
Understanding the Geometry of Workspace Obstacles in Motion
Optimization

Nathan Ratliff1,2, Marc Toussaint2, and Stefan Schaal1

Abstract— What is it that makes movement around obstacles
hard? The answer seems clear: obstacles contort the geometry
of the workspace and make it difficult to leverage what we
consider easy and intuitive straight-line Cartesian geometry.
But is Cartesian motion actually easy? It’s certainly well-
understood and has numerous applications. But beneath the
details of linear algebra and pseudoinverses, lies a non-trivial
Riemannian metric driving the solution. Cartesian motion is
easy only because the pseudoinverse, our powerhouse tool,
correctly represents how Euclidean workspace geometry pulls
back into the configuration space. In light of that observation,
it reasons that motion through a field of obstacles could
be just as easy as long as we correctly account for how
those obstacles warp the geometry of the space. This paper
explores extending our geometric model of the robot beyond
the notion of a Cartesian workspace space to fully model and
leverage how geometry changes in the presence of obstacles.
Intuitively, impenetrable obstacles form topological holes and
geodesics curve around them accordingly. We formalize this
intuition and develop a general motion optimization framework
called Riemannian Motion Optimization (RieMO) to efficiently
find motions using our geometric models. Our experiments
demonstrate that, for many problems, obstacle avoidance can
be much more natural when placed within the right geometric
context.

I. INTRODUCTION

Cartesian motion for robot manipulation [22] is relatively
well understood. The pseudoinverse solves an equality con-
strained quadratic program that calculates the configuration
space motion that best makes the end-effector move in a
particular motion. But obstacles complicate the mathematics.
Obstacles introduce unstructured nonlinear and nonconvex
constraints that don’t fit well into either weighted pseu-
doinverse or more general Quadratic Programming (QP)
formulations. Recent motion optimization strategies such as
TrajOpt [20], CHOMP [18], STOMP [6], and iTOMP [3]
have shown impressive performance modeling obstacles as
costs and constraints over long time-horizons, but many
types of obstacles, especially long thin obstacles or small
poles, translate to ill-conditioned problems that are diffi-
cult to optimize or have many poor local minima. These
problems are thought to be fundamentally hard requiring
global optimization or exploration strategies such as Rapidly-
exploring Randomized Trees (RRTs) or Probabilistic Road
Maps (PRMs) [7].

This paper takes a step back and asks whether this
observed ill-conditioning is fundamental to the underlying
complexity of the workspace or simply an artifact of mod-
eled geometric representation. Indeed, the mapping from
the configuration space to the three-dimensional workspace

1Autonomous Motion Department, Max Planck Institute for Intelligent
Systems, Tübingen, Germany

2Machine Learning and Robotics Lab, University of Stuttgart, Germany

is highly-nonlinear, yet pseudoinverse solutions invert that
nonlinearity and make controlling linear end-effector motion
easy.

Intuitively, we understand pretty well that the geometry
of the workspace is strikingly non-Euclidean. Obstacles are
“invalid” sections of the space, best viewed as non-existent.
And straight lines are no longer Euclidean. It doesn’t make
sense for a straight line to pass through an invalid region;
it must naturally curve around an obstacle. In the parlance
of Riemannian Geometry, we say that obstacles are topo-
logical holes in the space and that geodesics curve to avoid
those holes. This workspace geometry, too, is highly non-
Euclidean. The nonlinearities of robotic motion don’t end at
the end-effector. They continue into the workspace.

This paper explores extending the geometric model of the
robot beyond the simple Cartesian space of the end-effector
to fully represent how the workspace geometry affects the
overall geometry of the motion problem. We formalize the
representation of workspace geometry as a Riemannian met-
ric in the three-dimensional workspace surrounding the robot,
and demonstrate an equivalence between Pullback metrics
in Riemannian Geometry, and a form of partial Gauss-
Newton approximation for representing objective curvature
in Nonlinear Programming. This connection enables the im-
plementation of geometrically aware motion optimizers that
optimize a very general class of motion models efficiently
using generic second-order constrained optimization solvers.

Our novel framework is called Riemannian Motion Op-
timization (RieMO). We introduce two related models to
represent the non-Euclidean geometry of the workspace,
show how to leverage them within motion optimization,
and demonstrate experimentally that they can easily induce
highly contorted non-linear workspace motion to avoid thin
obstacles while retaining fast optimization speeds of around
.5 seconds.1 These optimization speeds are competitive with
the state-of-the-art, but the purpose of this work is not
to claim the fastest optimizer. This work aims to further
understand the separation between motion problems that are
fundamentally difficult and those that are relatively easy. Our
tools generalize the mathematics of pseudoinverses, using
ideas from Riemannian Geometry to represent and leverage
the intuitively non-Euclidean geometry of the workspace
within long-horizon motion optimization.

Section IV-B discusses some analysis proved in the ex-
tended version of this paper [17] that show a very close
connection between Gauss-Newton approximations, which
fully capture the first-order Riemannian geometry of this

1These speed quotes are for unoptimized code running on a Linux virtual
machine atop a 2012 Mac PowerBook.



problem, and the exact Hessian for terms modeling geodesic
energy through non-Euclidean spaces. This result, along
with the computational analysis of the general Motion Op-
timization framework discussed in Section III, demonstrates
that Newton’s method is efficient on non-Euclidean Motion
Optimization problems, and the experimental demonstrations
of Section V show that the optimized motions are simulta-
neously expressive and precise.

