Active Exploration of Joint Dependency Structures
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Abstract— Being able to manipulate degrees of freedom of
the environment, such as doors or drawers, is a requirement
for most tasks a robot is supposed to perform. Often these
external degrees of freedom depend on other ones, e.g., a
drawer can only be opened if the lock is not locking the
joint. We propose an approach to autonomously and efficiently
explore and uncover joint dependency structures. We develop
a probabilistic model for joint dependency structures which is
the basis for active learning. Discontinuities in the dynamics
of the joint, which often indicate key points of the joint, are
used to segment the joint space into meaningful segments which
then allows efficient exploration with the developed maximum
cross-entropy (MaxCE) exploration strategy. Experiments in
a simulated environment and on a real PR2 suggest that
the proposed approach yields efficient exploration of joint
dependency structures.

I. INTRODUCTION

Robots acting in the real world have to manipulate various
joints to achieve their goals — they manipulate the environ-
ment’s degrees of freedom. Opening doors and drawers, turn-
ing keys, and pushing buttons are some examples of typical
manipulations of the environment’s degrees of freedom. In
the spirit of the physical exploration challenge [11] we want
to enable the robot to explore the environment and reduce
uncertainty over the properties of the world.

Whereas existing work deals with (a) handling and con-
trolling known mechanisms [10], [12], [7], (b) estimating
joint types and parameters [16], [9] from given data, (c)
autonomous exploration to estimate joint types and param-
eters [11], or (d) autonomous exploration to distinguish
between pre-defined models [1], in this paper we focus on
autonomous exploration of mechanisms with complex joint
dependency structures, i.e., mechanisms where certain parts
can only be articulated if the joints are in a specific config-
uration. Specifically, in this paper we model the dependency
between joints, e.g., we can only open the drawer if the
key unlocked it, and we take the control and the parameter
estimation of mechanisms as given.

The difficulty of this task lies in the complexity of the con-
tinuous combinatorial space of dependent mechanisms. Each
joint can potentially lock another one at each position. We
overcome this problem by using the following insight. Most
complex mechanisms are designed to be used by humans
and thus give feedback of various kinds (e.g., sound, light,
force feedback by rasters or joint limits) to signal the key
points in the joint configuration space. These key points often
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Fig. 1.

Real world experiment: our PR2 is exploring the joint dependency
structure of a cabinet. After only two observations, the robot learned that in
order to open the drawer, it must first unlock it by turning the key (compare
to Fig. 6).

unlock/lock other joints. We design a probabilistic graphical
model capturing the above insight and develop efficient
active learning strategies enabling robots to autonomously
explore and uncover complex joint structures.

The main contributions of this paper are:

e We define a probabilistic model of joint depen-
dency structures which is the basis for active learning
(Sec. IID).

o The model captures the fact that discontinuities in the
dynamics define crucial states of the joint. These states
allow the segmentation of the continuous joint state
space into discrete segments enabling efficient inference
and active learning strategies for exploration.

« Given the probabilistic model, we develop an efficient
active learning exploration strategy: maximum cross-
entropy (MaxCE) is a method which efficiently reduces
the entropy of the belief in the long term and avoids
choosing sample points which would confirm the wrong
hypothesis (Sec. III-C).

o We demonstrate that our PR2, which uses the proba-
bilistic model and the MaxCE strategy, can learn the
joint dependency structure of a cabinet (Sec. IV-D).

II. RELATED WORK

Autonomous exploration of real-world environments re-
cently gained the attention of many researchers. In our pre-
vious work [11] we introduced the physical exploration chal-
lenge and demonstrated how different exploration strategies



can be applied to infer the type and parameters of degrees of
freedom of the environment. Kaelbling and Lozano-Pérez [5]
use probabilistic modeling of such environments to plan
actions. This laid the foundation for Barragan et al.’s work [1]
where the agent identifies different mechanical joint types
from interaction. However, these joints only can only have
a pre-defined dependency structure and thus new structures
cannot be explored.

