. The third term, by choosing b = g̈∗ − J̇gẋ, is a squared
penalty of desired accelerations along the constraint gradient.
The optimum ẍ can be rewritten using Woodbury identities
to yield the more common equations of operational space
control as special case and allow for precision limits B →∞
(optionally also C →∞), so that we can analytically impose
the contact constraint. Also a desired nullspace acceleration
ẍ∗ can be incorporated—we neglect these details here for
brevity.

In addition to Equation (6), our simulated controller uses
PD feedback to determine the desired accelerations ÿ∗ from
the current state and the targets (y∗, ẏ∗) commanded by
the execution controller (equivalently for g̈∗ and ẍ∗). The
simulated controller assumes touch feedback: when sensing
contact, the commanded end-effector force f∗ is directly
translated to λ∗ and g̈∗ is zeroed. In simulation, this will
induce the desired force as we assume a correct M and h.
Out of contact, λ∗ is zeroed and the execution controller may
set references (g∗, ġ∗) to steer the end-effector towards the
constraint, see below.

In conclusion, such a type of operational space force
controller allows us to define (and online adapt) arbitrary
task and constraint spaces via φ and g, set desired constraint
forces λ∗, and set references in the task spaces (y∗, ẏ∗) and
(g∗, ġ∗). Our simulation experiments use this controller.

C. Execution controller

Finally, the execution controller has the task of defining
the inputs (f∗, y∗, ẏ∗, ẋ∗) to the operational space force con-
troller at high frequency. The optimizer returned x(t), λ(t).
Using the known end-effector kinematics φ, we compute
from this also the end-effector reference y(t). Throughout
execution, x(t) will serve as a weak nullspace reference for
the force controller.

The aim of execution is to follow the dual reference λ(t),
that is, to create or maintain constraint contact if λ(t) > 0
and avoid contact for λ(t) = 0. We do this by distinguishing
four cases—the first one being the most interesting as it also

re-calibrates our constraint defining map g based on missing
tactile feedback:

• Case f = 0 ∧ λ(t) > 0: we sense no force while the
dual reference commands to be in contact. In this case,
we design a PD behavior along the constraint gradient
Jg that pulls the end-effector into the constraint. We
also send the planned task space reference y(t) which
is, due to the hierarchical low level operational space
controller, only followed along directions orthogonal to
Jg (planar to the constraint).
Importantly, we use the missing force feedback to online
re-calibrate our constraint defining map g: we shift the
offset of g to be consistent with the observation of no
contact. This will influence the future controller as tasks
are defined relative to the constraint.

• Case f > 0 ∧ λ(t) = 0: we sense force while the dual
reference commands to be out of contact. In this case,
we impose a PD behavior along the constraint gradient
Jg that pushes the end-effector out of the constraint. As
above, y(t) operations only orthogonal to Jg .

• Case f > 0 ∧ λ(t) > 0: we sense force and the dual
reference also commands to be in contact. We continue
to send a desired contact force f∗ (colinear with the
constraint Jacobian Jg) to the force controller. As above,
y(t) operations only orthogonal to Jg . This will lead to
a stable sliding along the constraint.

• Case f = 0 ∧ λ(t) = 0: we sense no force and the
dual reference commands to be out of contact. Only
the planned task space reference y(t) is send to the
operational space controller.

This simple execution control will try to maintain robust con-
tact with a constraint and uses the tactile feedback to calibrate
the constraint function g. This approach aims to be robust
w.r.t. model errors in g: even if the real-world constraint
is differently located to the model used for optimization, the
above execution control will robustly reproduce the temporal
contact profile implied by the dual reference λ(t).

VI. EXPERIMENTS

A. Illustrating the effect of objective functions

We briefly illustrate the effect of the contact rewarding ob-
jective functions we defined in Section IV-B on the optimized
solutions by considering the simplest example. Consider a
1D state x(t) which starts at x(0) = 1 and constraints
∀t : gt(x) = −x + a which enforces ∀t : x(t) > a.
We set a task goal stating that the final state should be
x(T) ≈ a + 0.1, that is 0.1 (meters) above the constraint.
We penalize squared accelerations of the system throughout
and the squared deviation (x(T)− (a+ 0.1))2 from the task
target. For planning, it is assumed that a = 0, but during
execution in the real-world this might not be the case. We
first consider the results of optimization only.