II. A QUICK REVIEW OF RELEVANT CONCEPTS FROM
RIEMANNIAN GEOMETRY

This section reviews some of the tools from first-order
Riemannian geometry we use in this paper. Our interest
is in mathematical calculation and intuition, so we aren’t
concerned with rigorous details such as basis-free represen-
tations or definitions of smoothness and differentiability on
manifolds. We present just the basic elements needed to
understand this paper—for an excellent in-depth introduction
to Smooth Manifolds and Riemannian Geometry, see [8].

A. Metrics, Geodesics, and Pullbacks
Core to the idea of Riemannian geometry, is a smooth map

that maps each point x ∈ M in the domain (where M is
an n-dimensional smooth manifold) to a symmetric positive
definite2 matrix A(x). This map is known as the Riemannian
metric.

Importantly, this metric at a given point x operates on the
tangent space, the space of velocity vectors ẋ ∈ TM at that
point, to define a norm on incremental motions ‖ẋ‖A(x) =√

ẋTA(x)ẋ. (Intuitively, A(x) stretches the space along
its Eigenspectrum by amounts given by the square roots of
its Eigenvalues. This norm more heavily penalizes directions
along which the space is significantly stretched.) Such a norm
allows us to define the length of a parameterized path x :
R → M as3 L(x) =

∫
‖ẋ‖A(x) dt, which in turns allows

us to define a geodesic as the minimum cost path between a
pair of points

x∗ = argmin
x∈Ξ(x1,x2)

1

2

∫
ẋTA(x)ẋ dt, (1)

where Ξ(x1,x2) is the set of all paths starting at x1 and end-
ing at x2. Here we’ve replaced an explicit optimization over
the length functional L(x) with an equivalent optimization
over a geodesic energy functional more amenable to motion
optimization—the minimizers of the two functionals match.

We’ll also make use of the concept of Pullback functions
and Pullback metrics. Concretely, suppose φ :M→N is a
smooth mapping from one manifold M to another manifold
N . For any function f : N → R defined on that co-domain,
there’s an associated induced function defined on M called
the Pullback4 function h defined via composition as h(x) =
f(φ(x)). Simply put, the function acts by first mapping x

2There’s a theoretical distinction between fully positive definite metrics
and positive semi-definite metrics. Computationally, though, we can often
utilize the latter in practice by simply replacing any inverse with a pseu-
doinverse. We’ll see an example of that in the next section.

3With a slight abuse of notation, we often use the same variable, such as
x, to represent both a point in M and a trajectory through M. That latter
is understood in context by the presence of time indices or time derivatives.

4Often this function is denoted h = φ∗f , but for our purposes, that
notation is unnecessarily confusing.

from M to its associated point z in N using φ, and then
evaluating the f there.

Similarly, if the manifold constituting the co-domain has
a corresponding Riemannian metric B(z), then the map
φ also induces an associated metric on M defined by
A(x) = JTφB(z)Jφ, where z = φ(x) and Jφ is the
Jacobian of φ evaluated at x. This induced metric is called
the Pullback metric; the formula is simply a generalization
of the relation ż = d

dtφ(x) = Jφẋ, since ‖ż‖2B = żTBż =

ẋT
(
JTφBJφ

)
ẋ. These Pullbacks represent how first-order

Riemannian geometry propagates between spaces. Of interest
here, when the original metric on N is defined as a positive
definite Hessian of a function f : N → R, then this
Pullback metric is equivalent to a partial Gauss-Newton Hes-
sian approximation of the corresponding Pullback function
(described in Section III-B).

B. The Geometry of Cartesian Control
Here we gain some intuition about the geometry of robot

motion by showing how a Euclidean metric placed in the
workspace induces a non-trivial non-Euclidean geometry on
the underlying d-dimensional configuration space. The con-
figuration space C and the workspace5 R3 are two manifolds
linked by the forward kinematics map φ : C → R3 mapping a
configuration to a point on the robot’s end-effector. Let Jφ be
the Jacobian of φ. By itself, the Euclidean metric, represented
by the identity matrix I in the workspace, pulls back to a
metric of the form JTφ Jφ. That metric is reduced rank for
redundant manipulators (d > 3), and is therefore fundamen-
tally non-Euclidean in the higher dimensional space. Even if
we modify it to be Aα(q) = JTφ Jφ+αI , the resulting metric
is still non-Euclidean. (For a d-dimensional manifold M
with metric A(q) to be fundamentally Euclidean, we need to
be able to find a smooth mapping of the form ψ :M→ Rd
to a Euclidean space of the same dimension under which the
Pullback is A(q) (specifically, JTψ Jψ = A(q)). In this case,
for Aα(q), the most natural mapping is one that maps q to a
higher-dimensional ((d+ 3)-dimensional) space [φ(q);α

1
2 I]

(see Section IV-B for a more in depth discussion of such
geometric mappings).)

In particular, following potential field gradients taken with
respect to this metric produces motion consistent with the
workspace metric. For instance, suppose we’re following
a simple attractor of the form ‖xg − φ(q)‖. The negative
gradient of this attractor in the workspace is simply a unit
vector pointing directly toward the goal. When we take the
negative gradient in the configuration space with respect to
the metric Aα = JTφ Jφ, we get (denoting the workspace
negative gradient as v)

−∇Aα
‖xg − φ(q)‖ = (JTφ Jφ + αI)−1Jφv

= JTφ (JφJ
T
φ + αI)−1v,

which is the familiar (softened) pseudoinverse motion control
rule that we know makes the robot’s end-effector move
(instantaneously) in the direction v (up to the softening factor

5For simplicity here we take the workspace to be the space of all 3D
point locations, but more generally it often includes orientations as well. In
motion optimization, orientation constraints are often specified separately,
so 3D point locations are sufficiently expressive.



approximation). The final line of this calculation can be
verified by expanding it and the line above it in terms of
the Jacobian’s SVD.

