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Abstract— Exploiting the submodularity of entropy-related
objectives has recently led to a series of successes in ma-
chine learning and sequential decision making. Its generalized
framework, adaptive submodularity, has later been introduced
to deal with uncertainty and partially observability, achieving
near-optimal performance with simple greedy policies. As a
consequence, adaptive submodularity is in principle a promising
candidate for efficient touch-based localization in robotics.
However, applying that method directly on the motion level
shows poor scaling with the dimensionality of the system.
Being motivated by hierarchical partially observable Markov
decision process (POMDP) planning, we integrate an action
hierarchy into the existing adaptive submodularity framework.
The proposed algorithm is expected to effectively generate
uncertainty-reducing actions with the help from an action
hierarchy. Experimental results on both, a simulated robot and
a Willow Garage PR2 platform, demonstrate the efficiency of
our algorithm.

I. INTRODUCTION

Efficient object manipulation typically requires a plan of
actively contact-seeking actions to reduce uncertainty over
the true environmental model, e.g., poses and positions of
objects to be grasped or touched as well as obstacles. While
vision is usually the primary sensor information to reduce
uncertainty, in this paper we focus on haptic feedback.
Humans are extremely skilled in object manipulation also
when deprived of vision. We therefore consider the scenario
of a robot entering a dark room and seeking for an object
on a table as shown in Fig. 1. The only sensor information
are force/torque signals in the end-effector. This task is very
challenging not only for robots but also humans, as the
task includes a lot of uncertainty [1]. To solve this type of
tasks, humans usually seek contacts with objects in order
to disambiguate uncertainty. In principle, this task can be
mathematically formulated as a partially observable Markov
decision process (POMDP) whose state space consists of
hidden states that can only be inferred through observations.
For instance, the poses and locations of objects are not
directly observable, but sensed contact forces are observable
[2]–[4]. The resulting POMDP would have high-dimensional
continuous state, observation and action spaces and a very
long horizon if we consider low-level robot control as the
action level. Solving this general POMDP is known to be
PSPACE hard [5]. Therefore approximation and heuristic
methods are needed.

In this paper, we propose methods to approximate and effi-
ciently solve the problem of manipulation under uncertainty
via tactile feedback. We approximate the problem by using
high-level actions to deal with the long horizon problem [6],
[7], i.e. macro actions, and use a sample-based approach to
deal with both high-dimensional and long horizon problems
[8]. Though being approximated, naively applying standard
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Fig. 1. The peg-in-hole-like task: (left) A robot is localizing a table in
order to press a button at the center of the table; (right) An action hierarchy:
Detect Z is a subtask to detect the table’s height, Detect E is a subtask to
detect the table’s edges.

POMDP solvers will still take relatively high cost to find a
good policy. However, by re-designing the objective function
to be submodular (i.e. diminishing returns and monotonic)
we can efficiently apply the recently introduced adaptive
submodularity framework, whose greedy policies are proved
to guarantee near-optimal performance [9], [10].

Both methods, POMDP and adaptive submodularity, can
seek contacts with objects for uncertainty disambiguation.
We go one step further in combining them: To address more
complex task in which contacts are harder to be made we
propose to decompose the task into smaller sub-tasks, as
in hierarchical POMDP planning [11]. Each sub-task now
corresponds to exactly one adaptive submodular optimization
task.

In summary, our contributions are three-fold:
• We integrate the benefit of hierarchical POMDP plan-

ning, using action decomposition, into the existing adap-
tive submodularity formulation [10]. The integration is
expected to make adaptive submodularity able to tackle
more complex tasks in which many actions might not
return contact information. Such actions do not help
in uncertainty disambiguation, as establishing contacts
is the key to success in manipulation tasks. Action
decomposition like in hierarchical POMDP is expected
to guide the contact-seeking search better.

• The action set can be either seeking contacts as in the
previous method [10] or keeping contacts. All those
actions are defined similarly to standard macro actions
in hierarchical POMDP, which are multiple-step actions,
and able to terminate under certain conditions.

• Action selection at the higher level of subtasks can
be effectively optimized via POMDP solvers with ap-
proximate models of the subtasks [11], or via adaptive
submodularity with suitable cost functions [10].

In section II, we briefly review background knowledge
about POMDP and submodularity. Next, section III describes



how to integrate an action hierarchy of POMDP into an
adaptive submodularity framework. Experiment results are
described in section IV. Finally, our conclusion with some
remarks is given in section V.

II. BACKGROUND

In this section, we briefly give an introduction to the
POMDP framework and adaptive submodular optimization.

