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Abstract—Inverse Optimal Control (IOC) has strongly im-
pacted the systems engineering process, enabling automated plan-
ner tuning through straightforward and intuitive demonstration.
The most successful and established applications, though, have
been in lower dimensional problems such as navigation planning
where exact optimal planning or control is feasible. In higher
dimensional systems, such as humanoid robots, research has
made substantial progress toward generalizing the ideas to model
free or locally optimal settings, but these systems are complicated
to the point where demonstration itself can be difficult. Typically,
real-world applications are restricted to at best noisy or even
partial or incomplete demonstrations that prove cumbersome in
existing frameworks. This work derives a very flexible method of
IOC based on a form of Structured Prediction known as Direct
Loss Minimization. The resulting algorithm is essentially Policy
Search on a reward function that rewards similarity to demon-
strated behavior (using Covariance Matrix Adaptation (CMA) in
our experiments). Our framework blurs the distinction between
IOC, other forms of Imitation Learning, and Reinforcement
Learning, enabling us to derive simple, versatile, and practical
algorithms that blend imitation and reinforcement signals into
a unified framework. Our experiments analyze various aspects
of its performance and demonstrate its efficacy on conveying
preferences for motion shaping and combined reach and grasp
quality optimization.

I. INTRODUCTION

Implementing versatile and generalizable robot behavior
can take hundreds if not thousands of person-hours. Typical
systems integrate sensor processing, state estimation, multiple
layers of planning, low level control, and even reactive be-
haviors to induce successful and generalizable actions. With
that complexity comes huge parameter spaces that take experts
typically days of tuning to get right. Still, performance may be
suboptimal, and any change to the system requires additional
calibration. Much of how experts tweak systems remains an
art, but recent machine learning advances have led to some
very powerful learning from demonstration tools that have
significantly simplified the process [1, 33].

One method of choice for learning from demonstration, es-
pecially in practical high-performance applications, is Inverse
Optimal Control (IOC) [18, 34, 3, 13]. Since most planning-
based systems are designed to transform sensor readings
into cost functions interpretable by planners, they already
produce generalizable behavior by design. Tapping into this
architecture automates the time-consuming tweaking process
needed to make this mapping from features to costs reliable.
Where applicable, IOC has become an invaluable tool for real-
world applications [25]. IOC has been very successful in lower

Fig. 1: Learning from demonstrated behavior. A humanoid robot is used as a running
example in the experimental section of this work for learning of motion policies.

dimensional problems, but interestingly has struggled to make
the leap to higher dimensional systems. Two factors contribute
to making high-dimensional systems hard.

First, the Optimal Control problem itself, is intractable in
most high-dimensional, especially continuous, domains (e.g.
as found in humanoids). Recent advances in motion optimiza-
tion, though, have made significant progress on that problem.
Algorithms like CHOMP [21], STOMP [10], iTOMP [4], Tra-
jOpt [24], KOMO [30], and RIEMO [22] have incrementally
improved motion optimization to the point where now it is
often a central tool for high-dimensional motion generation.

The second issue though, is more fundamental: it is very
difficult to provide accurate, full policy demonstrations for
high-dimensional systems. This problem is often overlooked
or ignored in existing approaches (cf. Section III).

This work narrows the gap between Imitation Learning
(specifically, Inverse Optimal Control) and Reinforcement
Learning (Policy Search) by tracing the development of IOC
through its connections to Structured Prediction and relating
further advances in Structured Prediction back to the policy
learning problem. What results is a unified algorithm that
blends naturally between Inverse Optimal Control and Policy
Search Reinforcement Learning enabling both learning from
noisy partial demonstrations and optimization of high-level
reward functions to join in tuning a high-performance optimal
planner. The fundamental connection we draw, which

Section II discusses in detail, is that if we apply an
advanced form of Structured Prediction, known as Direct
Loss Minimization [15], to the IOC problem, what results is
effectively a Policy Search algorithm that optimizes a reward



promoting similarity to expert demonstrations. This connection
of Policy Search RL through Direct Loss Minimization to
IOC suggests that the problem’s difficulty results mostly from
the shape of the reward landscape itself, and less from the
problem formulation. Reward functions that reward similarity
to expert demonstrations are naturally more discriminating
than high-level success-oriented rewards. This work closes the
gap between Reinforcement Learning and Imitation Learning
by straightforwardly posing them both as blackbox optimiza-
tion problems, letting the reward/loss functions distinguish
between whether the problem is Inverse Optimal Control,
Reinforcement Learning, or some combination of the two.
Section V presents applications of this hybrid learning method-
ology using both noisy complete demonstrations and partial
information to address learning motion styles.