Figure 3(a) shows the optimal trajectory for using no
funneling objective. The solution accelerates directly from
x(0) = 1 to x(T) = 0.1. The constraint is never touched;

(a) Simulation (b) Repeatability of reaching

85cm
80cm
75cm

Target relative to table

(c) Adaptivity to unknown constraint heights
Fig. 2. (a) The setup used for the simulated experiments. (b) The real Apollo robot, with 7 DoF Kuka arm, reaching three times to a target on the table
at constant height. (c) Apollo reaching to a target that is defined relative to the table (red dot). Despite varying, initially unknown table heights as indicted
by the dashed lines, the reaching behavior is robustly adapted online through force feedback.

(a) No reward of information gain (b) Potential pulling into the constraint (c) Setting a belief goal

Fig. 3. Position x, uncertainty scalar b and dual solution λ over time for different objective functions to reward constraint contact.

λt = 0 throughout the trajectory; uncertainty mostly in-
creases with a rate b0. Figure 3(b) shows the optimal trajec-
tory for a squared potential continuously pulling towards the
constraint throughout the trajectory. The solution first moves
directly to the constraint, slides along the constraint, at the
end moves up to x(T) = 0.1. The uncertainty exponentially
decreases during the contact. Figure 3(c) shows the optimal
trajectory when uncertainty funneling is used: a squared
potential on the final uncertainty bT and enforcement of the
uncertainty dynamics. The solution touches the constraint
later, slides along to sufficiently reduce uncertainty, at the
end moves up to x(T) = 0.1.

B. Dual execution in simulation

We consider a simulated setup of the Apollo robot with a
7 DoF Kuka arm as illustrated and described in Figure 2(a).
In all trials, the true height of the table is unknown to the
system, the true target (red ball) is always located 10cm
above the table; the yellow ball indicates the current estimate
of the target (and implicitly of the table height). To solve
this problem reliably, the robot needs to establish contact to
locate the table height. We used our optimization framework
to generate trajectories x(t) and λ(t) which involve a sliding
table contact during the middle of the trajectory. The dual
reference λ(t) is the red curve in Figure 4(a). The computa-
tion time for optimization over 200 time slices on a normal
laptop with non-optimized code is 0.748 seconds.

We performed 10 runs with and without dual execution,
where in the latter case the execution controller simply
commands the planned task space trajectory y(t) to the
operational space controller. The table height is randomly
drawn from a Gaussian with std 0.1 and unknown to the
robot. As expected, without dual execution the generated
trajectory is always the same, not seeking for tactile feedback

method/scenario mean error
no dual execution 0.1152

dual exec. w/o oscillations 0.0030974
dual exec. + oscillations 0.021770

Fig. 5. Square roots of mean squared errors over 10 runs for reach-
ing a target exactly 10cm above the table. The table height is initially
unknown/uncertain. (a) not using dual execution (error equals standard
deviation of randomized table placements), (b) using dual execution, (c)
using dual execution while the table height is oscillating online (example
runs given in Figures 4 and the video.

and not responding to varying constraint heights. With dual
execution enabled, the robot reliably generates contact with
the constraint and thereby re-calibrates the task space and
reaches the target.

Figure 4 displays exemplary runs and the relative hand-
table height for 10 runs. For instance in 4(a) around time 70,
we nicely see that the robot was expecting contact (λ(t) > 0),
but did not sense it, and accelerates the end-effector towards
the constraint (kink in blue curve). The gap between blue and
green during contact is exactly the table thickness. When
λ(t) = 0, the robot releases contact again and eventually
reaches the target. Figure 4(b) displays a run where the table
was moving (oscillating) online: during contact we nicely see
the compliant sliding on the constraint and respective online
re-calibration of the estimated target height (oscillating as is
the true target).

Figure 5 displays the target errors for all three cases. As
expected the error when not using dual execution equals
to the standard deviation of target height, independent of
oscillating or not.

C. Experiments on a physical platform

We implemented dual execution for a 7-DOF Kuka arm
with a 4-DOF Barrett hand and ran a collection of real world

(a) Exemplary run, static constr. (b) Exemplary run, moving constr. (c) hand-table height for 10 runs

Fig. 4. (a) Exemplary run of dual control for a static constrained, displaying the pre-planned dual reference λ, end-effector (z eff), estimated target
(z est), true table (z table), and target (z true) heights over time (in 1

100
sec). (b) Same when the constraint (table height) is oscillating. (c) Relative

hand-table height for 10 runs, converging robustly to the target height.

