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Abstract Inverse Optimal Control (IOC) assumes that demonstrations are the so-
lution to an optimal control problem with unknown underlying costs, and extracts
parameters of these underlying costs. We propose the framework of Inverse KKT,
which assumes that the demonstrations fulfill the Karush-Kuhn-Tucker conditions
of an unknown underlying constrained optimization problem, and extracts parame-
ters of this underlying problem. Using this assumption, we can exploit the latter to
extract the relevant task spaces and cost parameters from demonstrations of skills
that involve contacts. For a typical linear parameterization of cost functions this re-
duces to a quadratic program, ensuring guaranteed and very efficient convergence,
but we can deal also with arbitrary non-linear parameterizations of cost functions.
The aim of our approach is to push learning from demonstration to more complex
manipulation scenarios that include the interaction with objects and therefore the
realization of contacts/constraints within the motion. We demonstrate the approach
on tasks such as sliding a box and opening a door.

1 Introduction

Most tasks in real world scenarios require contacts with the environment. For ex-
ample, the task of opening a door requires contact between the robot gripper and
the door handle. In this paper, we address learning from demonstration for the case
of manipulation that incorporates contacts. Specifically, we want to extract from
demonstrations how to represent and execute manipulations in such a way that the
robot can perform such tasks in a robust and general manner.

Machine Learning & Robotics Lab, Universität Stuttgart, Germany
e-mail: peter.englert@ipvs.uni-stuttgart.de
This work was supported by the EU-ICT Project 3rdHand 610878 and the DFG priority program
Autonomous Learning 1527.

1

peter.englert@ipvs.uni-stuttgart.de


2 Peter Englert, Marc Toussaint

Section 3 Section 2

Demonstrations
Inverse Optimal Control

Cost Function
Optimal Control

Motion
(x̂(d)1∶T , ŷ(d))Dd=1
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Fig. 1 Concept of skill learning with inverse optimal control, where the cost function plays the
central role of encoding the demonstrated behavior. In this paper, we present our formulation of
learning a cost function for a constrained trajectory optimization problem.

Cost functions are a powerful representation for robot skills, since they are able to
encode task knowledge in a very abstract way. This property allows them to reach
high generalization to a wide range of problem configurations. However, design-
ing cost functions by hand can be hard since the right features have to be chosen
and combined with each other. Therefore, inverse optimal control, also known as
inverse reinforcement learning [18], automates the design of cost functions by ex-
tracting the important task spaces and cost parameters from demonstrations. Many
successful applications in different areas have demonstrated the capabilities of this
idea, including the learning of quadruped locomotion [8], helicopter acrobatics [1]
and simulated car driving [10].

There are two parts necessary for applying learning from demonstration with
IOC: 1) The inverse optimization method for extracting the cost function from
demonstrations; 2) The motion optimization method that creates motions by min-
imizing such cost functions. Both parts are coupled by the cost function, which is
the output of the first and input of the second part, see Figure 1. Usually IOC al-
gorithms try to find a cost function such that the output of the motion optimization
method is similar to the input demonstrations of the inverse problem. Therefore,
the cost function is used as a compact representation that encodes the demonstrated
behavior.

Our approach finds a cost function, including the identification of relevant task
spaces, such that the demonstrations fulfill the KKT conditions of an underlying
constrained optimization problem with this cost function. Thereby we integrate
constraints into the IOC method, which allows us to learn from object manipula-
tion demonstrations that naturally involve contact constraints. Motion generation
for such cost functions (point 2 above) is a non-linear constrained program, which
we solve using an augmented Lagrangian method. However, for typical cost func-
tion parameterizations, the IOC problem of inferring the cost function parameters
(point 1 above) becomes a quadratic program, which can be solved very efficiently.