Our high-level goal is to create tools to help engineers
navigate the complicated high-dimensional parameter spaces
that arise in sophisticated real-world systems.

II. METHODOLOGY

Inverse Optimal Control is strongly related to Structured
Predition. Maximum Margin Planning [18], for instance, re-
duces the problem directly to Maximum Margin Structured
Classification [28, 31], and Maximum Entropy IOC [34]
develops a Bayesian framework strongly related to Conditional
Random Fields [12]. These two bodies of literature have
been driving significant algorithmic advances from both sides
[20, 17, 32]. In many ways, we can view IOC explicitly as a
form of Structured Prediction where the set of all policies is the
structured set of labels and the underlying learning problem
is to predict the correct policy given expert demonstrations.
Advances in Structured Prediction usually lead to advances in
IOC.

Structured Prediction has gone through a number of in-
carnations, but one prominent formalization of the problem
is Maximum Margin Structured Classification (MMSC) [28],
a generalization of the Support Vector Machine (SVM). Just
as the hinge loss is a simple piecewise linear upper bound
to the 0-1 binary loss function in an SVM, the generalized
“hinge-loss” for MMSC is also a piecewise linear upper bound
to the structured loss function of the Structured Prediction
problem. For binary classification, directly optimizing the 0-
1 loss is nearly impossible because of its discontinuity; the
convexity of the hinge-loss upper bound is, therefore, critical.
For much of the early development of Structured Prediction
and MMSC, the same upper bound proxy requirement was
generally assumed to be just as critical for the structured case.

This structured loss, for IOC, may be the squared loss
between an arbitrary trajectory ξ and a demonstration ξi:
L(ξi, ξ) = Li(ξ) = 1

2‖ξi − ξ‖
2 (i indexes the ith example).

We would generally need to differentiate ξ as a function of
our parameters w, but MMSC and related methods instead
proposed a convex upper bound (the structured hinge loss)

F(w) =

N∑
i=1

(
wTfi(ξ)−min

ξ∈Ξ
(wTfi(ξi)− Li(ξ))

)
+
λ

2
‖w‖2,

where w ∈ Rd is a weight vector for d features f(ξi, ξ) =
fi(ξ), and λ ∈ R+. A simple subgradient method for optimiz-
ing this objective suggests an update rule of the form

wt+1 = wt − ηt
∑
i

(fi(ξi)− fi(ξ∗i )), (1)

where ξ∗i = argminξ∈Ξ(wTfi(ξ) − Li(ξ)) (see [28] and
[18] for details). This proxy objective and update rule have
also been used in graphics (see [14]) under a margin-less
“Perceptron” form [5] where the authors learned directly from
motion capture data. In all cases (Structured Prediction, IOC,
and graphics), formulating the convex proxy and resulting
subgradient update rule was critical since it was unclear how
to efficiently optimize the loss function directly.

But in 2010, [15] demonstrated that an algorithm very sim-
ilar in nature to a subgradient approach to MMSC, but which
directly estimated the gradient of the underlying structured
loss function, not only worked, but often performed better
than approaches leveraging this convex MMSC objective.
The authors demonstrated empirically and theoretically that
the shape of L(ξi, ξ), itself, was sufficiently structured to
admit direct optimization. Parameterizing ξ by a weight vector
w and problem context γi, they showed that they could
directly optimize ψ(w) =

∑
i L(ξi, ξ(w,γi)). Interestingly,

the update rule that approximated that gradient bears a striking
resemblance to that given in Equation 1

wt+1 = wt + ηt
∑
i

(
fi(ξi)− fi(ξ∗i direct)

)
, (2)

where fi(ξ∗i direct) = argminξ∈Ξ

(
wTfi(ξ) + εLi(ξ)

)
. In the

parlance of policy learning, this update rule compares the
features see by the example policy ξi to those see by a policy
coaxed downhill slightly by increasing the cost of high-loss
states.

Turning back to the policy learning problem these observa-
tions suggest that a strong form of IOC would be to directly
optimize this loss function ψ(w). The above direct loss gradi-
ent estimate gives one update rule that’s particularly applicable
to general Structured Prediction, but on the policy side, this
sort of direct optimization problem has been studied for a
while and there are a number of well-understood competing
approaches. Denoting Ri(ξ) = −L(ξi, ξ) to relate negative
losses to rewards and using γ to denote the dependence of
the loss on current problem context, we see this problem is
effectively a form of Policy Search on a deterministic policy:

ψ(w) =

N∑
i=1

Ri(ξ(w,γi)). (3)

In other words, an effective form of Inverse Optimal Control
is simply Policy Search using a reward function that rewards
similarity to demonstrated behavior. Here ξ(w,γi) denotes
the policy or trajectory produced under parametrization w for
problem context (environment) γi.