Height 0.75 0.77 0.80 0.82 0.85 0.87 Avg
On Table 0.01 0.009 0.01 0.005 0.014 0.015 0.010
Above Table 0.003 0.01 0.01 0.009 0.012 0.011 0.009

Fig. 7. Average distance of the final cartesian positions to the mean position
of three trials per table height and of all trials. (metres)

experiments. We analyzed two scenarios: first, a reaching
task with the goal of reaching a particular point on a table
robustly against unknown variations in the table height; and
second, another reaching task with a goal of touching a point
hovering above the table, again amidst unknown variations
in the table’s height.

For each scenario, we collected three trials at six different
height settings of the table, amounting to a total of 36 data
points. For both problems, the table varied in height across
the scenarios by a total of 12 cm.

The dual execution of planned trajectories for these scenar-
ios leads to very robust behaviors that successfully achieve
the tasks in both scenarios despite a 12cm deviation in the
table height across all trials. Table 7 gives statistical results
for the average deviation from the target point achieved
across the executions. For each experimental table height,
ranging from 75cm to 87cm, Columns 2 through 7 of the
table report individual average deviations for the scenarios
at those heights, and the final column gives the average
deviation computed across all trials collectively for each
scenario. Of note, the overall deviation is never more than
1cm. Given that the internal planning model assumed the
table to be 80cm high, we would expect a naı̈ve execution
of the primal trajectory to not only have much more variation
in its final goal error across these table heights, but to also
ultimately be unsuccessful in its execution when the table is
actually higher than expected.

We also, in more detail, profile the qualitative behavior
of Scenario 2 (reaching out to a point hovering above the
table). Throughout the trials, we can observe five distinct
behavioral stages that emerge from the combined plan and
dual execution, see Figure 6. Initially, the robot starts off
executing the behavior as normal, simply following the
trajectory as planned by the optimizer. Around 1.1 seconds
into the execution, it realizes that it had planned to have
contacted the surface, but it has not yet actually detected
contact. At that point, it begins to explicitly steer toward the
constraint until at around 3.2 seconds when it finally reaches
the surface. From then on out, it is able to successfully exert

the desired force for the remainder of the time indicated by
the dual solution until at 5 seconds it again lifts off from the
constraint to raise to the desired target point hovering above
the table.

The lower two plots of Figure 6 additionally depict the
distribution of data traces for all trials of each scenario,
showing both measured contact forces and Cartesian height
values relative to the table; each stage of the dual execution
behavior can be seen within the data. The red line indicates
the point at which the controller believes it should be feeling
the force. At that point, we see the height variable dip
more aggressively toward the constraint, along with a high
variance region of measured forces (between seconds 2 and
3), reflecting differing contact times of the hand across trials
of different heights. From there, the distribution over relative
hand heights funnels, and we see distinctly more consistent
task profiles for the remainder of the plot.

The center and rightmost subplots of Figure 2, visually
give a feel for the constancy of the execution across the
trials. The center subplot shows the variation in final on-
table achieved location for Scenario 1 for three trials at a
constant table height, and the rightmost subplot shows the
robot consistently ending at the same height relative to the
table across trials of differing table heights.

VII. CONCLUSION

This work was motivated by the understanding that ex-
ploiting contacts that generate funnels is critical for effective
manipulation. We asked how this insight can be leveraged
within efficient trajectory optimization methods. The idea
we put forward was to reproduce the dual solution of a
constrained trajectory optimization problem during the online
execution, which represents the temporal pattern of constraint
interaction. To realize this, we first proposed cost terms in
the optimization objective that favor trajectories that are in
contact, e.g. by conditioning the final uncertainty to be low.
Second, we proposed a dual execution controller that tries to
reproduce the contact profile during execution of the plan,
even when the constraints differ from those used during
planning or are moving online. With this we provided novel
methods to design contact exploiting manipulation based on
trajectory optimization.

(a) Starting position 0s (b) Expected contact 1.1s (c) First contact 3.2s (d) Lifting off 5s (e) Target reached 6s

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

time (s)

−2

−1

0

1

2

3

4

5

6

fo
rc

e
(N

)

Measured Force

Expected Contact

0.0

0.1

0.2

0.3

p
os

it
io

n
(m

)

Distance to Table

(f) Reaching to target above the table. For a visualization of the experiment, we refer to Figures 6(a)- 6(e).