The structure of the paper is as follows. We would like to defer the discussion
of related work to after we have introduced our method, in Section 4. First, in Sec-
tion 2, we introduce some background on constrained trajectory optimization, which
represents the counterpart to the IOC approach. Afterwards, we develop our IOC
algorithm in Section 3 by deriving a cost function based on KKT conditions. In
Section 5 we evaluate our approach on simulated and real robot experiments.

The main contribution of this paper is the introduction of an IOC method for
constrained motions with equality and inequality constraints that is based on the
KKT conditions. This method allows to efficiently extract task spaces and parame-
ters from demonstrations.
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2 Constrained Trajectory Optimization

We define a trajectory x0:T as a sequence of T +1 robot configurations xt ∈Rn. The
goal of trajectory optimization is to find a trajectory x?1:T , given an initial configura-
tion x0, that minimizes a certain objective function

f (x1:T ,y,w) =
T

∑
t=1

ct(x̃t ,y,wt) . (1)

This defines the objective as a sum over cost terms ct(x̃t ,y,wt), where each cost term
depends on a k-order tuple of consecutive states x̃t = (xt−k, . . . ,xt−1,xt), containing
the current and k previous robot configurations [22]. This allows us to specify costs
on the level of positions, velocities or accelerations (for k = 2) in configuration space
as well as any task spaces. In addition to the robot configuration state x̃t , we use
external parameters of the environment y to contain information that are important
for planning the motion (parameters of the environment’s configuration, e.g. object
positions). These y usually vary between different problem instances, which is used
to generalize the skill to different environment configurations.

We typically assume that the cost terms in Equation (1) are a weighted sum of
squared features,

ct(x̃t ,y,wt) = φ t(x̃t ,y)>diag(wt)φ t(x̃t ,y) , (2)

where φ t(x̃t ,y) are the features and wt is the weighting vector at time t. A simple
example for a feature is the robot’s endeffector position at the end of the motion T
relative to the position of a cup. In this example the feature φ T (x̃t ,y) would compute
the difference between the forward kinematics mapping and cup position (given
by y). More complex tasks define body orientations or relative positions between
robot and an object. Transition costs are a special type of features, which could be
squared torques, squared accelerations or a combination of those, or velocities or
accelerations in any task space.

In addition to the task costs we also consider inequality and equality constraints

∀t gt(x̃t ,y)≤ 0, ht(x̃t ,y) = 0 (3)

which are analogous to features φ t(x̃t ,y) and can refer to arbitrary task spaces. An
example for an inequality constraint is the distance to an obstacle, which should
not be below a certain threshold. In this example gt(x̃t ,y) would be the smallest
difference between the distance of the robot body to the obstacle and the allowed
threshold. The equality constraints are in our approach mostly used to represent per-
sistent contacts with the environment (e.g., ht describes the distance between hand
and object that should be exactly 0). The motivation for using equality constraints
for contacts, instead of using cost terms in the objective function as in Equation (2),
is the fact that minimizing costs does not guarantee that they will become 0, which
is essential for establishing a contact.
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For better readability we transform Equation (1) and Equation (3) into vector no-
tation by introducing the vectors w, Φ , g and h that concatenate all elements over
time. This allows us to write the objective function of Equation (1) as

f (x1:T ,y,w) = Φ(x1:T ,y)>diag(w) Φ(x1:T ,y) (4)

and the overall optimization problem as

x?1:T = argmin
x1:T

f (x1:T ,y,w) (5)

s.t. g(x1:T ,y)≤ 0
h(x1:T ,y) = 0

We solve such problems using the augmented Lagrangian method [13]. Therefore,
additionally to the solution x?1:T we also get the Lagrange parameters λ

?
1:T , which

provide information on when the constraints are active during the motion. This
knowledge can be used to make the control of interactions with the environment
more robust [23]. We use a Gauss-Newton optimization method to solve the uncon-
strained Lagrangian problem in the inner loop of augmented Lagrangian. For this
problem, the gradient is

∇x1:T f (x1:T ,y,w) = 2J(x1:T ,y)>diag(w)Φ(x1:T ,y) (6)

and the Hessian is approximated as in Gauss-Newton as

∇
2
x1:T

f (x1:T ,y,w)≈ 2J(x1:T ,y)>diag(w)J(x1:T ,y), (7)

where J = ∂Φ

∂x is the Jacobian of the features. Using a gradient based trajectory
optimization method restricts the class of possible features Φ to functions that are
continuous with respect to x. However, we will show in the experimental section
that this restriction still allows to represent complex behavior like opening a door or
sliding a box on a table.