Given these observations, the question now is largely exper-
imental. This paper discusses the implications of this frame-
work for IOC and presents a series of experiments analyzing



Fig. 2: Left: The hypothesis progressing toward the optimal policy. Black oval is the initial hypothesis, and the black points are expert data samples. Path differences in the hypothesis
progressions largely stem from differences in objective. Middle: Comparison of loss progressions over time with different starting points and expert samples. Note that the loss
progressions are typically grouped in pairs; the primary variation results from changing starting location and expert samples. Right: Plot showing the progression of loss-differences
between the two algorithms across each learning trial. Positive values indicate Maximum Likelihood is smaller and vice versa. The mean and one-standard-deviation is shown as
magenta and red lines, respectively. Notice, that Direct Loss Minimization tends to outperform Maximum Likelihood early on, but Maximum Likelihood converges slightly faster
on average. In all figures, the Maximum Likelihood progression is depicted in red and the Direct Loss Minimization progression is depicted in blue.

the performance of this methodology using a generic policy
search framework based on the black box Covariance Matrix
Adaptation (CMA) optimizer. CMA is quickly becoming a
goto tool for complex nonlinear policy search problems [6]
for its combined efficacy, simplicity, and strong theoretical
connections to a very successful form of policy search known
as PI2 [26] which has been shown to perform well in real-
world robotics applications [29].

A. Similarities Between Direct Loss Minimization and Tradi-
tional IOC

Direct Loss Minimization IOC at first glance seems substan-
tially different from traditional IOC methods. In this section,
we demonstrate that both the update equations and the result-
ing behavior of the algorithms can be quite similar. Consider a
simple policy of the form p(ξ;w) ∝ e−C(ξ,w), where C(ξ,w)
is a family of cost functions defined over possible trajectories
ξ with parameters w ∈ Rd. Given samples D = {ξi}Ni=1

from an expert distribution pT (ξ), one traditional form of IOC
simply fits the distribution using Maximum Likelihood [34].
The gradient of the log-likelihood Fml(w) is

gml = −ED[∇wC(ξ,w)] + Epw [∇wC(ξ,w)], (4)

where ED[·] denotes the empirical expectation taken over the
data and Epw [·] denotes the expectation taken with respect to
the current policy pw(x) = p(x;w).

Now consider running Policy Search as gradient descent on
the expected reward

Fps(w) =

∫
R(ξ)p(ξ;w)dξ. (5)

The gradient of Fps(w) is

gps = −EpRw [∇wC(ξ,w)] + Epw [∇wC(ξ,w)], (6)

where pRw(ξ) ∝ R(ξ)e−C(ξ;w) denotes the reward-weighted
policy distribution. The Supplementary Material derives both
of these gradients. Here, we just note that both gml and gps
are very similar in structure. They differ only in the first term,
which defines how the algorithm makes policy modifications
toward “better” policies. Maximum Likelihood forms this

term directly using the demonstrations, while Direct Loss
Minimization forms the term effectively using the gradient of
the chosen loss function.

Figure 2 compares optimizations under these two algorithms
for a simple two-dimensional Gaussian policy distribution
parameterized by the mean (x, y) and an angle θ giving the
angle of the covariance’s principle axis. The variances along
the major and minor axes are fixed at 1 and .3, respectively
(see the Supplementary Material for details). The expert distri-
bution is a zero-centered Gaussian with primary axis aligned
with the y-axis and the same major and minor variances.
Rather than maximizing an expected reward, we minimize an
expected loss, which is effectively the same but more natural
when viewing the algorithm as Direct Loss Minimization
IOC. For this simple example, we use the following loss
function L(x) = 1

2 (x − µe)TΣ−1
e (x − µe), where µe and

Σe are the empirical mean and covariance of the expert data,
respectively. Both algorithms used the same inverse linear step
size sequence (ηt = η

t+c for η, c ∈ R+ and t is the iteration
index) with normalized gradients in order to emphasize the
relative quality of the calculated gradient information.

The plots compare the behavior of the two algorithms
for this problem. Both optimize well and differences in the
hypothesis path taken by the two algorithms result largely from
differences in the shape of the objective and how that interacts
with gradient-based methods. Notice that the maximum like-
lihood method tends to (needlessly) align the principle axis of
the Gaussian in the direction of steepest objective decrease up
front. This optimization artifact slows its progress early on al-
lowing direct loss minimization to optimize faster during initial
stages. The logarithm in the log-likelihood objective, though,
induces better conditioning in the final stages of optimization
allowing maximum likelihood to ultimately catch up and, in
some cases, even overtake direct loss minimization. Overall
convergences are not strongly affected by these differences,
but these progressions demonstrate the added flexibility under
direct loss methodologies to shape the optimization behavior
through careful choice of the loss function.