Euclidean workspace metrics are already fundamentally
non-Euclidean from the perspective of the configuration
space. In that sense, here’s nothing inherently special about
Euclidean workspace metrics; Section IV leverages that
intuition and derives some natural non-Euclidean metrics to
better represent the inherent geometry of the workspace.

III. A GENERAL MOTION OPTIMIZATION FRAMEWORK

Hessian information accounting for the kinematic structure
of the trajectory has incrementally become an increasingly
critical component of motions optimization [23], [18], [6],
[3], [20]. The success of these methods have encouraged a
shift away from global techniques toward more direct local
optimization. These quick Hessian approximations leverage
the graph structure of the motion problem to communicate
gradient information across the full length of the trajectory at
each iteration during approximate Newton step computations.
We’re finding a number of significant real-world problems
for which local optimizers alone are able to find good paths
starting from relatively naı̈ve and generic initial hypothe-
ses. Especially in human environments, where problems are
intentionally simplified to be easily solvable by humans,
who, themselves, often struggle with the same fundamental
planning complexity limitations as robots, many everyday
problems are quickly solvable by local optimization methods.

The motion optimization framework we use for this paper
is largely inspired by the Kth-Order Markov Optimization
(KOMO) framework [24]. The only conceptual difference is
that our framework, which we call Riemannian Motion Opti-
mization (RieMO), uses Gauss-Newton approximations only
to avoid computing third-order tensors of differentiable maps
when pulling Hessians back from the map’s range space to
its domain. All top-level cost functions (e.g. workspace cost-
functions which are at the end-point of forward kinematics
maps or similar workspace velocity norm terms) require
explicit Hessian implementations under RieMO. These ex-
plicit Hessians correctly communicate the curvature of the
workspace geometry, which the partial Gauss-Newton ap-
proximations then pull back to the configuration space.

Additionally, we don’t assume the availability of full
configuration goals (often supplied via inverse kinematics,
an approach taken by optimizers such as CHOMP (although,
see GSCHOMP [4]) and STOMP). All of our optimizations
start simply from the zero-motion trajectory that doesn’t
move at all from its initial pose. We use the zero set of a
goal constraint function (such as a function measuring the
distance between the terminal configuration’s end-effector
and a Cartesian goal) to define the desired set of valid goal
configurations implicitly as a modeled constraint.

Much attention in motion optimization has been given
to speed. Which optimizer optimizes the motion model the
fastest? Beyond the computational efficacy of individual
components such as collision detection and sparse repre-
sentations, fast convergence is largely a question of opti-
mization: we know theoretically that increased utilization
of second-order information translates to faster convergence
[12]. Section III-A reviews a straightforward and very

general methodology for accurate modeling and efficient
optimization. This framework leverages fast band-diagonal
linear system solvers to exploit problem structure during the
calculation of Newton steps within a generic constrained
Augmented Lagrangian optimizer. These tools promote a
clean separation between modeling and optimization and
allow this paper to focus primarily on the question of how
to most accurately model workspace geometry and leveraged
it efficiently within a motion optimization framework. The
unconstrained inner loop solver uses a Levenberg Marquardt
strategy with partial Gauss-Newton Hessian approximations.
Section III-B discusses how these partial Gauss-Newton
approximations act as Pullback metrics that communicate ge-
ometric information from the workspace to the configuration
space; this generic methodology becomes a fully covariant
algorithm for exactly representing the first-order Riemannian
geometry of the problem.

Our optimizer solves simple Cartesian workspace (straight
line end-effector) motion problems easily, even with joint
limit constraints, surface penetration constraints, various ve-
locity and acceleration penalizations in both the configuration
space and the workspace, and other modeling considerations.
Section IV shows that the same system can be easily mod-
ified to operate within a nontrivial Riemannian workspace
geometry to also, with essentially no additional work, move
freely among and around obstacles.

A. kth-order clique potentials and finite-differences in
mapped spaces

This section reviews the basic function network formu-
lation first used in KOMO [24], designed to expose the
underlying band-diagonal structure of the objective’s Hessian
and facilitate the use of finite-differenced time derivatives
through mapped (task) spaces. Our basic trajectory represen-
tation is ξ = (q1 . . . , qT ); all time-derivatives are calculated
using finite-differencing.

The cost objective terms or constraints at each time step
along the trajectory depend on a collection of m differ-
entiable maps (sometimes called task maps) xi = φi(q)
mapping from the configuration space to some related task
space. For instance, the forward kinematics map mapping
the configuration to the end-effector location or an axis at
a particular joint is one such task map, but we place no
restriction beyond differentiability on what a task map might
be.6 These objective terms or constraint functions take the
form

ct(ξ) =

m∑
i=1

cti

(
φi(qt),

d

dt
φ(qt), . . . ,

dk

dtk
φ(qt)

)
. (2)

Rather than taking finite-differences of configuration space
variables qt and transforming those approximate quantities
using the kinematic equations describing how derivatives
transform between mapped spaces, we calculate the finite-
differences directly in the mapped space which make the
calculations both more accurate and more straightforward.
Specifically, denoting

x
(i)
t = φi(qt) (3)

6Note that the identity map is a task map as well making the configuration
space, itself, a task space as we define it.



and dropping the superscript for notational simplicity, we
use the following linear map to calculate the velocity and
acceleration variables in the mapped space: xt

ẋt
ẍt

 =

 xt
1

∆t (xt − xt−1)
1

∆t2 (xt+1 + xt−1 − 2xt)

 . (4)

Each task variable is a function of the corresponding config-
uration variable, so these first three time-derivatives are each
functions of xt−1,xt, and xt+1. Since each xt is a function
of the corresponding qt, this clique of three time-derivative
task variables is actually a function of qt−1, qt, and qt+1. An
analogous relation holds for arbitrary kth-order derivatives.