3 Inverse KKT Motion Optimization

We now present an approach to the inverse problem for the constrained trajectory
optimization formulation introduced in the previous section. To this end we learn
the weight vector w in Equation (5) from demonstrations. We assume that D demon-
strations of a task are provided with the robot body (e.g., through teleoperation or
kinesthetic teaching) and are given in the form (x̂(d)1:T , ŷ

(d))D
d=1, where x̂(d)1:T is the

demonstrated trajectory and ŷ(d) is the environment configuration (e.g., object posi-
tion).
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Our IOC objective is derived from the Lagrange function of the problem in Equa-
tion (5)

L(x1:T ,y,λ ,w) = f (x1:T ,y,w)+λ
>
[

g(x1:T ,y)
h(x1:T ,y)

]
(8)

and the Karush-Kuhn-Tucker (KKT) conditions. The first KKT condition says that
for an optimal solution x?1:T the condition ∇x1:T L(x?1:T ,y,λ ,w) = 0 has to be fulfilled.
With Equation (6) this leads to

2J(x1:T ,y)>diag(w)Φ(x1:T ,y)+λ
>Jc(x1:T ,y) = 0 (9)

where the matrix Jc is the Jacobian of all constraints. We assume that the demon-
strations are optimal and should fulfill this conditions. Therefore, the IOC problem
can be viewed as searching for a parameter w such that this condition is fulfilled for
all the demonstrations.

We express this idea in terms of the loss function

`(w,λ ) =
D

∑
d=1

`(d)(w,λ (d)) (10)

`(d)(w,λ (d)) =
(

∇x1:T L(x̂(d)1:T , ŷ
(d),λ (d),w)

)2
, (11)

where we sum over D demonstrations of the scalar product of the first KKT condi-
tion. In Equation (10), d enumerates the demonstrations and λ

(d) is the dual to the
demonstration x̂(d)1:T under the problem defined by w. Note that the dual demonstra-
tions are initially unknown and, of course, depend on the underlying cost function f .
More precisely, λ

(d) = λ
(d)(x̂(d)1:T , ŷ

(d),w) is a function of the primal demonstration,
the environment configuration of that demonstration, and the underlying parameters
w. And `(d)(w,λ (d)(w)) = `(d)(w) becomes a function of the parameters only (we
think of x̂(d)1:T and ŷ(d) as given, fixed quantities, as in Equations (10-11)).

Given that we want to minimize `(d)(w) we can substitute λ
(d)(w) for each

demonstration by choosing the dual solution that analytically minimizes `(d)(w)
subject to the KKT’s complementarity condition

∂

∂λ
(d)

`(d)(w,λ (d)) = 0 (12)

⇒ λ
(d)(w) =−(J̃cJ̃c

>
)−1J̃cJ>diag(Φ)w . (13)

Note that here the matrix J̃c is a subset of the full Jacobian of the constraints Jc that
contains only the active constraints during the demonstration, which we can evaluate
as g and h are independent of w. This ensures that (13) is the minimizer subject to
the complementarity condition. The number of active constraint at each time point
has a limit. This limit would be exceeded if more degrees of freedom of the system
are constrained than there are available.
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By inserting Equation (13) into Equation (11) we get

`(d)(w)=4w>diag(Φ)J
(
I−J̃c

>
(J̃cJ̃c

>
)−1J̃c

)
J>diag(Φ)︸ ︷︷ ︸

Λ
(d)

w (14)

which is the IOC cost per demonstration. Adding up the loss per demonstration and
plugging this into Equation (10) we get a total inverse KKT loss of

`(w) = w>Λw with Λ = 4
D

∑
d=1

Λ
(d). (15)

The resulting optimization problem is

min
w

w>Λw s.t. w≥ 0 (16)

Note that we constrain the parameters w to be positive. This reflects that we want
squared cost features to only positively contribute to the overall cost in Equation (4).