A. Partially Observable Markov Decision Process
Robot manipulation under uncertainty problems can

in principle be formulated as a partially observable
Markov decision process (POMDP). A POMDP is 7-
tuple {S,A,O, T ,Z, C, γ}, where S,A,O are state, con-
trol action, and observation spaces. The transition function
T (s, a, s′) = p(s′|s, a) defines a probability of next states
if taking action a at state s. The observation function
Z(s′, a, o) = p(o|s′, a) defines a probability of observations.
The cost function is C(s, a, s′), and the parameter γ is a
discount factor. An agent must find an optimal policy, which
is a mapping π : H 7→ A from the history space to the action
space, that minimizes the cumulative discounted costs

ρ(π) = E{
∑
t

γtct} (1)

A history ht ∈ H is a sequence of t pairs of actions and
observations {a0, o0, a1, o1, . . . , at−1, ot−1}.

In our example problem in Fig. 1, the states are s ∈
Rn+ne , where the robot’s joint configuration is x ∈ Rn
(assumed to be observable), and the environment state is e ∈
Rne that is unobservable to the robot (i.e. the environment
model, e.g. table position and size, object location). The
control actions a are motor commands computed by the
operational space/force controller. Observations o are sensed
forces of a F/T sensor at the wrist of the PR2 robot’s
arm. Alternatively, one can model observations as binary
feedback, i.e. contacts. Based only on a sequence of contacts,
the robot should be able localize the table to accomplish
his task. Assuming the robot arm always starts above the
table, an optimal policy might look like this: the robot first
goes down from top until sensing contact with the table,
at which point the table’s surface is localized. His next
optimal macro action is moving sideways while still keeping
the contact with the table’s surface plane, until the contact
vanishes. The robot could effectively infer the table’s edges
at those contact-losing positions. By finding more similar
points at edges, the robot could disambiguate uncertainty of
the table’s size, location, and orientation. However, finding
such an approximately optimal policy for a POMDP is a
non-trivial task [3], [8], [12], which is further proved to be
NP-hard [13].

B. Adaptive Submodularity
In the case of a submodular and monotonic objective func-

tion, a greedy strategy can be guaranteed to achieve a near-
optimal performance [14], [15]. Consequently, submodular
optimization has recently been widely applied in machine
learning [16] because of its efficiency and simplicity. Later,
submodulatiry was generalized to adaptive planning, hence
named adaptive submodularity [9]. In this adaptive setting,
the state is unobservable and observations are generated
by actions. This framework is a special formulation of a
POMDP in that the state is not influenced by actions. In

other words, the transition probability is supposed to be
p(s′|s, a) = δs(s

′). Below, we describe this framework in
detail.

Assume that the true underlying state is fixed to be s∗; in
our example these are the unknown parameters of the table.
There is an observation function, also called realization,
φ : A 7→ O. For instance, after executing an action we
observe contacts with a part of the table. After choosing
an action a ∈ A, an observation φ(a) is observed. As
the realization is initially unknown, we can denote by Φ a
random realization. Analogous to maintaining the full history
h ∈ H in the POMDP case, in adaptive submodularity we
maintain a partial realization ψ ⊆ A × O where (a, o) ∈ ψ
if φ(a) = o has previously been observed. Denote by
dom(ψ) = {a : ∃o, (a, o) ∈ ψ} the domain of ψ. If a
realization φ and a partial realization ψ are equal in the
whole domain of ψ, ψ is said to be consistent with φ, hence
denoted as φ ∼ ψ. If two partial realizations ψ1 and ψ2 both
are consistent with φ, and dom(ψ1) ⊆ dom(ψ2), then ψ1 is
said to be a subrealization of ψ2. The corresponding random
variable of a partial realizations is Ψ. Summing up, we can
write the posterior over the realization φ conditional on a
partial realization ψ as p(φ|ψ) = p(Φ = φ|Φ ∼ ψ). This is
similar to the belief representation in POMDP.

Further, let us define f as a set-function f : 2A×OA 7→ R,
mapping from selected actions and observed observations to
a real utility value.

1) Submodularity: First, we briefly describe non-adaptive
submodularity. A function f is said to be submodular if satis-
fying the condition of diminishing returns. More specifically,
if X and Y are two sets with X ⊆ Y ⊆ A, a ∈ A \ Y , the
condition of the diminishing returns is

f(Y ∪ {a})− f(Y ) ≤ f(X ∪ {a})− f(X) . (2)
This means that adding an item a to a set X gains more or
the same amount of value than adding the same item into its
superset Y . The function f is monotonic if

f(X ∪ {a})− f(X) ≥ 0 (3)
The objective is to find an optimal subset A∗ ⊆ A such that

A∗ ∈ arg maxA⊆Af(A, φ), s.t.|A| ≤ k. (4)
where k is a budget constant that limits the number of
selected actions. Nemhauser et. al. [14] proved an important
result of monotonic submodular functions, namely that a
greedy policy which simply chooses

Ai+1 = Ai ∪ {arg max
a∈A\Ai

f(Ai ∪ {a})} (5)

is guaranteed a near-optimal performance, i.e., f(Ak) ≥ (1−
1/e) max|A|≤k f(A), where starting with A0 = ∅.