To model the joints and their parameters we must perceive
the objects and joints. In the field of interactive perception
Van Hoof et al. [17] generate actions based on a probabilistic
segmentation of cluttered scenes. They update their model
after performing the action and observing the corresponding
reaction of the objects. The work of Martin and Brock [9]
and Katz et al. [6] is in a similar spirit. They model the
movement of joints in a hierarchical manner and identify
the joint type, state, and parameters based on tracking of
features in RGB-D data. However, the robot’s actions are
scripted. They also do not consider dependencies between
joints. Sturm et al.’s work [15] also does not consider joint
dependencies. They identify joints from object trajectories
and generate actions to actuate those objects [16].

Hofer et al. [4] consider joint dependencies as relations
in a relational reinforcement learning scenario. The actions
in this work are symbolic and do not consider the actual
position of a joint. The dependencies learned are also in
relation to the actions performed and not the current sub-
symbolic state of the environment.

To explore the joint dependency structure, strategies are
needed. Active learning is a field of research which deals
with the generation of efficient exploration strategies. A
good overview of the field is given by Settles [14]. For
probabilistic models, such as our joint dependency model,
strategies derived from information theory are particularly
useful. Bayesian experimental design [2], in particular, is a
promising strategy. In [8] we showed that this strategy might
get stuck in situations where the prior might be misleading.
Thus, this paper uses a slightly different strategy.

To infer where force feedback might be given, we use
Bayesian change point detection as described by Fearn-
head [3].

III. PROBABILISTIC MODELING OF JOINT DEPENDENCY
STRUCTURES

A. Notions of Joint Dependency Structures

In this paper we investigate joint dependency structures.
These are structures where the state of one joint depends
on the state of another joint. To study these structures
we focus on worlds consisting of rigid bodies only. Rigid
bodies may be connected through joints and form kinematic
graphs. Between any two rigid bodies in the world there
can be a joint constraining the movement of the two bodies.
Additionally, each joint can be locked or unlocked. We call
this the locking state of the joint. If a joint is locked no
movement is possible (e.g., if the door handle is not turned
the door cannot be opened), if a joint is unlocked movement
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Fig. 2. The probabilistic graphical model for joint dependency structures.
Tab. I explains the random variables. Arrows leaving a plate and entering
it again denote dependencies from all source RVs to all target RVs.

Symbol  Description Domain
N Number of joints N
We Maximum joint angle of joint j R
t,s,u,v Index for time N
J Index for joints {1,...,N}
Di RV, dependency of joint j {1,...,N+1}
L{ RV, locking state of joint j {0,1}
{ RV, joint state/position of joint j at time ¢ R
th RYV, force/torque measurements of joint j at R
time ¢
Ctj RV, change points of joint j at time ¢ {0,1}
SZ RV, segment borders of joint j at position  {0,1}
p

TABLE I
SUMMARY OF USED SYMBOLS.

within the normal constraints of the joint (like axis limits or
friction) is possible.

The locking state of one joint can change depending on
the state of other joints. We call the joint whose position
determines the locking state of another joint the master and
the joint which locking state depends on the master’s position
the slave. We can divide the master’s joint configuration into
segments which put the slave into the locked or unlocked
locking state.

With arbitrary possible dependencies between any two
joints in the world, the search space for dependencies grows
exponentially and can not be searched efficiently even for a
small number of joints. This is especially problematic if a
real robot is to uncover the joint dependency structure of real
world mechanisms. We overcome this problem by using the
sensor clues the mechanisms offer. During the manipulation
of a joint we measure its force/torque (F/T) feedback. Change
points in the F/T measurements should indicate the borders
between the locking state segments, e.g., in one segment the
master locks the slave, in other segments the master does not
lock the slave.

B. Modeling the Joint Dependency Structure

The robot has to infer the joint dependency structure
from its actions and the F/T measurements. For this we
model the joint dependency structure as a graphical model
depicted in Fig. 2. We introduce random variables D,



LN, QEN, PN, CEN, and S}N, summarized in Tab. I,
which we explain in detail below. N is the number of
joints to be modeled and ¢ is the time index for the time
dependent random variables. M7 is the maximum reachable
joint position of joint j and we assume without loss of
generality that the minimum joint position is 0.