However, the above formulation may lead to the singular solution w = 0 where
zero costs are assigned to all demonstrations, trivially fulfilling the KKT condi-
tions. This calls for a regularization of the problem. In principle there are two ways
to regularize the problem to enforce a non-singular solution: First, we can impose
positive-definiteness of Equation (4) at the demonstrations (cf. [10]). Second, as the
absolute scaling of Equation (4) is arbitrary we may additionally add the constraint

min
w

w>Λw (17)

s.t. w≥ 0 , ∑
i

wi ≥ 1

to our problem formulation (16). We choose the latter option in our experiments.
Equation (17) is a (convex) quadratic program (QP), for which there exist ef-

ficient solvers. The gradient w>Λ and Hessian Λ are very structured and sparse,
which we exploit in our implementations.

In practice we usually use parametrizations on w. This is useful since in the ex-
treme case, when for each time step a different parameter is used, this leads to a very
high dimensional parameter space (e.g., 10 tasks and 300 time steps lead to 3000
parameter). This space can be reduced by using the same weight parameter over all
time steps or to activate a task only at some time points. The simplest variant is to
use a linear parametrization w(θ) = Aθ , where θ are the parameters that the IOC
method learns. This parametrization allows a flexible assignment of one parameter
to multiple task costs. Further linear parametrizations are radial basis function or B-
spline basis functions over time t to more compactly describe smoothly varying cost
parameters. For such linear parametrization the problem in Equation (17) remains a
QP that can be solved very efficiently.

Another option we will consider in the evaluations is to use a nonlinear map-
ping w(θ) = A (θ) to more compactly represent all parameters. For instance, the
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parameters w can be of a Gaussian shape (as a function of t), where the mean and
variance of the Gaussian is described by θ . Such a parametrization would allow us
to learn directly the time point when costs are active. In such a case, the problem
is not convex anymore. We address such problems using a general non-linear pro-
gramming method (again, augmented Lagrangian) and multiple restarts are required
with different initializations of the parameter.

Our approach also works in the unconstrained case. In this case the constraint
term vanishes in Equation (9) and the remaining part is the optimality condition of
unconstrained optimization, which says that the gradient of the cost function should
be equal to zero.

4 Related Work

In the recent years, there has been extensive research on imitation learning and in-
verse optimal control. In the following section, we will focus on the approaches
and methods that are most related to our work of learning cost functions for ma-
nipulation tasks. For a broader overview on IOC approaches, we refer the reader to
the survey paper of Zhifei and Joo [24] and for an overview on general imitation
learning we recommend Argall et al. [3].

4.1 Max-Entropy and Lagrangian-based IOC Approaches

The work of Levine and Koltun [10] is perhaps the closest to our approach. They use
a probabilistic formulation of inverse optimal control that approximates the maxi-
mum entropy model of Ziebart et al. [25]. In our framework of trajectory optimiza-
tion (cf. Section 2) this translates to

min
w

∇x f>(∇2
x f )−1

∇x f − log |∇2
x f |. (18)