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

time (s)

−2

0

2

4

6

8

10

fo
rc

e
(N

)

Measured Force

Expected Contact

0.0

0.1

0.2

0.3

p
os

it
io

n
(m

)

Distance to Table

(g) Reaching to target on the table.
Fig. 6. Measured forces and distance to table during execution of the two reaching experiments. Plots show the mean and standard deviation over 18
runs (three trials per table height variation). Blue: Measured Forces (N). Green: Distance to Table (m).

REFERENCES

[1] M. Posa and R. Tedrake, “Direct trajectory optimization of rigid body
dynamical systems through contact,” in Algorithmic Foundations of
Robotics X. Springer, 2013, pp. 527–542.

[2] E. Todorov, “A convex, smooth and invertible contact model for
trajectory optimization,” in International Conference on Robotics and
Automation. IEEE, 2011.

[3] T. Erez and E. Todorov, “Trajectory optimization for domains with
contacts using inverse dynamics,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012,
pp. 4914–4919.

[4] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant opti-
mization for hand manipulation,” in Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’12. Eurographics Association, 2012, pp. 137–144.

[5] T. Lozano-Perez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” The International Journal of
Robotics Research, vol. 3, no. 1, pp. 3–24, 1984.

[6] “ARM — Autonomous Robotic Manipulation,” http://thearmrobot.
com.

[7] N. Hudson, T. Howard, J. Ma, A. Jain, M. Bajracharya, S. Myint,
C. Kuo, L. Matthies, P. Backes, P. Hebert, T. Fuchs, and J. Burdick,
“End-to-end dexterous manipulation with deliberate interactive estima-
tion,” in Robotics and Automation (ICRA), 2012 IEEE International
Conference on, May 2012, pp. 2371–2378.

[8] M. Kazemi, J.-S. Valois, J. A. Bagnell, and N. S. Pollard, “Robust
object grasping using force compliant motion primitives.” in Robotics:
Science and Systems, 2012.

[9] L. Righetti, M. Kalakrishnan, P. Pastor, J. Binney, J. Kelly, R. Voorhies,
G. Sukhatme, and S. Schaal, “An autonomous manipulation system
based on force control and optimization,” Autonomous Robots, vol. 36,
no. 1-2, pp. 11–30, 2014.

[10] R. Deimel, C. Eppner, J. lvarez Ruiz, M. Maertens, and O. Brock,
“Exploitation of environmental constraints in human and robotic
grasping,” in International Symposium on Robotics Research (ISRR),
2013.

[11] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” Submitted. Draft at http://people. csail. mit.
edu/lpk/papers/HPNBelDraft. pdf, 2012.

[12] K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Task-driven tactile
exploration.” in Robotics: science and systems, 2010.

[13] ——, “Robust grasping under object pose uncertainty,” Autonomous
Robots, vol. 31, no. 2-3, pp. 253–268, 2011.

[14] K. Hsiao, T. Lozano-Pérez, and L. P. Kaelbling, “Robust belief-based
execution of manipulation programs,” in Eighth Intl. Workshop on the
Algorithmic Foundations of Robotics, 2008.

[15] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using iterative local optimization in belief space,” The
International Journal of Robotics Research, vol. 31, no. 11, pp. 1263–
1278, 2012.

[16] R. Platt Jr, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Be-
lief space planning assuming maximum likelihood observations,” in
Robotics: Science and Systems (RSS), 2010.

[17] A. Lee, Y. Duan, S. Patil, J. Schulman, Z. McCarthy, J. van den Berg,
K. Goldberg, and P. Abbeel, “Sigma hulls for gaussian belief space
planning for imprecise articulated robots amid obstacles,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE, 2013, pp. 5660–5667.

[18] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant opti-
mization for hand manipulation,” in Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. Euro-
graphics Association, 2012, pp. 137–144.

[19] J. Nocedal and S. J. Wright, Penalty and Augmented Lagrangian
Methods. Springer, 2006.

[20] O. Dahl and L. Nielsen, “Torque-limited path following by online
trajectory time scaling,” Robotics and Automation, IEEE Transactions
on, vol. 6, no. 5, pp. 554–561, 1990.