D7 is a discrete random variable with the domain
{1,...,N + 1}. N — 1 states indicate which other joints
joint j depends on. The (NN + 1)-th state indicates if joint j
is independent of all other joints. This choice of D7 limits
our model to one-to-one joint dependencies. It is easy to
extend this to more complex dependencies by extending D’ .
That, however, enlarges the space of possible dependency
structures significantly.

L] is the locking state of joint j at time step ¢. It is a
binary variable stating whether joint j is locked or unlocked.

7 is the joint state of joint j at time ¢, i.e., the angle for
rotational joints and the prismatic extension for prismatic
joints.

F} are potentially pre-processed force/torque (F/T) sensor
measurements observed at time ¢ for joint j. The measure-
ments can be mapped to a particular joint since the agent
knows which joint he is actuating. In this paper only F/T
measurements are used but different modalities, such as
sound, could be incorporated in a similar fashion.

C} is a binary variable that states whether at time ¢ a
change point in the F/T measurements was detected. Again,
this can be mapped to a joint since the agent knows which
joint it is actuating.

Sg is a binary variable stating whether there is a segment
border at position ¢ in joint state space of joint j. Since the
joint space is a continuous space, S’ is strictly speaking a
random field over the joint space. However, we simplified
this by finely discretizing the joint space in our implemen-
tation such that S/ becomes a set of random variables.

The agent observes the joint state QYN at a given time
t and the F/T measurements F}. To query the locking state
L7 an oracle can be asked. Alternatively an action could
be performed (e.g., pushing, pulling or rotating the joint) to
compute the locking state from the observations.

C. MaxCE Exploration Strategy

We formalize the goal to uncover the joint dependency
structure as to minimize the uncertainty over D7. This can be
achieved by minimizing the entropy over D’. We would have
to solve a POMDP to optimally minimize the entropy of a
random variable. As that includes computing the expectation
over all possible futures, it is computationally very hard. To
avoid solving this NP-complete problem, one-step lookahead
objective functions are mostly used. Typically, the expected
entropy over possible outcomes of one step actions is used.
However, as we have shown in [8], minimizing the expected
one-step entropy can be misleading whe the aim is active
learning about latent model parameters, especially when the
prior distribution is biased to a wrong state. This is the case
in this work because we assume that most joints are not
dependent on others (see Sec. IV for more details).

Thus, we leverage the maximum cross-entropy (MaxCE)
criterion to minimize the uncertainty over D7. This criterion
has the benefit that it does not try to strengthen a wrongly
biased belief but it values change in the posterior independent
of the actual direction of change. It does this by measuring
the change in the model distribution — in our case this is the
distribution over possible joint dependency structures.

For this purpose we compute the expected one-step cross-
entropy between the current joint dependency structure dis-
tribution PD{ and the expected joint dependency structure
distribution one time step ahead PD€+1 (also called the
augmented posterior), and maximize this expectation to get
the optimal next sample position Q%ﬁ *

(Qt+1 ,J) = argmax ZP (Li+1|Qt+1751 N)

G, M
H [Py Py ]
with
PD{ = P(Dj|Lj't’Q%f£V7slzN) @)
Ppi = P(DI|L, 0, Q1ity, S™Y). 3)

H[; ] is the cross-entropy between two probability distri-
butions, defined as
Z P(X)log (

H[P(X);Q
D. Marginal Data Likelihood

The posterior of the joint dependency structure is de-
pendent on the marginal data likelihood of the queries
acquired P(Ly | D7, QFN, S*). Since the locking state
is a discrete variable, the usual choice for its probability is
a Dirichlet prior. The marginal likelihood is then:
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Where O is the number of observations, K is the cardinality
of Lj |, oy are the Dirichlet hyper-parameters, cj are the
observation counts (i.e., counts for each locking state), and
T" is the multinomial gamma function.

Normally the observation counts are just counts of how
often each locking state occurred in the queries acquired so
far. We have, however, to account for the fact that the locking
state changes over time. We thus weight each query by the
probability that it was acquired in the same segment, i.e.,
for a query acquired at time step ¢ the probability that there
is no segment border between Q¥ and QF, ;. How we can
compute this will be subject of Sec. III-E.

