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Abstract— Sparse Gaussian process (GP) models provide an
efficient way to perform regression on large data sets. The key
idea is to select a representative subset of the available training
data, which induces the sparse GP model approximation. In
the past, a variety of selection criteria for GP approximation
have been proposed, but they either lack accuracy or suffer
from high computational costs. In this paper, we introduce a
novel and straightforward criterion for successive selection of
training points used for GP model approximation. The proposed
algorithm allows a fast and efficient selection of training points,
while being competitive in learning performance. As evaluation,
we employ our approach in learning inverse dynamics models
for robot control using very large data sets (e.g. 500.000 sam-
ples). It is demonstrated in experiments that our approximated
GP model is sufficiently fast for real-time prediction in robot
control. Comparisons with other state-of-the-art approximation
techniques show that our proposed approach is significantly
faster, while being competitive to generalization accuracy.

I. INTRODUCTION

Gaussian process regression (GPR) is a powerful and
widely used non-parametric Bayesian modeling technique
[1] which increasingly becomes interesting for many robotic
applications, such as robot control [2], [3]. In contrast to
other model learning approaches, such as support vector
machines, GPR offers a flexible probabilistic framework
leading to predictive distributions for test points, where the
model training is easy to achieve with standard Bayesian
procedures [1]. However, the applicability of standard GPR
to large-scale problems with a high number of training points
n is limited, due to the unfavourable scaling in training
time and memory requirements. The dominating factors are
usually O(n3) costs for inversion of a dense covariance
matrix between all available training points and the O(n2)
space required to store it in memory. Furthermore, the full
GPR model needs O(n) costs for the prediction of a test
instance. In the past, there have been efforts to alleviate these
limitations, enabling GPR learning for large-scale data (see
Section II for a brief overview).

To the best of our knowledge, the most existing GPR
approximation methods generally have higher computational
costs than randomized selection, i.e. random subset selection
of available training data, but in exchange yield significantly
better results, as random selection typically leads to over-
and underfitting. In this paper, we propose a straightforward
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selection approach which is close to the level of randomized
selection in learning speed, but without huge loss in the
accuracy. It turns out that our selection method is closely
related to the inclusion technique by [4]. However, we are
able to further reduce the computational costs significantly,
while being competitive in the model accuracy, thanks to
several additional reasonable assumptions. For evaluation,
we learn inverse dynamics models from large-scale sampled
data, while comparing different approximation techniques.
Subsequently, our learned models are employed for real-time,
compliant control in robot tracking control tasks. Learning
inverse dynamics models from data has been shown to be
a useful alternative in model-based robot control [2], [5].
This control approach is especially useful in cases where
sufficiently precise physical models are hard to obtain analyt-
ically. As learning inverse dynamics models requires massive
amount of data, our proposed sparse GP approximation
technique is able to demonstrate its strengths and advantages.

The remainder of the paper

Fig. 1. The PR2 for evaluations.

is organized as follows: we
provide a brief overview on
existing GPR approximation
techniques in Section II. Sub-
sequently, we introduce the
sparse GPR setting and ex-
plain our novel strategy for
fast greedy data selection in
Section III. We also describe
an efficient way to learn the
hyperparameters in our spe-
cific setup in Section III-C,
where a generalized expecta-
tion maximization (EM) algorithm is employed. In Section
IV, we report on the results of our comprehensive com-
parison on learning inverse dynamics models. Furthermore,
we demonstrate the real-time applicability of learned inverse
dynamics models for compliant robot control on a PR2 robot,
see Fig. 1. Finally, we conclude and discuss the results of
our method in Section V.

II. RELATED WORK

To overcome computational limitations of GPR described
previously, many approximations for full GPR have been pro-
posed. For example, covariance matrix approximations, such
as the Nystrøm method proposed by [6], can be employed to
increase the GP learning performance. Also, various sparse
likelihood approximations have emerged recently, whose
relations have been formalized in a unifying framework [7].



The core idea of the fully independent training conditional
(FITC) approximation [8] is to use a flexible subset of virtual
training points to generate a sparse GPR model and optimize
the virtual training points along with all other hyperpa-
rameters. In contrast, the deterministic training conditional
(DTC) approximation selects a representative subset of real
training points, the so-called active points, which induce a
sparse approximation. The approach proposed in [9] em-
ploys a fast information gain criterion for insertion of input
points. Csató and Opper [10] measure the projection-induced
error in the reproducing kernel Hilbert space (RKHS) to
choose the representative subset. The authors of [4] use a
computational costly selection heuristic which approximate
the log marginal posterior probability. All of these DTC
approximation methods have higher computational costs than
randomized selection, but yield significantly better results.