B. Combined Imitation and Reinforcement
Framing IOC as blackbox optimization of a relevant loss

brings with it the flexibility of generic optimization. This
section discusses a number of ways this flexibility manifests
for policy learning as described below.

a) Blending with Reinforcement learning: At its core,
this methodology suggests that there is no algorithmic dif-
ference between Policy Search and Imitation Learning of this
form (given matching assumptions on policy parametrization).
The difference is primarily in how the reward (or loss) function
is constructed. Generally, a natural notion of reward measuring
the quality and success of a policy is available (e.g. the
robot achieves its goal without expending too much energy).
Imitation rewards can easily be layered on top of that to
help coax the learner into a good regions of the policy
space before they are slowly downweighted and ultimately
removed. Effectively, imitation learning in this context acts as
an interesting regularization term to help the learner navigate
the tricky reinforcement reward landscape.

b) Partial and noisy demonstrations: Past IOC ap-
proaches required full trajectory demonstrations from an expert
policy. Generating these demonstrations is difficult for systems
having many degrees of freedom. This lead to either built in
policy assumptions or noisy demonstrations. Manually moving
a robot arm in gravity compensation is awkward and leads
to jerky, inexact motions. Kinesthetic teaching of the end-
effector motion in contrast requires Inverse Kinematics (IK) to
determine the remaining joint states. The resulting Null space
motions certainly are not optimal with respect to velocities,
accelerations, and the underlying dynamics. In some cases, it
makes sense, as described in Section V-E, to demonstrate only
the final configuration which encodes only posture and grasp
point information. In all of these cases, the expert may supply
important information, but it is incomplete at best, and usually
very noisy. Even so, it is straightforward still to write down
a loss function measuring how well the behavior of a policy
matches the demonstrated behavior. These imitation loss terms
again supplement the high-level reward to encourage similarity
to the demonstrations.

c) Life-long learning: Many Policy Search methods are
amenable to online execution, which enables life-long learning
in robots. Modeling imitation learning as loss-optimization
using generic Policy Search optimizers makes any of these
tools available to imitation as well. Experts can advise a robot
system simply by adding temporary imitation terms to their
reward function to coax the learner toward a good solution.
This paper does not explore this avenue explicitly, but this
property has consistently been a strong motivating factor for
this work.

d) Practical tool for tuning and calibrating the system:
At the end of the day, regardless of theoretical connections
between IOC and Structured Prediction, we want a tool that
practically enables engineers to better navigate the high-
dimensional space of parameters that comes with complex
behavior generation systems such as the motion optimizer
described here. Modeling imitation as loss-shaping of black

box Policy Search is a simple and effective methodology for
simplifying the design and implementation of sophisticated
robot behaviors. The grasping experiments in Section V-E give
examples of how these tools address the recalibration problem
that arises when the underlying motion optimization policy
representation is modified.

C. Motion Optimization

We use a Motion Optimization toolbox called RIEman-
nian Motion Optimization (RIEMO) [22] as our underlying
optimization framework. RIEMO solves constrained motion
optimization problems of the form

min
ξ

T∑
t=1

ct(qt, q̇t, q̈t) (7)

s.t. gt(qt, q̇t, q̈t) ≤ 0 for all t = 1, . . . , T

ht(qt, q̇t, q̈t) = 0 for all t = 1, . . . , T,

where ξ = (q1, q2, . . . , qT ) with qt ∈ Rn denoting the
tth configuration along the trajectory. ct, gt, and ht are
the tth objective term, inequality constraint function(s), and
equality constraint function(s), respectively. RIEMO exploits
the 2nd order Markov structure of this network of terms
to efficiently implement an Augmented Lagrangian method
with an inner loop unconstrained Newton optimizer leveraging
Gauss-Newton like approximations that account for first-order
geometry of differentiable (e.g. kinematic) maps. Typically,
each ct, gt, and ht is a weighted collection of sub-terms. These
weights enter into the policy parametrization, as Section IV
describes in detail.

III. RELATED WORK

IOC for high-dimensional continuous spaces has appeared
a handful of times in the literature. For instance, [11] develop
an algorithm for IOC designed around a motion optimizer
named STOMP based on a Path Integral reformulation of
Stochastic Optimal Control named PI2. They demonstrate
learning objective functions for both IK problems and reaching
behaviors. Additionally, [3] presented an extension of the Max-
imum Entropy IOC ideas from [34] to model-free learning in
continuous spaces which they demonstrate on ball-in-cup and
race trace driving problems; [13] emphasizes the difficulty of
Nonlinear Optimal Control in their work, developing methods
that work well with local optimizers.