2) Adaptive Submodularity: In the case of uncertain and
partial observations, agents are required to make sequential
decisions adaptively [9]. The expected gain if adding an
action is captured as

∆(a|ψ) = E
[
f(A ∪ {a},Φ)− f(A,Φ)|Φ ∼ ψ

]
(6)

This measures the expected divergence if adding one action a
into the executed set of actions A, given a partial realization
ψ, for a fixed Φ.

The function f is adaptive submodular if X ⊆ Y ⊆ A,
Ai ∈ A \ Y , and the inequality

∆(a|Y ) ≤ ∆(a|X) (7)
holds for any sequence of observations returned after ex-
ecuting a. The adaptive monotonicity is similarly defined
as adding more action and observation does not make the



Fig. 2. Action sets of two naive application of adaptive submodularity,
assuming the motion is in 2-D y,z-plane).

function value decrease
E
[
f(X,Φ(X))|Ψ] ≤ E[f(X ∪ {a},Φ)|Ψ(X),Ψ(a) = o

]
(8)

Golovin and Krause [9] proved a similar result for adaptive
monotonic and adaptive submodular functions: The greedy
policy π which chooses

Ai+1 = Ai ∪ {arg max
a∈A\Ai

∆(a|Ai)} (9)

is guaranteed a near-optimal performance of f(π) ≥ (1 −
1/e)f(π∗), where f(π) means the value of f after adaptively
choosing k actions, and π∗ is an optimal policy.

Assuming that the state or realization is not changed by the
selected action, one could directly apply adaptive submodu-
larity to solve the problem, as a special form of a POMDP.
For instance, Javdani et. al. [10] formulated this problem
as one adaptive submodularity optimization problem, then
employed the information gain metric. They constructed an
action set that are optimized trajectories of linear motions
composed of sampled starting poses and movement direction
vectors. Applying this idea to our problem, one must generate
a large number of trajectories that could effectively reach
all edges of the table in order to localize the table. Each
trajectory corresponds to different linear movement’s angles,
as shown in Fig. 2 (left). Using such linear motions, the
observations of touching a table’s edge might be very rare
to establish. This would render many optimized trajecto-
ries unsuccessful (terminate without making any contacts).
Alternatively, the trajectory set might consist of trajecto-
ries moving orthogonally downward and trajectories moving
horizontally at many different starting point on the z-axis,
as depicted in Fig. 2 (right). This alternative would yield
the same amount of wasteful optimized trajectories, as the
robot does not know which uncertainty, e.g. height or edges,
should be disambiguated by which action (trajectory). In the
worst case, both mentioned applications of the method in
[10] would have to execute all actions in the budget in order
to either accomplish the task luckily or fail completely.

Considering how humans might solve the example task in
Fig. 1, we should use one high-level strategy that first finds
the table’s surface, then slides the hand sideways while keep-
ing contacts with the table to localize all edges. This strategy
is known as hierarchical POMDP planning [11]. The next
section discusses how to integrate the idea of hierarchical
POMDP planning into an adaptive submodular framework.
The integration will render adaptive submodularity more
applicable in manipulation tasks.

III. POMDP MANIPULATION AS SEQUENTIAL
SUBMODULAR OPTIMIZATION

In this paper, we propose a new framework that com-
bines the advantages from hierarchical POMDP planning and

adaptive submodular optimization. Similar to hierarchical
POMDP planning, an action hierarchy is given by a domain
expert as drawn in Fig. 1 (on the right). Each parent node
corresponds to one high-level subtask, e.g. Detect Z and
Detect E. Each leaf node corresponds to one optimized
trajectory like ones in [10]. The trajectory is optimized online
when its parent node is selected at a certain starting point.
For instance, the example shown in Fig. 1 (left picture) is
solved by designing a 3-level action hierarchy (right picture).
Consider a policy at the ROOT node that chooses the subtask
Detect Z to detect the table’s height. Solving the subtask
Detect Z would amount to a smaller localization or motion
planning problem that is exactly an instance of adaptive
submodular optimization. As in [10], one could construct
an action set of optimized trajectories that have different
sampled starting poses and one direction vector perpendicu-
lar to the table’s surface. At the termination of the subtask
Detect Z, the table’s height, i.e. table’s surface plane, gets
localized. If the next subtask is Detect E, sampling different
horizontal movement directions is needed to continue to
localize the table’s edges. Trajectories as child nodes for
Detect E are optimized to keep contacts with table’s surface
until losing contacts. The cost function of the trajectory
optimization problem is a weighted sum of obstacle collision,
termination, and transitions [17].