In robotics domain, [5] proposes a local GPR approach
to speed up the learning process. Although the local GPR
approach does not belong to typical GP approximation
techniques, it enables a fast GPR training appropriate for ap-
plications in real-time online learning [5]. However, the focus
there is mainly on learning speed while eventually sacrificing
model accuracy. In this paper, we take the middle course
between high model accuracy and fast computational speed.
Our aim is to accelerate the GP approximation process, while
staying close to the model quality as demonstrated by state-
of-the-art approximation techniques.

III. EFFICIENT ACTIVE SET SELECTION FOR SPARSE
GAUSSIAN PROCESS REGRESSION

In this section, we describe the setting of sparse GPR
and introduce our criterion for selecting a subset of training
points, i.e. the active set. Furthermore, we describe an
efficient incremental learning procedure for the GP hyper-
parameters arising from this approximation.

A. Sparse Gaussian Process Regression

Let (y,X ) be the training data set, where y ∈ Rn is a
vector of noisy observations of the underlying scalar function
f (xi) = fi, obeying the relationship yi = fi+εi with Gaussian
noise εi ∼ N (0,σ2). Furthermore, the n training inputs xi ∈
Rd were row-wise summarized in X ∈ Rn×d . Our goal is
the construction of a sparse GPR model which estimates the
relationship above equivalent to [9].

Moreover, let I be the index set of size m of all active
points xi with i ∈ I, i.e. training points that represent the
sparse approximation, and R be the index set of all remaining
points, such that I ∪R = {1, . . . ,n}. The centered Gaussian
prior density over the latent function values fI ∈ Rm corre-
sponding to the active subset is then given by

p( fI | XI) = N ( fI | 0 , KI) (1)

with KI =
(
k (xi,xj)

)
i, j∈I ∈R

m×m. Here, KI is the covariance
matrix over the active training points determined through the
specified covariance function ki j = k (xi,x j). The sparseness
of this method is introduced via a likelihood approximation

q(y | fI ,X ) that is optimized with respect to the Kullback-
Leibler divergence (KL-divergence) and induced through the
active training points which leads to

qI (y | fI ,X ) = N
(

y
∣∣PT

I fI , σ
2I
)

. (2)

The projection matrix PI = K−1
I KI,· ∈ Rm×n, where KI,· ∈

Rm×n comprises the covariance function values between all
training points (· notation) and the active subset of training
points, maps fI to the prior conditional mean E

[
pI ( f | fI)

]
=

KT
I,·K

−1
I fI ∈Rn. With Bayesian inference we get the approx-

imated posterior density

qI ( fI | y,X ) = N
(

fI
∣∣L M−1V y , σ

2L M−1LT ) (3)

which is proportional to the product of the prior (1) and
the approximated likelihood (2). Here, L ∈ Rm×m is the
lower Cholesky factor of KI , V = L−1KI,· ∈Rm×n, and M =

σ2I +V VT ∈Rm×m for fixed I of size m. The approximated
marginal likelihood directly follows from the integration over
the same product about the active function values fI and
results in

qI (y |X ) = N
(

y
∣∣0 , σ

2I +VT V
)

. (4)

The approximated posterior density for all training points
qI ( f | y,X ) induced through the active subset is given by

qI ( f | y,X ) = N
(

f
∣∣KT

I,· aI , K −VT V +σ
2VT M−1V

)
(5)

with mean vector cI = E
[
qI ( f | y,X )

]
= KT

I,· aI ∈ Rn. The
predictive density for a test point x∗ results in

qI ( f∗ |x∗,y,X ) = N
(

f∗
∣∣∣kT

I,∗L−T L−T
M bI , k∗∗−

∥∥L−1kI,∗
∥∥2

+σ
2∥∥L−1

M L−1kI,∗
∥∥2

)
(6)

with the Cholesky decomposition M =LMLT
M , bI =L−1

M V y∈
Rm, and the covariance vector kI,∗ ∈ Rm between the test
input and the active points. If only the predicted mean values
are of interest, the prediction vector aI = L−T L−T

M bI can
be precomputed, which allows fast computations of mean
values with only O(md) costs. Note that this cost depends on
the calculation of the vector kI,∗ and, thus, on the specified
covariance function, which is typically proportional to the
input dimension d. The predictive variance is feasible in
O(m2) if d < m. The training complexity of this sparse GPR
model is O(nm2) and, thus, much cheaper than the full GPR
for m << n.