Given this relationship, between time-derivatives in task
space and the underlying kth-order clique of configuration
space variables, we can generically describe the entire opti-
mization problem as

min
ξ

T∑
t=1

ct(qt−1, qt, qt+1) (5)

s.t. gt(qt−1, qt, qt+1) ≤ 0
ht(qt−1, qt, qt+1) = 0.

Again, generalizations to kth-order derivatives and cliques
are straightforward. Our experiments leverage only acceler-
ations, so for expositional clarity we depict the equation7

using simply k = 2.
The key to efficient optimization in this setting is to

note that any kth-order Markov network of functions has
a band-diagonal Hessian of bandwidth kd, where d is the
dimensionality of the configuration space. Solving band-
diagonal systems is a well-studied problem [13] and, in
this case, we can solve for inner loop Newton steps in
time O(T (kd)2) (quadratic in the bandwidth, but linear in
the time horizon) using well-tested and highly optimized
tools from Linear Algebra packages such as LAPACK [10].
For most real-world problems, solving these band-diagonal
systems is so cheap, relative to the computational expense
of function evaluation across the trajectory, that this Newton
step transformation is effectively free.

B. Partial Gauss-Newton approximations and Pullbacks

This section describes the partial Gauss-Newton Hessian
approximation we use to avoid computing third-order tensors
of differentiable maps, and relates it to Pullback metrics from
Riemannian geometry. The theoretical results mentioned in
Section IV-B show that these partial Gauss-Newton ap-
proximations, alone, provide the majority relevant curvature
information for these problems.

At a high level, a function c : Rm → R defined on the co-
domain of a nonlinear differentiable map φ : Rn → Rm
can be pulled back into the nonlinear map’s domain to

7Notice this representation makes use of a pre-first configuration q0 and
a post-last configuration qT+1. In practice, we assume that q0 is fixed and
enforce that restriction as a hard constraint. We also typically use qT as
the final configuration and constrain it to achieving the goal. The post-last
configuration qT+1 acts as an auxiliary configuration used just for terminal
configuration acceleration calculations.

form c̃(u) = c(φ(u)) as discussed in Section II-A. It’s full
Hessian is

∇2
uc(φ(u)) = JTφ∇2

xc(φ(u))Jφ +

[
∂Jφ
∂q

]
∇xc(x)|φ(u).

The third-order tensor ∂Jφ
∂q = ∂2φ

∂q∂qT
in the equation is

computationally expensive—it’s equivalent to calculating m
separate n×n-dimensional Hessian matrices. Additionally, it
can easily add indefinite components to the overall Hessian
matrix. The first term, on the other hand is always positive
(semi-)definite whenever ∇2c(x) is positive definite, so we
can consider it a definiteness-preserving representation. In
the partial Gauss-Newton approximation,8 we simply throw
away the second term, which accounts for additional cur-
vature arising from the differentiable map φ, itself, and
keep only that first, computationally simpler and better
conditioned, term. That first term is the Pullback of the co-
domain’s Hessian; it, alone, communicates the entirety of
the first-order task space Riemannian geometry back to the
differentiable map’s domain. Experimentally, this term con-
tributes enough information about the function’s curvature
to promote fast convergence in optimization. Section II-A
discusses the geometry of such pullbacks in more detail.

Notice that task space functions defined over time deriva-
tives, such as c(x, ẋ, ẍ) are implemented as finite-differences
in the task space as described in Section III-A. They, there-
fore, translate to a function defined over a clique of task
space variables, and the resulting Hessian over that clique
represents the associated task space Riemannian metric. That
metric pulls back into the configuration space via the partial
Gauss-Newton approximation as described above.

IV. RIEMANNIAN GEOMETRY OF THE WORKSPACE

We’re now equipped to study the Riemannian geometry
of the workspace, itself. We start with an abstract discus-
sion on how these ideas integrate into Motion Optimization
(Section IV-A) and then follow up with derivations of
particular models of the workspace geometry we use in
our experiments. Much of this discussion revolves around
leveraging the energy form of the geodesic definition given
in Equation 1.

A. Integrating workspace geometry into motion optimization
The objective portion of Equation 1 discretizes to

ψ(ξ) =

T∑
t=1

1

2
ẋTt A(xt)ẋt ∆t, (6)

where ẋt = 1
∆t (xt − xt−1) is a finite-differencing ap-

proximation to the workspace velocity. This discrete rep-
resentation suggests that an effective way to integrate the
workspace geometry into the motion optimization problem
is to introduce a collection of new terms of the form

ψt(qt−1, qt) =
1

2∆t
(xt − xt−1)TA(x̄t)(xt − xt−1), (7)

8The true Gauss-Newton approximation is appropriate only for general-
ized least-squares terms, and generally assumes the top-most (least-squares)
curvature is very simple (constant and uncorrelated). This partial Gauss-
Newton approximation may also be viewed as an implicit Gauss-Newton
approximation, since for every function with positive definite ∇2c(x), there
exists a mapping ψ under which ∇2c(x) = JTψ Jψ (see [9]).



where xt = φ(qt) is the tth configuration pushed through
the forward kinematics map and x̄t = 1

2 (xt + xt−1) is the
midway points between xt and xt−1. Hessians of ψt can
be complicated to calculate (they can sometimes be done
efficiently by exploiting the structure of this objective—see
the appendix of the extended version of this paper [17] for
a calculation example for the metric defined in Section IV-
C)—although Section IV-B presents a substantially simpler
setting that’s theoretically equivalent and easier to manipulate
in practice. Conceptually, it helps first to make A(x) explicit
in these expressions to understand how it integrates into the
motion optimization problem.