Those papers make significant progress toward getting IOC
to work in higher-dimensional continuous spaces, but they gen-
erally assume demonstrations are available and they are careful
to ensure the demonstrations they use are good enough. This
paper emphasizes the practical difficulties of data generation
and introduces a pragmatic framework for leveraging even
partial or noisy demonstrations by blending imitation with
reinforcement learning methodologies.

Tuning planners (specifically, Rapidly-exploring Random-
ized Trees (RRTs)) using Policy Search Reinforcement Learn-
ing has previously been explored by [35] as a principled ap-
proach to navigating the high-dimensional space of parameters



Fig. 3: Components of the high-level optimization setup for direct loss minimization policy search. The blackbox optimizer CMA-ES minimizes a loss function which can express the
proximity to demonstrated behavior but also additional higher level goals. The policy is represented as an optimization program based on a given objective function parametrization
and the test context.

associated with complex heuristics. Here we emphasize the
theoretical connection between this approach and Structured
Prediction forms of IOC, as well as the broader scope of the
framework as discussed in Section II-B.

IV. EXPERIMENTAL SETUP

The experiments presented in this work focus on motions
executed on a humanoid robot arm (cf. Figure 1). Barrett
manipulator hands are attached to KUKA lightweight robot
arms summing up to 11 DoF per arm (7 arm joints and 4
hand joints).

The framework is built on top of the RIEMO based motion
policy as described in Section II-C. Up to d = 25 parametrized
cost features have been utilized in the following experiments
depending on the motion type’s characteristics. The cost terms
trade off dynamics, kinematic smoothness, and posture criteria,
while the constraints prevent joint limit violations and obstacle
penetration, while enforcing goal success. Specifically, we use
the following terms:

• Configuration derivatives penalties. c(q̇, q̈) = α1‖q̇‖2 +
α2‖q̈‖2.

• Task space derivatives penalties. c(x, ẋ) = 1
2
‖ d
dt
φ(x)‖2, where

φ : R3 → Rn is a mapping of key points on the robot’s body
to a higher-dimensional workspace representation.

• Joint limit proximity penalties. ci(qi) =
(max{0, qi − (qmax − ε), (qmin + ε)− qi})2, where ε > 0 is
a joint limit margin.

• Posture potentials. c(q) = 1
2
‖q − qdefault‖2 Bias towards a

natural robot position qdefault.
• Orientation potentials. c(q) = 1

2
‖n − ψ(x)‖2 Quadratic po-

tential pulling orientations of robot parts into a given direction.
E.g. horizontal hand posture.

And we also use the following constraints
• Joint limit constraints. Explicit constraints to prevent joint limit

violations in the final trajectory.
• Obstacle constraints. Analytic representation of surrounding

obstacles to prevent end-effector or other key points from
penetrating the obstacle surfaces by the use of distance margins.

• Goal constraint. Reaching the goal is enforced as a zero distance
constraint on the goal proximity distance function. This strategy
generalize the goal set ideas described in [7].

In the presence of obstacles, we additionally exposed the
radial and angular scaling factors of the cylindrical workspace
Riemannian metric in the presence of obstacles. See [22]
for details of the basic parametrization. Note that since we
build upon the CMA optimizer, we don not require this
parametrization to be linear.

We denote the motion policy parameter vector by θ ∈ Rd;
Figure 3 depicts the entire training framework.

Our pipeline is predicated on a definition of the imitation
reward/loss function of Equation 3. We experimented with a
collection of intuitive objectives, and found a simple metric

measuring the average deviation from the demonstration be-
tween key points on the robot’s arm and hand to work the
best:

L(ξi, ξ) =

T∑
t=1

K∑
k=1

∥∥∥φk(q
(t)
i )− φk(q(t))

∥∥∥2

, (8)

where φk(q) denotes the kth key point on the body for
configuration q, ξi = (q

(1)
i , . . . , qTi ) is the demonstrated

trajectory, and ξ = (q(1), . . . , q(T )) is the trajectory under
consideration. Arbitrary additional higher level requirements
can be expressed in the loss function since only the function
evaluation for a given generated trajectory is necessary and no
gradient information has to be computed.