(O+Zkak

E. Change Points

As described in the last section we require the probability
of a state change between two points in joint space. While
we could use typical distance functions like radial basis
functions, we leverage the knowledge that state changes



can often be inferred from feedback. To model this we
use the F/T sensor measurements to generate a probability
distribution over state changes.

We assume that the state changes are independent from
each other. The probability of no state change between two
positions @7 and @ at time u and v of joint j is then

ﬁ (1- P (sp1@l Clo FL) ) - (©6)
a=Q,

As depicted in the graphical model, Sg is dependent on
Q{:t and Cf:t. We model this dependency as the probability
of a segment boarder being the mean probability of a change
point at a particular joint position. Thus we can infer Sg by

¢ . o
i i 5(Q7, q)P(CI|FY,
P<S$|Qj1~tacf~mF1j~t) _ Dem (t L 4q) ( 11FY.) %)
I 2 =1 0(Q%,9)
with (-, -) the Kroenecker delta
5(a,b) lifa=b . ®)
0 else

To infer the change point probability from the sensor mea-
surements we leverage Bayesian change point detection. For
the sake of brevity it is sufficient to know that it computes the
posterior P(CJ|FY ) — the probability of a change point at a
time s given the sensor input. Although the sensor input can
in principle be arbitrary, we can compute the change point
probabilities analytically if we assume piecewise constant
data. We will leverage this knowledge later when dealing
with the F/T data of the robot. For a detailed description of
the change point detection refer to [13].

IV. EXPERIMENTS

A. General Setup

We test our dependency model in a physical simulation
and on a real robot. Here we describe the parts of the
experiments that are shared. The details specific to one
experiment are described in the corresponding sections. The
goal of the robot in both experiments is to uncover the joint
dependency structure D of complex mechanisms.

1) Assumptions: We assume the agent initially has akine-
matic model of the environment, including the existance of
joints and their parameters, but not their dependencies.

For simplicity we also assume the F/T profile of each
joint is known, i.e., the F/T recording of each joint of the
entire joint space. This can and eventually should be recorded
during the exploration.

2) Actions: The result of Eq. 1 is the next query point,
i.e., the desired target configurations of all joints Q%_ﬁ * and
the joint j of which the locking state is supposed to be
checked. Given the model of the mechanism, a controller can
bring the mechanism to the desired configuration if possible.
The locking state of joint j is supplied via the simulation or
via a human oracle respectively.

3) Prior: For the probabilistic graphical model we have
to choose priors. We want to incorporate the knowledge
that most joints in the world are independent of other
joints, e.g., most drawers and cabinet doors can be opened
directly without unlocking them and they do not lock each
other. Therefore, for the dependency prior P(D) we set the
probability of a joint being independent to 0.7. We also
think that proximity is a good indicator of the dependency
of joints. Joints that are close to each other are more likely
to depend on each other than joints that are far apart. For
the dependency prior P(D) we set the probability of being
dependent on another joint proportional to ﬁ, with d(i, j)
being the Euclidean distance between joint ¢ and j. The
probability of a joint locking itself is set to zero. More

formally:
0 if j =14 (self-dependent)
PDI=i)=3.7 ifj=N+1
(y depends on %)

(independent)

1
TCon else

©))
with ¢y being a normalization constant.

4) Data Pre-processing: The second graph in Fig. 3
shows the F/T sensor reading applied to a joint when
controlling it, which is a non-linear time series. To efficiently
compute the change point probabilities we, assume a piece-
wise constant model plus Gaussian noise. We pre-process the
F/T as follows, to account for that assumption.

The force we measure is the force needed to induce a
certain velocity change on the joint, which can be calculated
using physical laws as

Av = 1/v? — c;vAt,

with v the velocity, At the change in time and c; a virtual
friction constant incorporating the mass of the object, the
contact force and actual friction coefficient. From the actual
F/T measurements we can thus compute the virtual friction
constant which changes if there is feedback in the joint
mechanism. As can be seen in the third graph of Fig. 3, the
virtual friction constant is piecewise constant up to sensor
noise. We can feed it to the Bayesian change point detection
and compute change point probabilities (fourth graph of
Fig. 3).