B. Efficient Active Set Selection Using Maximum Error
Greedy Criterion

For the successive inclusion of training points into the
active subset it is necessary to update the Cholesky factors
L , LM , the matrix V , respectively KI,·, the vector bI , and
the mean cI of the posterior distribution (5). This can be
achieved with iteratively updating the above listed matrices
as shown in [9]. The costs for the sequential insertion of one
selected training point in the m-th iteration are O(nm).

Most of the GP approximation techniques differ in the
way, how the active set XI is selected [7]. Usually, the



remaining point that has the maximum gain with respect to
an insertion criterion ∆i is selected. One of the best selection
criteria is proposed by Smola and Bartlett [4]. They select
the remaining point that maximizes the posterior likelihood

p(a | y,X ) ∝ p( y | a,X ) p(a | X )

∝ N
(

y
∣∣K a , σ

2I
)

N
(
a
∣∣0 , K−1) (7)

for the admission of the prediction vector a ∈ Rn of the
full GP under the given data set (y,X ). This is based on
the transformation of a = K−1f and leads to the equivalent
formulation

τI = min
aI

(
1
2

aT
I L M LT aI−aT

I L V y
)
=−1

2
bT

I bI (8)

in the sparse sense as pointed out in [9], i.e. aR = 0. In the
following, let I′= I∪{i}. The decrease in the sparse posterior
likelihood derived from (7) defines the selection criterion by
Smola and Bartlett (SB), i.e.

SB∆i = τI− τI′ =
1
2

b2
I′,i , (9)

for a remaining point and with the new component bI′,i of the
updated vector bI′ . The high computational costs of O(nm)
per criterion calculation for only one remaining training point
are caused through a complete model update to become
bI′,i. Depending on the implementation, this model update
can increase the memory requirements extremely for the
remaining training point xi. Thus, the algorithm proposes
evaluating the selection criterion only for a randomly chosen
subset of remaining points with size r to keep the compu-
tational complexity feasible [4]. Nevertheless, the approach
ends up with computational costs of O(rnm2) for the whole
DTC approximation, which is the r-fold of the standard
method with a randomized active set selection. Due to the
randomized procedure involved when selecting r remaining
points, the model performance in hard regression tasks can
be suboptimal, especially for small r. Our proposed approach
intends to further reduce the computational complexity of
the selection procedure by making additional reasonable
assumptions, while avoiding random selection as performed
by Smola and Bartlett [4].

Similar to this method, our proposed approach maximizes
also the posterior probability (7) with equation (8). The
greedy scheme [4] successively maximizes the Euclidean
norm of the vector bI′ . This task is equivalent to iteratively
minimizing

∥∥y− cI′
∥∥2 for the normalized vector y and,

thus, approximately normalized cI′ , since we have ‖bI′‖
2 =

bT
I′ bI′ = yTcI′ after a point inclusion. Due to the equivalence

of norms in finite dimensional spaces, it holds true that∥∥y− cI′
∥∥≤ nmax

∀ j

∣∣y j−cI′, j
∣∣. With the additional convergence

assumption that in the limit, i.e. with increasing m we have
cI′ ≈ cI , the costly update of the posterior model (5) for
each remaining point can be alleviated. Thus, the employed
assumption states that with increasing number of inserted
points m, the resulting estimated mean cI′ does not signif-
icantly change. This assumption is intuitively meaningful
and is empirically consistent with the convergence behavior

during the learning process. Employing this assumption, the
resulting new selection criterion can be given as

ME∆i = |yi− cI,i| . (10)

Hence, our criterion selects the remaining points based on
the maximal error (ME) under the current posterior model
(5). This criterion is straightforward and computationally
cheap to perform. It turns out, that our selection criterion
leads to the L1-norm between the given observations and the
mean of the current sparse GPR model. Our computationally
efficient approach has O(1) costs for criterion calculation per
remaining point. This method results into a favorable hyper-
parameter learning process presented in the next section.