We use a generic implementation of Covariance Matrix
Adaptation (CMA-ES) [8] as our Policy Search blackbox
optimizer. The learning parameters of the CMA-ES algorithm
have been set according to Hansen’s default implementation.
Only the initial solution point θ0 and the scalar initial step
size σ0 have to be chosen in a problem-specific way. To
achieve the optimal search performance, all parameters (i.e.
all search dimensions) should have similar sensitivities. Since
the ranges of the raw parameters incorporated in the given
cost terms cover more than six magnitudes, the dimensions
have been rescaled to [0, 10] to achieve a reasonable parameter
encoding. The normalization factors have been determined
experimentally by manually weighting the cost features in
order to achieve a smooth motion in unobstructed space. The
initial solution point is chosen uniformely from the assumed
parameter range (0, 10). In [27], CMA-ES has been shown
to successfully adapt the individual exploration noise of each
dimension to explore up to several magnitudes from the initial
starting point and CMA-ES is furthermore capable of handling
sensitivity differences between dimensions in the range of
some magnitudes. The initial covariance matrix shape is there-
fore given by the identity matrix Σ0 = Id. In accordance to [8],
the initial exploration step size is set to a fifth of the domain
size which proved to be reasonable in all our experiments.

To get around the need to actively constrain the search
space to the parameter space since most cost terms are only
defined on positive parameter values, the objective function
is evaluated on the absolute parameter, i.e. ct(|θ|). Other
methods to constrain the search space by a lower and/or
upper bound (e.g. quadratic or exponential replacement) have
been proposed in [8] but performed poorly for the problems
investigated in this work.



V. EXPERIMENTAL EVALUATION

We will present several experiments to analyze the behavior
of Direct Loss Minimization IOC using CMA-based Policy
Search. Section V-A addresses learning motion shaping be-
haviors from full trajectory demonstrations while Section V-B
addresses learning related behaviors from partial demonstra-
tions. Section V-C examines imposing underlying biasing
reward terms to resolve ambiguity in the partial demonstra-
tions, whereas Section V-D demonstrates the robustness of the
CMA optimizer on these problems, and Section V-E explores
applications to combined reaching and grasping optimization.

A. Noisy Joint State Demonstrations

For this experiment, we recorded demonstrations by kines-
thetic teaching having the robot’s arm in gravity compensation
mode. The resulting motions are downsampled equidistantly
in joint space to match the horizon length of the motion
optimizer. Our demonstrations were grouped into the following
behaviors: straight end-effector motions, sliding on a tabletop
in front of the robot, motions that primarily use a subset
of the robot’s degrees of freedom (e.g. shoulder rotations or
forearm motions), reaching motions maintaining a certain hand
orientation (e.g. carrying a glass of water). Some trajectories
produced by the learned optimal policies are visualized in
Figure 4 as they are executed on the actual robot. The learned
characteristics of each motion type are clearly reflected in
each parameter vector. Predominant joints have significantly
lower velocity penalty weights while straight motions in task
space are expressed in the ratio of task to joint space velocity
penalties. The characteristic parts of these motions have been
successfully learned to imitate the demonstrated behavior and
also to generalize the observed behavior to untrained scenarios.

B. Sketched End-Effector Demonstrations

Full joint state demonstrations as seen in the last exper-
iments tend to be imprecise and jerky even in situations
where kinesthetic teaching is available. Especially behaviors
that require certain particular velocity or acceleration profiles
are hard to demonstrate. The following experiment will ex-
plore the ability of this approach to learn from intentionally
incomplete demonstrations that focus on some special aspect
of a motion. In the given example, the behavior of the end-
effector when approaching and operating around obstacles is
therefore learned from sketched demonstration of the desired
end-effector trajectories as shown in Figures 5(a) and 5(b). For
both motion types, 24 sketched end-effector demonstrations
are given, partitioned into a training and a test set to cross-
validate the resulting optimal policy. The optimal policy is
learned from all training demonstrations by using the average
distance between the end-effector’s trace and the sketched
trajectory as loss function.

For this scenario we used the non-Euclidean representation
of the workspace geometry introduced in [22] combining
a cylindrical coordinate system with an ambient Euclidean
system. The weight on the cylindrical system increases with
proximity to the obstacle. The intensity of the concentric rings

(a) Motion Type I (b) Motion Type II

Fig. 5: The desired behavior is partially demonstrated by sketching the desired end-
effector path. A subset of the demonstrations given for training (red) and test (blue), is
visualized for two types of motions together with one solution trajectory as produced by
the learned policy (green).

in Figure 5 depicts this Riemannian workspace geometry. The
relative weights on radial and angular velocity components
in the cylindrical coordinate system of the obstacle are ex-
posed as parameters such that the Direct Loss Minimization
IOC learning system can shape the relative tendency of the
optimizer to circle the obstacle vs heading directly toward the
goal point. The average fitness for both learned motion policies
and one initial random policy evaluated for all 24 demonstrated
scenarios is shown in Figure 6 (A = motion type I, C = motion
type II). The next section explains the results in greater detail
along with results from imposing additional objectives.