The first term of this equation is similar to our loss in Equation (10), where the
objective is to get small gradients. Additionally, they use the inverse Hessian as a
weighting of the gradient. The second term ensures the positive definiteness of the
Hessian and also acts as a regularizer on the weights. The learning procedure is
performed by maximizing the log-likelihood of the approximated reward function.
Instead of enforcing a fully probabilistic formulation, we focus on finite-horizon
constrained motion optimization formulation with the benefit that it can handle con-
straints and leads to a fast QP formulation. Further, our formulation also targets at
efficiently extracting the relevant task spaces.
Puydupin-Jamin et al. [16] introduced an approach to IOC that also handles linear
constraints. It learns the weight parameter w and Lagrange parameter λ by solving
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a least-squares optimization problem

min
w,λ

([
2J>diag(Φ) J>c

][w
λ

]
+ J/w

)2

(19)

where /w denotes the part in the cost function that is not weighted with w. The
method only addresses equality constraints (no complementarity condition for λ ).
Our main concern with this formulation is that there are no constraints that ensure
that the weight parameter w do not become 0 or negative. If J/w is zero, as in our
case, the solution is identially zero (w,λ ). Starting with the KKT condition, they
derive a linear residual function that they optimize analytically as the unconstrained
least squares. In the experimental section they consider human locomotion with a
unicycle model, where they learn one weight parameter of torques and multiple
constraints that define the dynamics of the unicycle model and the initial and target
position. The idea of using KKT conditions is similar to our approach. However, our
formulation allows for inequality constraints and leads to a QP with boundary con-
straints that ensures that the resulting parameters are feasible. Instead of optimizing
for λ , we eliminate λ from the inverse KKT optimization using Equation (13).

The work of Albrecht et al. [2] learns cost functions for human reaching motions
from demonstrations that are a linear combination of different transition types (e.g.,
jerk, torque). They transformed a bilevel optimization problem, similar to [11], into
a constrained optimization problem of the form

min
x1:T ,w,λ

(
φ

pos(xT )−φ
pos(x̂(d)T )

)2
(20)

s.t. ∇x1:T L(x1:T ,y,λ ,w) = 0 (21)

h(x1:T ) = 0 ∑
i

wi = 1 w≥ 0 (22)

The objective is the squared distance between optimal and demonstrated final hand
position. They optimize this objective for the trajectory x1:T , the parameter w and the
Lagrange parameter λ with the constraints that the KKT conditions of the trajectory
x1:T are fulfilled. To apply this approach demonstrations are first preprocessed by
extracting a characteristic movement with dynamic time warping and a clustering
step. Their results show that a combination of different transition costs represent hu-
man arm movements best and that they are able to generalize to new hand positions.
The advantage of their approach is that they do not only get the parameter weights w,
but also an optimal trajectory x?1:T out of the inverse problem in Equations (20)–(22).
The use of the KKT conditions differs from our approach in two ways. First, they
use the KKT conditions in the constrained part of the formulation in Equation (21),
whereas we use them directly as scalar product in the cost function. Second, they
use them on the optimization variables x1:T , whereas we use them on the demon-
strations x̂(d) (see Equation (10)). Instead of minimizing a function directly of the
final endeffector position and only learning weights of transition costs, we present a
more general solution to imitation learning that can learn transition and task costs in
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arbitrary feature spaces. Our approach also handles multiple demonstrations directly
without preprocessing them to a characteristic movement.

4.2 Black-box Inverse Optimal Control

Black-box optimization approaches are another category of methods for IOC. There,
usually an optimization procedure with two layers is used, where in the outer loop
black box optimization methods are used to find suitable parameter of the inner
motion problem. For this usually no gradients of the outer loop cost function are
required.

Mombaur et al. [11] use such a two-layered approach, where they use in the
outer loop a derivative free trust region optimization technique and in the inner loop
a direct multiple shooting technique. The fitness function of their outer loop is the
squared distance between inner loop solution and demonstrations. They apply it on a
human locomotion task, where they record demonstration of human locomotion and
learn a cost function that they transfer to a humanoid robot. Rückert et al. [17] uses
a similar idea to learn movements. They use covariance matrix adaptation [5] in the
outer loop to learn policy parameters of a planned movement primitive represented
as a cost function. Such methods usually have high computational costs for higher-
dimensional spaces since the black box optimizer needs many evaluations. One also
needs to find a cost function for the outer loop that leads to reasonable behavior.