We map the change point probabilities, which are in time
space (bottom plot in Fig. 3), into joint space and get the
probabilities over segment borders (top plot in Fig. 4). With
this data we can then start the actual exploration of the
mechanism.

5) The Exploration Sequence: The data pre-processing
yields the segment border probabilities as depicted in the
first graph of Fig. 4. From the segment border probabilities
and all observation data we can compute the next query
point/action (see Sec. III and Sec. IV-A.2). Then, the robot
performs the given action, i.e., it brings all joints into the
goal configuration Q#\{* and checks the locking state of
joint j. The grapical model is updated with the resulting

(10)
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Fig. 3. Data gathered from exploring a (simulated) cupboard, which has a

key that locks the door between 20 and 50 degrees. All graphs show data
from the key. The pre-processing of the F/T data shown here is done once
once before the exploration.

observation and the process is repeated. Fig. 4 shows some
exploration steps of this procedure.

B. Physical Simulation: Setup

We first test our method in a physical simulation. We
simulate the dynamics of the joints to determine change
points in the movement profile. The agent applies forces
to the joints to move them to desired positions using a
PD-controller. The agent senses the applied forces and the
position of the joint and can use this information to infer the
change points and segments.

We test three different strategies to uncover joint depen-
dency structures: (a) the baseline strategy selects actions
randomly, (b) the expected entropy strategy minimizes the
expected entropy of the distribution of D7, and (c¢) the
MaxCE strategy maximizes the cross-entropy as described
in [8].

Additionally, we test the influence of the change point de-
tection on the overall performance. We test all the strategies
with (a) the change point detection enabled and (b) using a
common exponential distance function as likelihood of two
experiences belonging to the same joint state instead of using
the segments detected by the change point detection.

Each strategy is evaluated in 50 different environments.
An environment consists of furniture with different joint
dependency structures and different parameters of the locking
state. An environment is generated by randomly choosing
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Fig. 4. The exploration sequence of the same simulated cupboard as

depicted in Fig. 3. Again, only data from the key is shown. Each action
moves the key to the desired configuration shown in red. After each action
the robot also observes the locking state of one joint. In this particular
example it explores the key of the cupboard and always asks for the locking
state of the door. Note that in the first step no observations are present and
thus all actions are equally interesting. Tiebreaking is done randomly. After
three actions, the probability of the key being the master of the door is
already greater than 70% (not shown).

three different objects from Tab. II and randomly choosing
the locking state. One instance of an environment might
consist of a cupboard with a key (which is unlocked if the
key is, e.g., between 73 and 93 degree), a cupboard with a
handle (which opens, e.g., at its upper limit), and a drawer
with a key (which is unlocked if the key is, e.g., between
122 and 142 degree). In an exploration sequence the agent
can perform 30 actions.

C. Physical Simulation: Results and Discussion

Fig. 5 shows the performances of the different strategies
with and without change point detection. The upper plot
shows the average correctly classified joint dependencies
over time. We define correctly classified as recognizing the
correct joint dependency with a probability of > 0.5. Note
that due to the prior, three dependencies are always classified



Name Description

Locking mechanism

Cupboard with handle
Cupboard with lock
Drawer with handle

A cupboard with a door and a key in a lock
A drawer with a movable handle

Drawer with lock A drawer with a key in a lock

A cupboard with a door and a handle attached to it.

The handle must be at upper or lower limit to unlock the door
The key must be in a particular position to unlock the door

The handle must be at upper or lower limit to unlock the drawer
The key must be in a particular position to unlock the drawer

TABLE I
FURNITURE USED IN THE SIMULATION.

i o ®

Correctly classified dep.