[21] H. Arai, K. Tanie, and N. Shiroma, “Time-scaling control of an
underactuated manipulator,” in Robotics and Automation, 1998. Pro-
ceedings. 1998 IEEE International Conference on, vol. 3. IEEE,
1998, pp. 2619–2626.

[22] J. Z. Kolter, A. Coates, A. Y. Ng, Y. Gu, and C. DuHadway, “Space-
indexed dynamic programming: learning to follow trajectories,” in
Proceedings of the 25th international conference on Machine learning.
ACM, 2008, pp. 488–495.

[23] N. Jetchev and M. Toussaint, “Task space retrieval using inverse
feedback control,” in Proceedings of the 28th International Conference
on Machine Learning (ICML-11), 2011, pp. 449–456.

[24] H. U. Nikolai Michailovich Filatov, Adaptive Dual Control: Theory
and Applications. Springer, 2004.

[25] R. Kalman, “A new approach to linear ltering and prediction prob-
lems,” in ASME Transactions journal of basic engineering, 1960.

[26] J. Nocedal and S. J. Wright, Numerical Optimizatoin. Springer, 2006.
[27] M. Toussaint, “Pros and cons of truncated gaussian ep in the context

of approximate inference control,” in NIPS Workshop on Probabilistic
Approaches for Robotics and Control, 2009.

http://thearmrobot.com
http://thearmrobot.com

Technical Reference: Constrained Trajectory Optimization
Supplementary material for “Dual Execution of Optimized Contact Interaction Trajectories”

Marc Toussaint1 Nathan Ratliff1,2 Jeannette Bohg2 Ludovic Righetti2 Peter Englert1 Stefan Schaal2

I. OPTIMIZATION PROBLEM FORMULATION

In this supplementary material we give more details on
the optimization framework. This includes a basic extension
of the Agumented Lagrangian method to deal with inequal-
ities. Unlike previously proposed solutions in the literature
[1] that reduce inequality constrained problems to simpler,
but higher-dimensional, bound-constrained problems (that
in turn still require specialized bound-constrained solvers),
our approach retains the original problem dimensionality
and can leverage in the inner loop traditional unconstrained
solvers, such as a straightforward implementation of New-
ton’s method.

Let xt ∈ Rn be a joint configuration and x = x1:T =
(x1, . . . , xT) a trajectory of length T . We consider the
optimization problem

min
x

T∑
t=0

ft(xt−k:t)
>ft(xt−k:t)

s.t. ∀t : gt(xt) ≤ 0 .

(1)

where xt−k:t = (xt−k, .., xt−1, xt) are k + 1 tuples of
consecutive states, ft(xt−k:t) ∈ Rdt are arbitrary first-order
differentiable non-linear k-order cost vectors, and gt(xt) ∈
Rmt are mt non-linear inequality constraints for each t
(totaling M =

∑
tmt constraints in all).1

The k-order cost vectors ft(xt−k:t) ∈ Rdt are very flexible
in including various elements that can represent both transi-
tion and task-related costs. For instance, for transitional costs,
we can penalize square velocities using k = 1 (depending
on two consecutive configurations) ft(xt-1, xt) = (xt−xt-1),
and square accelerations using k = 2 (depending on three
consecutive configurations) ft(xt-2, xt-1, xt) = (xt + xt-2−
2xt-1). Likewise, for larger values of k, we can penalize
higher-order finite-differencing approximations of trajectory
derivatives. Moreover, for k = 2, using the equations of
motion Mẍt + F = τt with finite-differencing acceleration
approximation ẍt ≈ xt+1 + xt− 1− 2xt, we can explicitly
penalize square torques as well using ft =

√
HM(xt −

2xt-1+xt-2)+F), where
√
H is the Cholesky decomposition

of a torque cost metric H , implying costs f>t ft = u>tHut.
For task costs, using terms of the form ft ⊃ (y∗−φ(x))/σ

we can induce squared potentials in some task space φ.

1 <first>.<last>@informatik.uni-stuttgart.de
2 <first>.<last>@tuebingen.mpg.de
1The first cost vector f0(x−k, .., x0) depends on states xt with negative

t. We call these (x−k, .., x−1) the prefix. The prefix defines the initial
condition of the robot, which we usually assume to be resting at some
given x0.

Here, the somewhat awkward notation ft ⊃ v means that
we constructed the vector ft by appending v to ft.