C. Incremental Learning of Hyperparameters

As the sparse GPR model depends on hyperparameters
induced through the used covariance function, we present an
incremental hyperparameter learning approach in this sec-
tion, which can be employed while incrementally inserting
data points to the active set. Let the vector h denote the
collection of all hyperparameters. For notational simplicity
the dependency of the above formulas on h was neglected.
The adaptation of the hyperparameters can be realized by
gradient-based optimization algorithms that minimize the
negative log marginal likelihood obtained from (4), i.e.

− log
(
qI (y |X,h)

)
=

n−m
2

log
(
σ

2)+ m

∑
i=1

log(lM,ii) (11)

+
1

2σ2

(
yTy+bT

I bI
)
+

n
2

log(2π) .

The values lM,ii are the diagonal entries of the Cholesky
factor LM . One problem encountered when minimizing the
negative log marginal likelihood (11) is their dependence on
the active subset of training points. To solve this problem,
we take alternating constrained optimization steps in an
expectation maximization manner using the theory of [11].
Therefore, let Z be an i.i.d. Bernoulli random vector of size
n which represents the hidden variables. The relationship
between a realization z and I is that I contains the indices
i of all zi different from zero. From [11], it follows that
the expectation step for estimating the new posterior density
q
(
zt+1 | y,X,h

)
is given over the minimization with respect

to the KL-divergence by

argmin
q(z| y,X,h)∈q(y,X,h)

KL
[
q(z | y,X,h)

∥∥q
(
y,z | X,ht)] . (12)

Here, the posterior distribution q(z | y,X,h) in the expecta-
tion step regarding to the KL-divergence is conditioned on
the probability family q(y,X ,h) with E

[
∑

n
i=1 zi

]
=m, i.e. the

approximated posterior is induced by an active subset of size
m. This condition is handled with a fixed final size m of the
active subset in the greedy selection process. Furthermore,
the maximization step results in

argmax
h

Ezt+1| y,X,h
[

log
(
q(y,z | X,h)

)]
(13)

to determine an updated set of hyperparameters ht+1. In
iteration step t + 1 the maximization step is realized with
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(a) NMSE of prediction errors for a different
number of active points m.
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(b) Complete learning time for a different number
of active points m.
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(c) Complete learning time vs. NMSE of predic-
tion errors.

Fig. 2. Prediction errors as NMSE for the first DoF of the SARCOS arm is shown in 2(a), where the NMSE curves are usually a function of m. It
can be seen that our approach DTC+ME is competitive to other DTC approximation techniques. For large number of m, DTC+ME converges to the best
performing approach by Smola and Bartlett (DTC+SB ). The learning time for the sparse GP approximations is shown in 2(b). Here, our DTC+ME is as
fast as Seeger’s information gain (DTC+IG ) and stays close to the randomized insertion approach. Plot 2(c) shows that our method outperforms all other
DTC type approaches in term of learning speed for sufficiently accurate models, i.e. small NMSE. Note that some of the axes are logarithmically scaled.

only few gradient ascents on the log marginal likelihood
(11) on a fixed index set I determined by z. In this case,
the repeated alternating computation of the E- and M-steps
leads to a generalized EM algorithm, since we only increase
the log marginal likelihood (11). Since the generalized EM
algorithm converges to local maxima, the choice of the active
training points is important in order to obtain a good set of
hyperparameters h. For the selection of the active subset, we
employ our efficient maximum error criterion, as given in
(10), to keep the hyperparameter learning fast and stable.

IV. EVALUATIONS

In this section, we compare our maximum error (ME)
selection criterion against other state-of-the-art methods for
the DTC approximation. Especially, we compare our ap-
proach with methods mentioned in Section II, i.e. the infor-
mation gain (IG) approach by Seeger et al. [9], the selection
technique by Csató (CS) and Opper [10], the method by
Smola and Bartlett (SB), and the purely randomized scheme.
Furthermore, we also consider the FITC approximation,
which is another class of GP approximation techniques,
given by [8] for comparison. The comparison is performed
on learning inverse dynamics using various robot data sets
[5]. Subsequently, we use our proposed method to build an
inverse dynamics model of a PR2 robot arm while employ-
ing it for a real-time, compliant tracking control task. For
all experiments, we use the stationary squared exponential
covariance function given through

k (xi,x j) = σ
2
f exp

(
−1

2
(xi−x j)

T
ΛΛΛ
−2(xi−x j)

)
, (14)

with signal magnitude σ2
f and the diagonal lenght-scales

matrix ΛΛΛ ∈ Rd×d as hyperparameters, see [1] for more
details. The accuracy of the methods under consideration is
measured by the normalized mean square error (NMSE). The
NMSE is defined as the mean square error (MSE) divided
by the variance of the targets y [5].