®
N}

g
o

Sum of entropies
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- = MaxCE, w/o CPD
—— MaxCE, with CPD

— — Entropy, w/o CPD
—— Entropy, with CPD

Fig. 5. Results of the simulation experiment. We show the sum of entropies
of all D7 random variables. The error bars reflect a 99% confidence interval
of the mean estimator.

correctly. Here one can see that the MaxCE method is
able to classify significantly more dependencies correctly as
well as faster when compared to all other strategies. One
can also see that the change point detection increases the
performance of the strategies. Note that the entropy method is
not able to find out anything apart from the three independent
assumptions, which are already correct due to the prior. The
entropy is already quite low and cannot easily be reduced.
Querying configurations that lower the independence belief
would increase the entropy which is undesired although it
would improve the belief in the long run.

In the lower graph we show the sum of entropies of all
D7 over the actions. Different things can be seen in this
plot. First we can see that the MaxCE strategy with change
point detection is the only strategy which is able to lower the
entropies significantly. All other strategies raise the entropy.
This is due to the strong prior that joints are independent of
each other. Thus lowering the belief of independence raises

the entropy.

Note that the strategies that use the change point de-
tection reduce the uncertainty faster than their counterparts
without change point detection. This is due to the fact that
an observation yields information for the entire segment
(when using change point detection). The random strategy
shows this effect very clearly. While the change points have
no influence on the action selection process, the inference
over the dependency structure can use them to weight the
observations. Therefore, the entropy of the random strategy
with change point detection is lower than the random strategy
without change point detection.

D. Real World Experiment: Setup

We also test our dependency model using a real PR2 and
a typical office cabinet. The cabinet has a drawer, which
can be locked/unlocked by a key. The key also works as
handle to open the drawer once the drawer is unlocked.
Again, the robot knows the model of the cabinet (see
Sec IV-A.1). The configuration of the furniture is measured
through proprioception of the robot. The robot’s wrist can
measure the joint angle of the key. The extension of the arm
corresponds to the joint value/extension of the drawer. We
manually position the gripper of the robot around the key. No
re-grasping is required during the experiment. The MaxCE
strategy is used to explore the cabinet. Fig 1 shows our PR2
exploring the joint dependency structure of a cabinet drawer.

As additional sensory clues the robot uses F/T feedback
of the drawer, measured by a sensor located in the wrists of
the PR2. The measurements consist of the three dimensional
force vector and three dimensional torque vector acting on
the wrist of the robot. We sum up these values and pre-
process them as stated in Sec. IV-A.4.

E. Real World Experiment: Results and Discussion

Fig. 6 shows the results of the conducted experiment. The
robot was able to uncover the dependency of the drawer
from the key position. Looking at the exploration sequence
in more detail, we see that the robot was not able to increase
the probability that the key is an independent joint. This
results from the fact that there are no direct observations
which imply independence and therefore would increase the
probability for the joint being independent. During the exper-
iment we only observed that the key was in the “unlocked”
locking state, but this does not increase the probability of the
key being an independent joint. Note that being unlocked
either means that no master was found, or that the joint
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The results of the real world experiment. We show the probability distribution of the two involved D7 random variables over the number of

interactions the robot made. We can see that the dependency of the key as master over the slave drawer is uncovered very early, whereas the probability
of the independence of the key is not significantly raised during the interactions. The self-dependency is zero throughout the whole experiment as it has a

hard zero prior.

is independent. To guarantee independence we would have
to observe the “unlocked” state for the entire configuration
space. This could only be accomplished by exhaustively
searching the configuration space.

V. CONCLUSION

We developed an active learning method to explore com-
plex joint dependency structures. The method leveraged the
sensory clues from the mechanisms (F/T measurements were
used) to segment the joint space into meaningful discrete
clusters. The MaxCE strategy proved to be an efficient
strategy to explore joint dependency structures whereas the
common active learning strategy, expected entropy, did not
succeed. We demonstrated our method in simulation and on
a real PR2.

One major limitation of our approach is the fact that
only one-to-one dependencies can be modeled, since the
D7 random variable only gives the dependency to exactly
one other joint. While this could easily be extended to
multiple dependencies, the exploration strategies would have
to cope with O(NN?) different models for two dependencies
of each joint up to exponentially many models for arbitrary
dependencies. Arbitrary joint dependencies are, however,
rare. An according prior could reduce the amount of models
drastically.

We are planning to integrate our method into the current
implementation of the physical exploration challenge [11] to
make the system more general.
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