The second place the Riemannian metric comes into play
is in the goal constraint function or terminal potential. Since
constraint functions in Augmented Lagrangian inner loop
optimizations play effectively the same role as terminal
potentials, we tailor this argument to just the latter.

Ideally, such a terminal potential should be a geometry
aware attractor that pulls the robot along geodesics through
the workspace. In the absence of obstacles, the Euclidean
distance between the end-effector and the goal set works
pretty well, but given environmental obstacles that warp the
geometry, the potential function should be better informed.
Pulling directly along a geodesic is usually hard, because
finding that geodesic is an optimization problem in itself
[11]. There are a number of ways to approximate the
geodesic distance, though, that work pretty well in practice.
The simplest of these is to use a metric weighted attractor
terminal potential of the form

φT (xT ) =
1

2
(xT − xg)

TA(xT )(xt − xg). (8)

Section IV-B presents a more accurate form of attractor by
defining it in a higher-dimensional geometric space.

With these modified terms the RieMO optimizer described
in Section III automatically accounts for the Riemannian
geometry of the workspace. In particular, the band-diagonal
linear system solver ensures that local information about the
curvature and gradient propagates efficiently across the entire
trajectory during the Newton step calculation.

It’s intuitively helpful to think of this band-diagonal solver
as inference method for a Gaussian graphical model [21],
[23]. Any symmetric positive definite linear system Ax = b
is the first-order optimality criterion of a quadratic function,
which in turn is the negative log-likelihood function of a
Gaussian. Thus, inference in that Gaussian to find the mean
(or mode) is equivalent to solving the system. Message pass-
ing for Gaussian graphical models has a nice and intuitive
flavor; solving the linear system, especially using fast band-
diagonal solvers that simply sweep once up and down the
trajectory, is analogous to passing messages around about the
geometry of the system until convergence. That said, linear
algebra has a long history of time-critical application and the
computational properties of special structures such as band-
diagonality have been studied thoroughly. In our experience,
it’s typically much faster to use meticulously tuned and tested
linear system solvers from thoroughly exercised toolkits such
as LAPACK that exploit this common structure than it is to
use the analogous graphical model inference methods.

B. Latent Euclidean representations and computational con-
siderations

This section presents a useful geometric modeling con-
struct that effectively extends the forward kinematic map
nonlinearly beyond the workspace into a higher-dimensional
latent space.

Any mapping of the form z = φws(x) into an unscaled
Euclidean space defines a Pullback metric A(x) = JTφ Jφ.
This observation means that the generalized velocity term
of the form ẋTA(x)ẋ can be equally well described as a
Euclidean velocity through the map’s co-domain:

ẋTA(x)ẋ = ẋTJTφ Jφẋ =

∥∥∥∥ ddtφws(x)

∥∥∥∥2

. (9)

Thus, the discrete approximation to the geodesic energy
objective in Equation 1 can be expressed

ψ(ξ) =

T∑
t=1

1

2

∥∥∥∥φws(φfk(qt))− φws(φfk(qt−1))

∆t

∥∥∥∥2

∆t (10)

=

T∑
t=1

1

2

∥∥∥∥f(qt)− f(qt−1)

∆t

∥∥∥∥2

∆t,

with f = φws ◦ φfk, where φfk is the forward kinematics
map. This version of the geodesic energy makes it easy to
apply partial Gauss-Newton approximations during Hessian
calculations. Importantly, Theorem 1 of the extended version
of this paper [17] shows that the portion of the Hessian
not captured by these partial Gauss-Newton approximations
(the Pullbacks) vanishes quickly as the time-discretization
becomes increasingly fine.

We call such a map φws(x) a geometric map, and it’s
co-domain a latent Euclidean space. It acts as an embedding
into a Euclidean space whose Pullback represents the desired
geometry. The map should be a mapping to a strictly higher-
dimensional Euclidean space as discussed in [15] and [17]
(see also the Nash Embedding Theorem [9]). We’ll see in
Sections IV-C and IV-D that the nonlinear maps forming
the geometric representations map the workspace into latent
Euclidean spaces of strictly higher dimension.

Note that it’s also straightforward to define attractors in
this space of the form

ψg(x) =
1

2
‖φws(x)− φws(xg)‖2 (11)

pulling toward a goal point xg . Since φws is a nonlinear
map, its gradient field can be highly curved. Both of the
concrete approaches discussed below use this representation;
Section IV-D provides additional intuition behind their be-
havior.