Kalakrishnan et al. [7] introduce an inverse formulation of the path integral re-
inforcement learning method PI2 [21] to learn objective functions for manipulation
tasks. The cost function consists of a control cost and a general state dependent cost
term at each time step. They maximize the trajectory likelihood of demonstrations
p(x̂1:T |w) for all demonstrations by creating sampled trajectories around the demon-
strations. Further, they L1 regularize w to only select a subset of the weights. The
method is evaluated on grasping tasks.

4.3 Task Space Extraction

Jetchev and Toussaint [6] discover task relevant features by training a specific kind
of value function, assuming that demonstrations can be modelled as down-hill walks
of this function. Similar to our approach, the function is modelled as linear in sev-
eral potential task spaces, allowing to extract the one most consistent with demon-
strations. In Muhlig et al. [12] they automatically select relevant task spaces from
demonstrations. Therefore, the demonstrations are mapped on a set of predefined
task spaces, which is then searched for the task spaces that best represent the move-
ment. In contrast to these methods, our approach more rigorously extracts task di-
mensions in the inverse KKT motion optimization framework, including motions
that involve contacts.
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4.4 Model-free Imitation Learning

Another approach is the widely used framework of direct imitation learning with
movement primitives [14, 15, 19]. They belong to a more direct approach of imi-
tation learning that does not try to estimate the cost function of the demonstration.
Instead they represent the demonstrations in a parametrized form that is used to
generalize to new situations (e.g., changing duration of motion, adapting the target).
Many extensions with different parametrization exist that try to generalize to more
complex scenarios [4, 20]. They are very efficient to learn from demonstrations and
have been used for manipulation tasks (e.g., pushing a box [9]).

The major difference of such kind of approaches to our method is that they do not
need an internal model of the environment, which is sometimes difficult to obtain.
However, if such a model is available it can be used to learn a cost function that
provide better generalization abilities than movement primitives. This is the case
since cost functions are a more abstract representation of task knowledge. Examples
of such generalization abilities are demonstrated in Section 5 with a box sliding
task where we generalized to different box positions and with the door opening task
where we generalized to different door angles.

5 Experiments

In the following experimental evaluations, we demonstrate the learning properties
and the practical applicability of our approach and compare it to an alternative
method in terms of accuracy and learning speed.

For applying an IOC method a set of potential features Φ has to be provided as
input. For the following experiments we implemented a simple feature generator to
produce a set of potential cost function features in a task independent manner. The
used feature types are:

• Transition features: Represent the smoothness of the motion (e.g., sum of
squared acceleration or torques)

• Position features: Represent a body position relative to another body.
• Orientation features: Represent orientation of a body relative to another body.

A body is either a part of the robot or belongs to the environment. In the follow-
ing experiments the time points are either learned with RBF parametrization or they
are heuristically extracted from points of interest of the demonstrations (e.g., zero
velocity, contact release). We demonstrate in the following experiments that by com-
bining such simple feature types at different time steps into a cost function allows
to represent complex behavior.

First, we present on a simple task the ability to reestimate weight functions
from optimal demonstrations with different weight parametrizations. Afterwards,
we present more complex tasks like sliding a box and opening a door with a real
PR2.
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Fig. 2 Learned time profiles of different weight parameterizations. For more details see Section 5.1

5.1 Different Weight Parametrizations in a Benchmark Scenario

The goal of our work is to learn cost functions for finite horizon optimal control
problems, including when and how long the costs should be active. In this experi-
ment we test our approach on a simple benchmark scenario. Therefore, we create
synthetic demonstrations by optimizing the forward problem with a known ground
truth parameter set wGT and test if it is possible to reestimate these parameters from
the demonstrations. We create three demonstrations with 50 time steps, where we
define that in the time steps 25 to 30 of these demonstrations the robot endeffec-
tor is close to a target position. For this experiments we use a simple robot arm
with 7 degree of freedom and the target is a sphere object. We compare the three
parametrizations

• Direct parametrization: A different parameter is used at each time step (i.e.,
w = θ ) which results in θ ∈ R50.