C. Imposing Additional Objectives

Especially in case of incomplete demonstrations and to
resolve redundancies, additional objectives can be introduced.
These objectives can affect arbitrary aspects of the motion
since the chosen black box optimizer requires only the
evaluation of the objective function. The loss function of
reinforcement learning, previously formulated to imitate a
demonstration, is therefore augmented by an additional term.
Here, we introduce the average height of the elbow as a new
loss contribution in order to maintain a ’natural’, low elbow
position. The same scenario as presented in Experiment V-B
is used here. For all possible combinations of the two motion
types and two loss functions, a total of four policies (A,B,C,D)
is learned whose fitness is visualized in Figure 6. Additionally,
the fitness of an initial random policy (orange) is shown for
comparison. For each policy, the contribution of the end-
effector distance (yellow) between demonstration and solution
trajectory as well as the contribution of the elbow loss term
(red) to the overall loss function is plotted. The resulting elbow
loss is also displayed for the policies that have been learned
using only the pure imitation loss function which does not
consider the elbow height (policies A and C, the elbow loss
is shown in light red). This experiment demonstrates several
of the capabilities we discussed in Section II:

a) Imitation of Observed Behavior: A policy learned on
a given set of training demonstrations is able to reproduce the
observed behavior. On the same set of problems, the optimal



Fig. 4: Motion policies learned to favor specific degrees of freedom. Pointing motions, sliding from one point on the table to another are visualized as executed on the actual robot.
On the left image shoulder motions are favored whilst on the image in the middle forearm motions are. In the right image, a policy is learned which maintains a horizontal hand
alignment.

Fig. 6: Cross-validation of the fitness of policies learned on training sets for two motion
types: pointing to a cylindrical obstacle with high (set 1) and low (set 2) obstacle
avoidance. For both motion types, one policy minimizing the imitation loss and another
minimizing the combined imitation and elbow height loss have been learned, summing
up to 4 different policies (A,B,C,D).

policy clearly outperforms the initial random policy but also
the policy which learned a different type of motion. This is
true for both the policy learned using the pure imitation loss
function (A and C) and the policy learned using the combined
combined loss function (B and D).

b) Generalization to Similar Scenarios: Concerning the
fitness of the learned policies on the corresponding test
problems, the policy learned for this type of motion clearly
performs better than the random policy and the policies learned
for the other motion type. This is especially the case for the
policies learned for motion type 2 which perform significantly
better on their own test set compared to the performance of
the motion type 1 policies on this test set (cf. policies B and
D clearly outperform policies A and C on their own training
set 2).

c) Optimizing Additional Objectives: The policies
learned using the augmented loss functions can be directly
compared to the ones which have been learned using the pure
imitation loss functions (e.g. policy A and B). The policies
learned based on the augmented loss function clearly minimize
the combined loss. In particular, the contribution of the elbow
loss is significantly reduced for policies learned from the
combined loss formulation. This result is not only visible in the
fitness of the policies on the training set but it also generalizes
to the policies’ application to the according test set.

Fig. 7: Effects of domain size and problem dimensionality on the optimization speed and
quality. The average number of necessary function evaluations and the resulting fitness is
evaluated on four motion problems. Three different initial configurations (step size and
initial parametrization) are shown for each task.

D. Effects of Optimizer Settings

The effects of the domain size on the optimizer’s perfor-
mance (e.g. in terms of convergence and best fitness) have
been evaluated on the experiments as presented above. The
range of the domain has been varied for all those experiments
from [0, 1] and [0, 5] up to [0, 10]. The initial guess θ0 has
been chosen randomly within the domain and the initial step
size has been set to σ0 = (max−min)/5.

The results of evaluating the performance for those experi-
ments are shown in Figure 7. The optimal policy is computed
based on the three different domain ranges. For each task, the
bars represent from left to right the results of the experiment
carried out for increasing domain ranges. The results are
averages over at least 4 independent runs. The error bars
display the 1σ standard deviation. Neither the number of
function evaluations (shown in green) nor the resulting fitness
(shown in blue) is significantly influenced by the initial domain
size. CMA turns out to be robust against slightly inappropriate
initial configurations. The automatic adaptation of exploration
direction and magnitude is capable to find a similar solution
in all evaluated cases. Similar results have been achieved by
employing the BiPop version of CMA-ES [2], striving for
more global optimization. No evident improvement of the
global fitness could be achieved. In case of a reasonable
parameter encoding, the pure CMA-ES setup is sufficient to
explore the required parameter space.