C. Workspace cost-gradient stretching
Naturally, proximity to obstacles warps the space by

stretching it increasingly in the direction of the obstacle.
As we approach the obstacle, trajectories should become
increasingly biased toward motion parallel to the surface,
promoting motion along the obstacle’s contours. Such a
contour surface is generated by the isocontours of the cost
function. The tangent space of these isocontours is the space
orthogonal to the gradient direction ∇c(x) at a point x, so



we posit that the right approach is to stretch the space in the
direction of that gradient. Such a warping of the workspace
(when pulled back into the workspace itself) is given by the
Riemannian metric

A(x) = I + λ∇c∇cT , (12)

where λ ≥ 0 is a positive scaling factor defining the strength
of the second term. The identity term simply represents
Euclidean geometry, while the cost gradient outer product
term stretches the space in the direction of the gradient. It’s
insightful to think through the operation of such a metric by
looking at how it manifests in the corresponding norm on
velocities:

f(x, ẋ) = ẋTA(x)ẋ (13)
= ẋT

(
I + λ∇c∇cT

)
ẋ

= ‖ẋ‖2 + λ
(
∇cT ẋ

)2
.

That first term is just the Euclidean velocity squared norm.
So if we remove the influence of the second time entirely
(λ = 0), it reduces to just the Euclidean velocity squared
norm alone. But adding that second term adds a component
that measures the squared inner product between ẋ and the
gradient direction ∇c. That inner product is the projection
coefficient of ẋ in the direction ∇c, scaled by the norm of
∇c, so we can interpret that term as measuring the squared
size of the component of the velocity collinear with this
gradient direction in a way that increases with increasing
cost. Since ∇c is generally orthogonal to the surface, this
term penalizes velocity components misaligned with the
obstacle’s contours increasingly as our point of evaluation
gets closer to the obstacle. In other words, we can interpret
the metric A(x) as stretching the space in the direction of
obstacles increasingly strongly as x approaches the obstacle.

A natural geometric mapping whose Pullback represents
this geometry is

φcws(x) =

[
x

λ
1
2 c(x)

]
with

∂φcws

∂x
=

[
I

λ
1
2∇cT

]
,

It’s straightforward to see that the corresponding Pullback
metric matches Equation 12.

This geometric map φcws makes it easy to use partial
Gauss-Newton Hessian calculations and a latent Euclidean
attractor as a geometry aware terminal potential as described
in Section IV-B.

D. Globalized local coordinates

The previous section augments the workspace with an
extra dimension given by a workspace cost function. That’s a
useful representation when a natural differentiable cost-based
environment representation exits, but here we deconstruct
the workspace geometry in more detail and derive a more
general geometric representation by combining local coor-
dinate representations. While the cost-based representation
relies on the cost gradient to define a single direction of
most relevant stretch, the representation we examine here
keeps track of all relevant obstacles simultaneously, blending
continuously between local representations as a function of
obstacle proximity.

Locally, close to an obstacle, it’s usually relatively easy
to find a mapping φ(x) that maps x into a space where
geodesics through the workspace geometry (smooth obstacle
avoiding paths) are straight lines. An example, one we use
as a canonical experimental representation below, is the
cylindrical coordinates of a pole. The straight line path
between two points in cylindrical coordinates (i.e. the convex
combination of the two points) never gets closer to the pole
than the smallest radius of the two points. Thus, the straight
line, when mapped back to the workspace, wraps naturally
around the pole with no effort. Notice that this particular
mapping is just a curvilinear coordinate transform, although
we make no restrictions on the dimensionality of these local
coordinate maps.

However, if we have multiple objects, each with non-
linear local coordinate transformations φi(x) mapping x
to a linear manifold where geodesics are easy to compute
(think multiple poles each with its own cylindrical coordinate
system), then the question becomes how should these local
transformations be combined to make a globally consistent
representation of the geometry.

More formally, suppose each of k objects o1, . . . , ok has
an associated local mapping φi : R3 → M3 representing a
simple change of coordinates to a representation where the
metric is more natural. Locally, we can represent geodesics
of this geometry by mapping two points x and xg through φi
and following a straight line trajectory through the mapped
space. More globally, though, we need to formally mitigate
the relative influences of multiple objects properly.

We can combine these coordinate systems by representing
all of the transformations simultaneously in a single vector
of higher dimension on the order of 3k, weighing each
coordinate system by a weight αi(x) that reflects proximity
to the object. To be concrete, suppose we have a differ-
entiable distance function di(x) for each object oi that’s
positive outside the object and negative inside. And suppose
that there is an ambient Euclidean geometry (represented
by a k + 1st identity transform φk+1(x) = x) with cor-
responding constant distance function dk+1(x) = 1. The
specific weighting functions αi(x) we use in the experiments
below are constructed as multinomials using these distance
functions as energy functions αi(x) ∝ e−di(x)/σi for each
i = 1, . . . , k+ 1. Note that the length scales σi > 0 indicate
the distance at which the ambient Euclidean geometry begins
to dominate the multinomial weights.

Defining the combined coordinate transform as

φ(x) =

 φ̃1(x)
...

φ̃d+1(x)

 =

 α1(x)φ1(x)
...

αd+1(x)φd+1(x)

 . (14)

Assuming each co-domain is Euclidean (any constant metric
in the co-domain can be absorbed into the mapping itself)
constructs a mapping from the workspace R3 to a 3(k+ 1)-
dimensional Euclidean space. We can calculate the resulting
Pullback into the domain R3 by writing out the expression



for the instantaneous velocity norm:

f(x, ẋ) =

∥∥∥∥ ddtφ(x)

∥∥∥∥2

=
1

2
ẋT

(
k+1∑
i=1

Ci(x)TCi(x)

)
︸ ︷︷ ︸

Aφ(x)

ẋ,

where Ci(x) = αiJφi + φi∇αTi . The implied full Pullback
metric is Aφ(x) indicated in the equation.