• Radial basis function: The basis functions are equally distributed over the time
horizon. We use 30 Gaussian basis functions with standard deviation 0.8. This
results in θ ∈ R30.

• Nonlinear Gaussian: A single unnormalized Gaussian weight profile where we
have θ ∈ R3 with the weight as linear parameter and the nonlinear parameters
are directly the mean and standard deviation. In this case the mean directly cor-
responds to the time where the activation is highest.

The demonstrations are used as input to our inverse KKT method (see Section 3)
and the weights are initialized randomly. A comparison of the learned parameters
and the ground truth parameter is shown in Figure 2. The green line represents the
ground truth knowledge used for creating the demonstrations. The black dots show
the learned parameters of the direct parametrization. The red line shows the learned
Gaussian activation and the blue line shows the RBF network. As it can be seen all
parametrization detect the right activation region between the time steps 25 to 30
and approximate the ground truth profile. The Gaussian and RBF parametrization
also give some weight to the region outside the actual cost region, which is reason-
able since in the demonstrations the robot is still close to the target position. After
learning with these parametrizations, we conclude that the linear RBF network are
most suited to learn time profiles of cost functions. The main reason for this is the
linearity of the parametrization that makes the inverse KKT problem convex and the
versatility of the RBF network to take on more complex forms. Directly learning
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Fig. 3 These images show the box sliding motion of Section 5.2 where the goal of the task is to
slide the blue box on the table to the green target region.

Fig. 4 Each image shows a different instance of the box sliding task. We were able to generalize
to different initial box states (blue box) and to different final box targets (green area).

the time with the nonlinear Gaussian-shaped parametrization was more difficult and
required multiple restarts with different initialization. This demonstrates that the
framework of constrained trajectory optimization and its counterpart inverse KKT
works quite well for reestimating cost functions of optimal demonstrations.

5.2 Sliding a Box on a Table

In this experiment we use our approach to learn a cost function for sliding a box on a
table. This task is depicted in Figure 3. The goal is to move the blue box on the table
to the green marked target position and orientation. The robot consist of a fixed base
and a hand with 2 fingers. In total the robot has 10 degrees of freedom. Additionally
to these degree of freedom we model the box as part of the configuration state,
which adds 3 more degrees of freedom (2 translational + 1 rotational). The final box
position and orientation is provided as input to our approach and part of the external
parameters y. We used three synthetic demonstrations of the task and created a set
of features with the approach described above that led to θ ∈ R537 parameters. The
relevant features extracted from our algorithm are

• transition: Squared acceleration at each time step in joint space
• posBox: Relative position between the box and the target.
• vecBox: Relative orientation between the box and the target.
• posFinger1/2: Relative position between the robots fingertips and the box.
• posHand: Relative position between robot hand and box.
• vecHand: Relative orientation between robot hand and box.

The contacts between the fingers and the box during the sliding are modeled with
equality constraints. They ensure that during the sliding the contact is maintained.
For achieving realistic motions, we use an inequality constraint that restrict the
movement direction during contact into the direction in which the contact is applied.
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Fig. 5 The resulting parameters w of the extracted relevant features plotted over time. task is
depicted in this slideshow.

This ensures that no unrealistic motions like sliding backwards or sidewards are cre-
ated. For clarity we would like to note that we are not doing a physical simulation of
the sliding behavior in these experiments. Our goal was more to learn a policy that
executes a geometric realistic trajectory from an initial to a final box position. Fig-
ure 3 shows one of the resulting motion after learning. We were able to generalize
to a wide range of different start and goal position of the box (see Figure 4). Videos
of the resulting motions can be found in the supplementary material.