Fig. 8: Contribution of cost feature terms to the grasp metric along the test object’s main
axis. The object’s shape (black, only one half of the 0.6 m object is shown) is visualized
together with top (cyan) and bottom (green) potential, center of mass potential (blue)
and the combined surface width feature (magenta). The learned grasp potential (red) is
shown for center-of-mass=0.35 m and the grasp point demonstrated to be at 0.40 m.

E. Combined Reach and Grasp Motion

Grasping problems are usually divided into separate ap-
proach planning and grasp planning problems [16]. Imitation
approaches to the latter have successfully learned grasp or
grasp point metrics from demonstration [23, 9, 19], but these
two stage strategies make simultaneously optimizing both
parts difficult. Traditionally, IOC methods for learning such
combined approach and grasp motions required full approach
and grasp demonstrations, and generating such demonstrations
is hard. This section describes some experiments leveraging
Direct Loss Minimization IOC to learn full approach motions
from partial data specifying only the desired grasp point. We
experiment both with learning the combined objective, and
recalibrating that function to work with new approach motion
parametrization.

Our motion parametrization matches that of the above
experiments for all terms except for the terminal potential.
For this experiment, we assume a simple grasping setup in
which an object, having a given rotationally symmetric shape,
is placed upright in front of the robot as shown in Figure 9. We
constructed a terminal potential consisting of a term penalizing
quadratic deviations from the object’s vertical axis along (x, y)
and a term cg(z;θg) measuring the grasp point cost along the
object’s height z ∈ R. Figure 8 depicts the grasp point features
along with one of the learned combined grasp point metrics.
Our features included biases away from the top and bottom of
the object, a quadratic potential pulling toward the center-of-
mass, and three surface width features measuring the width
value fw(z), first-derivative fw′(z), and second-derivative
fw′′(z). We denote the vector of all three of these features
as fw(z). The three surface width features are combined
nonlinearly as cs(z;α) = (eα

T fw(z) − 1)e−
β
2 ‖z−zc‖

2

, where
zc is the center of mass and β > 0 is a fixed scaling parameter.
CMA is able to optimize the problem despite the nonlinearity
in the three parameters α ∈ R3. This parameterization builds
off an explicit surface model for illustration purposes, but
features designed from perceptual inputs can be naturally
integrated into this model as well.

Three sample objects are defined and demonstrations of rea-
sonable grasping points are given embodying a grasp concept
favors grasp points close to the object’s bulge in proximity

Fig. 9: Two grasp postures and corresponding approach trajectories (red and yellow)
generated by the learned grasp motion policy are visualized for two configurations of
the blue grasp object. For two of three demonstrations, the center-of-mass (red point) and
the demonstrated grasp point (yellow point) are shown. After modifications to the system
(additional upward potential), the newly learned grasp policy compensates changes in
the approach trajectory automatically and matches the demonstrated grasp point (green
trajectory).

to the center-of-mass. The learned policy is able to integrate
the correct grasp point into the approaching motions and
reproduces the demonstrated grasp within some millimeters
(object height: 60 cm). Given the grasp demonstrations, we
can use our Direct Loss Minimization IOC framework to easily
recalibrate the combined approach and grasp motion optimiza-
tion in case of changes to the system. In our experiments, the
recalibrated systems consistently produced similar imitation
loss accuracies. Figure 9 depicts the resulting grasping motions
on our robot platform. Two of the demonstrations, specified by
the center-of-mass position (red point) and demonstrated grasp
position (yellow point), are visualized. The learned policy
executes the correct grasp in case of the initial system setup
(yellow and red trajectory) as well as in case of the system
disturbed by an upward potential (green trajectory).

VI. CONCLUSION

This work capitalizes on the strong connection between
Inverse Optimal Control and Structured Prediction to pose a
new form of IOC modeled after Direct Loss Minimization
Structured Prediction. The resulting behavior learning frame-
work, Direct Loss Minimization IOC, may be viewed as Policy
Search Reinforcement Learning using rewards that promote
behavior that best mimics an expert. Unified algorithms that
blend between the two extremes of pure reinforcement and
pure imitation arise naturally within this framework, and
handling partial or noisy demonstrations is straightforward. We
demonstrate our learning strategy using generic CMA policy
search algorithms on a collection of problems ranging from
motion shaping to combined motion optimization and grasp
metric calibration. Direct Loss Minimization IOC overcomes
many of the practical limitations that can make traditional IOC
methodologies cumbersome in high-dimensional continuous
spaces. Direct Loss Minimization IOC is a very flexible and
practical tool for designing, tuning, updating, and refining
complicated planning systems with increasingly large and
unintuitive parameter space.
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