A. Comparisons on Inverse Dynamics Modeling

For validation, we employ a real data set from the SAR-
COS master arm (13922 training and 5569 test points), a
simulation data set from the SARCOS model (14904 training
and 5520 test points) and, finally, real robot data from the
Barrett WAM arm (12000 training and 3000 test points), see
[2], [5] for more details. Each point of the data sets has
21 input dimensions, i.e. position, velocity and acceleration
of the 7 degrees of freedoms (DoF’s), and 7 targets, i.e. one
torque for each DoF of the SARCOS and Barrett robot arms.

In Fig. 2(a) we show the NMSE prediction errors as a
function of the active set size for the DTC approximations,
including our proposed approach and the FITC approxima-
tion on the first DoF using the real SARCOS data. We choose
the first DoF of the SARCOS arm for this experiment, as it is
quite hard to model, due to some latent non-linearities in the
dynamics. For all DTC type approaches and the randomized
active point selection, the size of active point sets is varied
from 200 to 2000. To allow for a fair comparison, we adapt
the number of gradient steps in the FITC approximation
linearly with increasing virtual training points, i.e. we use
150+ m

4 optimization steps, because the number of hyper-
parameters in the FITC approximation also grows linearly
with m. The NMSE results for random selection in the DTC
approximation are averaged over ten runs.

As shown by the result, the maximum error approach
(DTC+ME ) is competitive to other DTC approximation tech-
niques, while staying close to the best performing approach
by Smola and Bartlett (DTC+SB ). Especially, for sufficiently
large number of active points, DTC+ME converges towards
the performance of DTC+SB. In practice, the number of
active points should be chosen as large as possible in order
to ensure a good approximation. Considering the learning
speed, DTC+ME is consistently faster than DTC+SB, while
staying close the speed of randomize selection, as shown
by Fig. 2(b). The NMSE results and the complete learning
times in Fig. 2(b) are captured for the range between 200
to 2000 active points for all learning curves. Thus, the
proposed approach presents a trade-off between learning
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(a) NMSE on real SARCOS data
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(b) NMSE on SL simulated SARCOS data
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(c) NMSE on real Barrett WAM data

Fig. 3. NMSE diagrams (in percent) for each degree of freedom (DoF) after prediction on the test sets with real SARCOS data 3(a), SL simulation
data 3(b), and robot data from the Barrett WAM arm 3(c). Overall, the DTC approximation with the maximum error (ME) criterion performs best, closely
followed by the FITC approximation. The full GP does not perform well on these large data sets, due to suboptimal hyperparameters optimized from a
subset of the training data [5].

speed and accuracy. This trade-off is additionally shown
in Fig. 2(c), where the model accuracy is plotted against
learning speed. For sufficiently accurate models, i.e. small
NMSE values, DTC+ME requires less training time than
other approximation techniques. Thus, our maximum error
approach outperforms all DTC selection criteria with respect
to training times for low NMSE values on test data, as shown
in Fig. 2(c).

In Fig. 3, we compare our maximum error selection
method for the sparse DTC approximation DTC+ME and
the FITC approximation [8] with other established regression
procedures [5] on all DoF’s of real and simulated SARCOS
test data, as well as real Barrett WAM data. The learning
results for the other methods, i.e. local Gaussian processes
(LGP), ν-SVR, GPR, and random Fourier regularized least
squares (RFRLS), are taken from [5] and [12]. To allow for a
fair comparison, we also employ a final set size of m = 2000
active and virtual training points for both DTC+ME and
FITC approximations, respectively. We use 10 generalized
EM steps for hyperparameter learning of the DTC approx-
imation and 650 gradient ascents for the optimization of
virtual training points with subsequent prediction.