Black box IOC:
repeat

Resample parameters {w(n)}N
n=1 with CMA

for all w(n) do
Optimize cost function with parameter w(n)

Compute fitness f (n) = ∑d(x(n)− x̂(d))2

end for
Update CMA distribution with fitness values

until

Method (x(n)− x̂)2 comp. time

inverse KKT 0.00021 49.29 sec

black box IOC 0.00542 7116.74 sec

Fig. 6 On the left side is the black box IOC algorithm we used for comparison in Section 5.2. On
the right side are the results of the evaluation that show that our method is superior in terms of
squared error between the trajectories and computation time.

We compare our method to a black-box optimization approach similar to [11, 17].
We implemented this approach with the black-box method Covariance Matrix Adap-
tation (CMA) [5] in the outer loop and our constrained trajectory optimization
method (see Section 2) in the inner loop. The resulting algorithm is described in
Figure 6. As fitness function for CMA we used the squared distance between the
current solution x(n) and the demonstrations x̂(d). We compare this method with our
inverse KKT approach by computing the error between the solution and demon-
strations and the computational time, which are shown in the table in Figure 6.
The black-box method took around 4900 iterations of the outer loop of the above
algorithm until it converged to a solution. This comparison shows that using struc-
ture and optimality conditions of the solution can enormously improve the learning
speed. Further difficulties with black box methods is that they cannot naturally deal
with constraints (in our case w > 0) and that the initialization is non-trivial.
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Fig. 7 The resulting motion after learning the door opening task is depicted in this slideshow. See
Section 5.3 for more details.

5.3 Opening a Door with a PR2

In this experiment we apply the introduced inverse KKT approach from Section 3
on a skill with the goal to open a door with a real PR2 robot. The problem setup is
visualized in Figure 7. We use a model of the door for our planning approach and
track the door angle with AR marker. We use the left arm of the robot that consists of
7 rotational joints and also include the door angle as configuration state into x. This
allows us to define cost functions directly on the door angle. The gripper is fixed
during the whole motion. For our IOC algorithm we recorded 2 demonstrations
of opening the door from different initial positions with kinesthetic teaching. The
motions also include the unlocking of the door by turning the handle first. During the
demonstrations we also recorded the door position with the attached markers. We
created a feature set similar to the box sliding motion from the previous experiment.
Our inverse KKT algorithm extracted the features:

• Relative position & orientation between gripper and handle before and after un-
locking the handle.

• Endeffector orientation during the whole opening motion.
• Position of the final door state.

We use equality constraints, similar to the box sliding experiment to keep the con-
tact between endeffector and door. Furthermore, we use inequality constraints to
avoid contacts with the rest of the robot body. A resulting motion of optimizing
the constrained trajectory optimization problem with the learned parameter w? is
visualized in Figure 7. We are able to robustly generate motions with these parame-
ters that generalize to different initial positions and different target door angles (see
Figure 8). Videos of all these motions can be found in the supplementary material.

6 Conclusion

In this paper we introduced inverse KKT motion optimization, an inverse opti-
mal control method for learning cost functions for constrained motion optimization
problems. Our formulation is focused on finite horizon optimal control problems
for tasks that include contact with the environment. The resulting method is based
on the KKT conditions that the demonstrations should fulfill. For a typical linear
parameterization of cost functions this leads to a convex problem; in the general
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(a) (b)

Fig. 8 These images show the generalization abilities of our approach. The pictures in (a) show
different initial positions of the robot and the pictures in (b) show different final door angle posi-
tions. After learning the weight parameter w? with inverse KKT it was possible to generalize to all
these instances of the door opening task.

case it is implemented as a 2nd order optimization problem, which leads to a fast
convergence rate. We demonstrated the method in a real robot experiment of open-
ing a door that involved contact with the environment. In our future research we
plan to further automate and simplify the skill acquisition process. Thereby, one
goal is to extend the proposed method to be able to handle demonstrations that are
not recorded on the robot body. Another goal is to further improve the skill with
reinforcement learning.
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