The hard constraints gt will represent contacts with ob-
jects. (It would be trivial to also include equality constraints
ht(xt) = 0 for each t; we neglect this augmentation for
simplicity.)

Both, ft and gt are non-linear and we assume to have
access to their Jacobians, but not the Hessians. This allows
us to use Gauss-Newton type methods, where the pseudo
Hessian is always semi positive definite.

1) Augmented Lagrangian: While log-barriers have be-
come a standard for interior point methods we consider
the alternative Augmented Lagrangian (AL) approach [1]
because it naturally copes with infeasible initializations,
without a need for a phase I optimization and because AL
very directly relates to standard squared penalty methods to
cope with task constraints while ensuring exact constraint
satisfaction without taking the ∞ penalty limit (or steep
barrier limit)—thereby leading to much better conditioned
problems.2 In our experience, the dual solution converges
very fast using AL; indeed, if all involved constraints and
cost were linear the algorithm converges in just one iteration.
In contrast, central path following log-barriers methods does
not have this property.

Traditional applications of AL to inequality constraints
augment the space with extra slack variables st turning
inequality constraints of the form gt(x) ≤ 0 into bound-
constrained equality constraints of the form gt(x) = st with
st ≤ 0. Such reductions increase the problem’s dimensional-
ity and require that inner loop problems be solved by more
specialized bound-constrained solvers.

We propose an alternative straight-forward extension to
AL that retains the original dimensionality of the problem
and allows us to leverage generic fully unconstrained solvers
in the inner loop. Given the original constrained problem

min
x

f(x) s.t. g(x) ≤ 0 , h(x) = 0 . (2)

the Augmented Lagrangian method considers the uncon-
strained problem

min
x

f(x)

+ µ
∑
i

[gi(x) ≥ 0 ∨ λi > 0] gi(x)2 +
∑
i

λigi(x)

+ µ
∑
i

hi(x)2 +
∑
i=1

νihi(x) (3)

2Lower largest to smallest eigenvalue ratios of the Hessian in the
respective unconstrained problems.

with dual parameters λi, νi and penalty parameter µ. The
notation [expr.] ∈ {0, 1} is the indicator function for a
boolean expression. The AL extension thereby combines the
standard Lagrange terms with squared penalties in such a
way that the squared term gi(x)2 is in effect only when
either the constriant gi(x) ≤ 0 is violated or the Lagrange
multiplier λi is positive. In other words, that squared penalty
disappears when all the constraints on the problem are
satisfied (γi(x) ≤ 0 and λi = 0), at which point the linear
gi(x) term drops out as well.

At each iteration, we solve this unconstrained problem and
then update

νi ← λi + 2µhi(x
′) (4)

λi ← max(λi + 2µgi(x
′), 0) . (5)

With this choice of dual variables the Lagrange terms will,
in the next iteration, generate exactly the gradients that
were previously generated by the squared penalties. It is
straight-forward to show that if f , g and h were linear,
after the first iteration the dual parameters are the optimal
dual solution, the primal solution to (3) is feasible and
optimal, and the squared penalty terms become zero. Clearly,
λi ≥ 0 is guaranteed to be non-negative; the expression
[gi(x) ≥ 0 ∨ λi > 0] activates the squared penalty only
if the inequality is violated or λi has been active (non-zero)
in the previous iteration.

2) Gauss-Newton: To solve the unconstrained problem (3)
we use Gauss-Newton: Note that the specific form (1) of our
optimization problem will lead to a banded symmetric semi
pos-def. pseudo-Hessian R = 2∇ψ>∇ψ with band-width
(k+1)n, over the full trajectory x0:T . Here ψ = (f>0 , .., f

>
T)>

is the concatenation of all ft over all time slices. The
banded-ness is crucial and has its origin in the k-order chain
structure of the cost vectors ft in (1). The inversion of R (or
rather, computation of ∆ = −R-1∇ψ>ψ) is very efficient
using appropriate matrix packings and well-studied band-
diagonal solvers. In fact, the computational complexity of
such a Gauss-Newton step is identical to that of a Kalman
or Riccati sweep. In practice, we damp the Gauss-Newton
iterations following the Levenberg-Marquardt methodlogy if
non-linearities in ft or gt lead to non-decreasing steps.

REFERENCES

[1] J. Nocedal and S. J. Wright, Numerical Optimizatoin. Springer, 2006.