As with the cost gradient workspace geometry repre-
sentation of Section IV-C, since this workspace geometric
representation is defined by a geometric map, we can easily
leverage partial Gauss-Newton Hessian calculations and ge-
ometry aware terminal potential as described in Section IV-B.

Note that since φ(x) defines a 3-dimensional nonlinear
embedding into a 3(k + 1)-dimensional Euclidean space,
the attractor does not precisely follow geodesics across
the curved surface in the embedded space, but the natural
gradient flow through the workspace of this attractor with
respect to the Pullback metric works pretty well in practice
as an informative approximation to the geodesic flow.

V. EXPERIMENTAL DEMONSTRATIONS

We implemented both the cost-based workspace metric of
Section IV-C and the globalized local coordinates metric of
Section IV-D for problems of avoiding vertical poles of vary-
ing sizes extending from a tabletop. Thin obstacles, such as
these poles, are usually hard for optimization-based motion
planning because their physical extent is small relative to size
of the robot. The resulting optimization problem, especially
with discrete time and sparse robot body representations,
is usually very ill-conditioned and difficult to solve under
existing modeling and optimization methodologies. The ge-
ometric modeling components we introduce here, though,
effectively broaden each obstacle’s physical extent into the
surrounding workspace and act to guide the optimizer more
naturally around the obstacles during optimization to achieve
final optimized motions inherently biased toward workspace
geodesics.

A. Motion cost components

Our motion optimization problem is tailored to a single
arm of the robot pictured in Figure 1 (upper left), and
consists of a collection of cost objectives and constraints
within the RieMO framework described in Section III. The
cost terms trade off dynamics, kinematic smoothness, and
posture criteria, while the constraints prevent joint limit
violations and obstacle penetration, while enforcing goal
success. Specifically, we use the following terms:
• Configuration space derivatives penalties. f(q̇, q̈) =
α1‖q̇‖2 + α2‖q̈‖2.

• Task space velocity penalties. f(x, ẋ) = 1
2‖

d
dtφ(x)‖2,

where φ : R3 → Rn is a mapping to a higher-
dimensional workspace geometric space (see Sec-
tion IV-D). Ideally, these penalties should be added to a
collection of key points along the robot’s body, but for
these experiments, we add them only to the end-effector.

• Joint limit proximity penalties. fi(qi) =
(max{0, qi − (qmax − ε), (qmin + ε)− qi})2, where
ε > 0 is a joint limit margin.

• Posture potentials. f(q) = 1
2‖q − qdefault‖2 pulling

toward a neutral default configuration qdefault.
And we also use the following constraints
• Joint limit constraints. We have explicit constraints on

the joint limits that prevent them from being violated
in the final solution.

• Obstacle constraints. All objects are modeled as an-
alytical inequality constraints with a margin. The end-
effector, first knuckle, and second knuckle use margins
of 0cm, 1cm, and 6cm, respectively; the lower and upper
wrist joints use margins of 14cm and 17cm, respectively.

• Goal constraint. Reaching the goal is enforced as a
zero distance constraint on the goal proximity distance
function (see Section IV). This strategy generalize the
goal set ideas described in [4].

B. Results
Figure 1 shows a collection of arm trajectories moving

around and between thin cylindrical obstacles planned for
MPI’s Apollo platform. The top row shows the behavior of
the cost-gradient workspace Riemannian metric described in
Section IV-C tracing a path around a column on the table. In
this case, since our attractor is build around scaled Euclidean
distances, we can only move up to half way around the
column before the attractor chooses a topologically distinct
path. However, the metric in conjunction with the metric-
weighted attractor is consistently able to move smoothly
around the column, tracing naturally across its surface. The
figure shows a bigger column here for visual impact, but the
method performs just as well on the smaller column.

The bottom row of the figure demonstrates motions highly
contorted by two poles in the environment. The environmen-
tal geometry in these executions is represented by combining
local cylindrical coordinate systems as described in Sec-
tion IV-D. Our cylindrical coordinate system doesn’t wrap
around from π to −π in θ, and instead chooses the sign
of θ based on which way the arm is wrapped around the
pole. This choice of sign encodes the topological homotopy
class created by the physical constraint that the arm must
connect to the fixed torso one way or the other around
the obstacle. Any terminal potential build on Euclidean
distances would take the arm along a topologically distinct
path around the back of the pole, but this spiraling cylindrical
coordinate system implements a nice heuristic consistent
with the robot’s physical topological constraints, and chooses
a successful highly non-Euclidean motion of the end-effector
(and full arm configuration) around the pole.

Our focus here has been on modeling the motion op-
timization problem, so we implemented the optimization
system making engineering choices to promote correctness
and ease of use over speed. Even so, optimization times
are typically between .3 and 1 second depending on the
complexity of the problem, running on a Linux virtual
machine atop a 2012 Mac PowerBook. We emphasize here,
that our optimizer does not decompose the problem into
separate workspace geodesic optimizations with subsequent
tracking optimizations. These trajectories are all generated
by a single optimization on an objective that builds the
above described geometric workspace model directly into its
potential functions.



Fig. 1. Top (left): The Apollo dual-arm manipulation platform at the Max Planck Institute for Intelligent Systems modeled in our
experiments. Top (remaining): Apollo using the cost-gradient metric and attractor described in Section IV-C to trace a path around
a column. Bottom: A collection of trajectories found using the combined local transformation metric and corresponding attractor as
described in Section IV-D. Each image shows the final configuration with a purple line indicating the end-effector trajectory.