It can be observed that DTC+ME performs well on all
provided data sets, and return better results than standard full
GPR. The reason is that the hyperparameters of the standard
GPR is optimized using a subset of the original data sets
only, due to the costly optimization of the marginal likelihood
[1]. This is a common procedure in order to reduce the
computational cost for hyperparameter optimization when
using large data for standard GP [1], [5]. However, depending
on the subset selection for the hyperparameter optimization,
the learned hyperparameters might be suboptimal and do not
necessarily reflect the global data structure. Here, the incre-
mental training of the hyperparameters during the selection
process using EM, as shown in Section III-C, might present
a good alternative. Compared to LGP, it should be noted that
LGP is designed for applications in online real-time learning,
where the learning speed is more important than accuracy
and, thus, is not competitive in an offline comparison.

B. Compliant, Real-time Tracking Control

In this section, we employ learned inverse dynamics
models for tracking control on a PR2 robot, as shown in Fig.

1. Here, the model-based tracking control law determines
the joint torques y necessary for following a desired joint
trajectory xd , ẋd , ẍd , where x, ẋ, ẍ are joint angles,
velocities and accelerations of the robot, as shown in Fig.
4(a). This control paradigm uses a dynamics model, while
employing feedback in order to stabilize the system. Here,
the dynamics model of the robot can be used as a feed-
forward model that predicts the joint torques yff required
to perform the desired trajectory, while a feedback term yf b
ensures the stability of the tracking control with a resulting
control law of y = yff + yf b. The feedback term can be a
linear control law such as yf b =GP e+GD ė, where e= xd−x
denotes the tracking error and GP,GD position-gain and
velocity-gain, respectively. If an accurate inverse dynamics
model can be obtained, the feed-forward term yff will largely
cancel the robots non-linearities [13]. In this case, GP and
GD can be chosen to have small values enabling compliant
control performance [2].

To obtain a global and precise dynamics model, we sample
517.783 data points with a frequency of 100Hz from the right
arm of the PR2 robot. Furthermore, we train for each of
the seven DoF’s a sparse GP model given through the DTC
approximation with our maximum error criterion. Thereby,
the hyperparameters were always learned with 10 generalized
EM steps, as explained in Section III-C. We choose a final
active set size of m = 1000, which is sufficient to reach a
good model quality while yielding prediction times below
3ms for all seven DoF’s. Hereby, we are able to perform
tracking control in real-time at 100Hz.

In Fig. 4(b), we show the percentage on total torque for
each DoF of the PR2 robot arm, where the gains for feedback
control are chosen very small in order to enable compliant
control. The contribution of the sparse, with DTC+ME
approximated GP regression model to the control effort is
usually far over 50%. A high contribution to the control
effort indicates a good approximated model, as the feedback
control loop does not need to strongly intervene during the
control task here. The corresponding tracking performance in
task-space is presented in Fig. 5 for three test trajectories, e.g.
circle-, eight- and star-shape. Here, we compare the low gain
feed-forward control using the learned dynamics model with
the standard PD-control scheme. The results with respect
to the RMSE value are shown in Fig. 4(c). It can be seen
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Fig. 4. Plot 4(a) shows a scheme of feed-forward control using inverse dynamics model. Torque percentage for each DoF of the right PR2 arm is shown
in Fig. 4(b). The higher the torque percentage, the more contributions have the corresponding parts. Here, DTC+ME dynamics models usually have far
over 50% torque contribution. Plot 4(c) shows the tracking errors in task-space (x,y,z) for the three test trajectories, i.e. circle-, eight- and star-shape. The
RMSE value of each dimension is computed for 3 different control schemes, i.e. low-gain DTC+ME model-based control, PD-control with low gains, and
PD-control with high gains, i.e. about four times higher gains as in the low gain control schemes.
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Fig. 5. Tracking performance on the three test trajectories using low-gain DTC+ME model-based controller and PD-controller with low gains.

that using learned dynamics models we obtain compliant
tracking control, and at the same time have tracking accuracy
comparable to the one of high gain PD-control. A video
showing the compliant, real-time robot control on the PR2
is attached as supplemental material.

V. CONCLUSION

In this work we have proposed a efficient and straight-
forward greedy insertion scheme for sparse GPR or, more
precisely, for the DTC approximation. Our criterion is based
on the maximum error between model and training data
and we provided justification for this choice. It leads to a
stable and efficient way for automatic sparse model selec-
tion. We also provide an incremental approach for learning
the resulting hyperparameters using generalized expectation
maximization. Many experiments show that the proposed
approach is competitive in learning performance while being
fast in computation. Further results on a real PR2 robot show
that the proposed method can be employed for compliant,
real-time robot control.
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