VI. CONCLUSIONS AND FUTURE WORK

In the 80’s and 90’s researchers spent significant effort
to understand the geometry and fundamental complexity of
motion generation. The differential geometric insights from
[19] and related work led to significant advances in our
theoretical understanding of the problem. More recently,
a lot of effort has gone into the more practical side of
developing useful tools and techniques to further the practice
of robot motion generation. Interestingly, within that work,
largely motivated by what works best, a common thread has
emerged around the fundamental importance of optimization
and second-order information. This paper takes a view that
optimization is, and will remain, a centerpiece of motion
generation. It has, therefore, been our goal here to under-
stand how the optimizers we use communicate information
about problem geometry across the trajectory and between
different mapped spaces during the calculation of a Newton
step, and how we can leverage those properties to better
model motion through the non-Euclidean geometry of the
workspace. Moving forward we hope to build on these ideas,
leveraging fast combinatoric algorithms for approximating
geodesic flow through the discretized workspace (voxel grid)
to create more expressive geometrically cognizant attractors
that obviate the need for the approximate terminal potentials
we use here.

REFERENCES

[1] S.-I. Amari, “Natural gradient works efficiently in learning,” Neural
Comput., vol. 10, no. 2, pp. 251–276, Feb. 1998. [Online]. Available:
http://dx.doi.org/10.1162/089976698300017746

[2] J. A. D. Bagnell and J. Schneider, “Covariant policy search,” in Pro-
ceeding of the International Joint Conference on Artifical Intelligence,
August 2003.

[3] J. P. Chonhyon Park and D. Manocha, “ITOMP: Incremental trajectory
optimization for real-time replanning in dynamic environments,” in
International Conference on Automated Planning and Scheduling
(ICAPS), 2012.

[4] A. Dragan, N. Ratliff, and S. Srinivasa, “Manipulation planning with
goal sets using constrained trajectory optimization,” in 2011 IEEE
International Conference on Robotics and Automation, May 2011.

[5] S. Hassani, Mathematical Physics: A Modern Introduction to its
Foundations, 2nd ed. Springer, 2013.

[6] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,”
in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, 2011. [Online]. Available: http://www-clmc.usc.edu/
publications/K/kalakrishnan-ICRA2011.pdf

[7] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[8] J. M. Lee, Introduction to Smooth Manifolds, 2nd ed. Springer, 2002.
[9] J. Nash, “The imbedding problem for Riemannian manifolds,” Ann.

Math., vol. 63, pp. 20–63, 1956.
[10] Netlib, “Lapack 3.4: Linear algebra package,” 2011. [Online].

Available: http://www.netlib.org/lapack
[11] L. Noakes, “A global algorithm for geodesics,” J. Australian Math.

Soc. (Series A), vol. 64, pp. 37–50, 1998.
[12] J. Nocedal and S. Wright, Numerical Optimization. Springer, 2006.
[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge University Press, 3rd edition, 9 2007.

[14] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in In Proceedings of the International Conference on
Robotics and Automation, 1993, pp. 802–807.

[15] N. Ratliff, “Learning geometric reductions for planning and control,”
in ICML Workshop on Robot Learning, June 2013.

[16] ——, “Multivariate calculus II: The geometry of smooth maps,” 2014,
lecture notes: Mathematics for Intelligent Systems series.

[17] N. Ratliff, M. Toussaint, and S. Schaal, “Riemannian motion opti-
mization,” Max Planck Institute for Intelligent Systems, Tech. Rep.,
2015.

[18] N. Ratliff, M. Zucker, J. A. D. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
IEEE International Conference on Robotics and Automation (ICRA),
May 2009.

[19] E. Rimon and D. Koditschek, “The construction of analytic diffeomor-
phisms for exact robot navigation on star worlds,” Transactions of the
American Mathematical Society’, vol. 327, no. 1, pp. 71–116, 1991.

[20] J. D. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization,” in In the proceedings of Robotics: Science and
Systems (RSS), 2013.

[21] O. Shental, D. Bickson, P. H. Siegel, J. K. Wolf, and D. Dolev,
“Gaussian belief propagation solver for systems of linear equations,”
in IEEE Int. Symp. on Inform. Theory (ISIT), Toronto, Canada, July
2008.

[22] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control, 2nd ed. Springer, 2010.

[23] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in (ICML 2009). ACM, 2009, pp. 1049–1056.

[24] ——, “Newton methods for k-order Markov constrained motion
problems,” CoRR, vol. abs/1407.0414, 2014. [Online]. Available:
http://arxiv.org/abs/1407.0414

http://dx.doi.org/10.1162/089976698300017746
http://www-clmc.usc.edu/publications/K/kalakrishnan-ICRA2011.pdf
http://www-clmc.usc.edu/publications/K/kalakrishnan-ICRA2011.pdf
http://www.netlib.org/lapack
http://arxiv.org/abs/1407.0414

	Introduction
	A quick review of relevant concepts from Riemannian geometry
	Metrics, Geodesics, and Pullbacks
	The Geometry of Cartesian Control

	A General Motion Optimization Framework
	kth-order clique potentials and finite-differences in mapped spaces
	Partial Gauss-Newton approximations and Pullbacks

	Riemannian geometry of the workspace
	Integrating workspace geometry into motion optimization
	Latent Euclidean representations and computational considerations
	Workspace cost-gradient stretching
	Globalized local coordinates

	Experimental demonstrations
	Motion cost components
	Results

	Conclusions and Future Work
	References