A. Problem Formulation
Suppose we are given an action hierarchy H =

{T1, · · · , Tk} consisting of k actions that are either subtasks
(compound actions, or options, or macro actions) or primi-
tive trajectories (primitive actions). We make the following
assumptions over this action hierarchy.

Assumption 1: Subtasks that consist only of primitive
actions as children nodes should be designed such that they
satisfy the assumptions of adaptive submodular optimization.

This assumption allows us to use adaptive submodularity at
the subtask level right above the primitive action level. As
subtasks requires to execute many actions, greedy policies
are very efficient.

Assumption 2: Subtasks are defined to disambiguate one
or more uncertainty factors.
This assumption implicitly defines termination conditions of
the subtasks. According to Assumption 1, we restrict the
leaf nodes to be primitive trajectories. Hence, each subtask
that consists only of primitive actions (primitive trajectories)
correspond to one standard adaptive submodular optimization
problem like the action set in [10]. We call them lower-level
subtasks. Action selection at those subtasks means to simply
follow greedy policies.

First, we describe how those subtasks are optimized (sim-
ilar to the one in [10]), then we describe how to optimize
higher-level subtasks that contains either lower-level subtasks
or other higher-level subtasks. A subtask might help to
localize only a particular part of the total realization space.
For instance, Detect Z helps localizing the table’s height, it
always leaves other parts of the realization space intact.

B. Lower-Level Subtasks
Each lower-level subtask Ti corresponds to one adaptive

submodular optimization problem. Supposing that the sub-
task Ti has an action set Ai = {aij}

Ni
j=1. The objective



function for each lower-level subtask could be defined as
either the averaged cost or the worst case cost as

Cavg(πi) = EΦi

[
c
(
Ai,Φ

)]
(10)

Cwc(πi) = max
φ

c
(
Ai, φ

)
(11)

where c(Ai) is the incurred cost of executing Ai; Ai(π,Φ) ⊆
Ai denotes the set of selected actions by policy πi that is used
to localize or to accomplish subtask i. To find an optimal
policy πi for task i, we formulate the following optimization
problem

min. Cavg(πi) (or Cwc(πi))
s.t. f(Ai, φ) ≥ q, ∀φ

The constraint is to achieve at least a value q of the utility
function. The utility function in our manipulation task is
information gain. The information gain when executing an
action aij is

∆(aij ; Φ) = H(Φ)− Eo
[
H(Φ|o)

]
(12)

where o is an observation obtained after executing action aij
during subtask i. The observation probability is computed
like in [10] that is one normal distribution whose mean is
the time of contact with the true model embedded in action
j of task i (we construct each action as a trajectory whose
terminal pose is based on a particular model sampled from
the prior or realization φ). Specifically, if the action aij is
supposed to have contact at time oij , then the probability of
receiving a certain observation o is

p(o|φ) ∝ exp
(
−
|o− oij |

2σ2

)
As the utility function f(A, φ) = ∆(a; Φ) has been proven
to be adaptive monotonic and adaptive submodular [9], a
greedy policy that chooses actions online using the rule

arg max
a∈Ai

∆(a; Φ)

c(a)
(13)

is guaranteed to obtain near-optimal performance.
We estimate the model as a multivariate normal distri-

bution over the d-dimensional unknown parameters repre-
senting the environment’s unknown model. Given a set of
particles Φ (each particle represents one model of the world,
therefore one trajectory reaching to a particular terminal
position can be specified and optimized without uncertainty),
the posterior distribution is approximated as p(φ|o, ψ) ≈
N (φ;µo,Σo). Then its differential entropy is computed as

H(Φ|o) ≈ 1

2
log
(
(2πe)d|Σo|

)
C. Higher-Level Subtasks

As the higher-level subtasks might consist of non-primitive
actions, the action selection is non-trivial for either POMDP
or adaptive submodularity. We now describe two extensions
of POMDPs and adaptive submodularity to adapt to the
action selection at the higher-level subtasks.

1) POMDP: The primitive actions are, in our framework,
trajectories and therefore different to standard primitive
actions in hierarchical POMDP frameworks. However, we
can cast each trajectory as one primitive action with a
subsumed cost, then employ the action selection strategy of a
POMDP planner. In this section, we propose to use POMDP
planning in order to select among high-level actions. In order
to do that, we need to approximate models of all higher-
level subtasks Ti, i.e. transition, observation probabilities and
termination conditions, and execute one-step lookahead to

evaluate each child action [11].
According to Assumption 2 in Section III-A each subtask

is defined to disambiguate particular uncertainty terms, there-
fore the termination condition of each higher-level subtask is
p(Φ = φi|ψ) = 1−ε, where ε is a small threshold value; and
p(Φ 6= φi|ψ) = ε. This means the realizations are localized
at the true partial realization φi with a high probability.
And the task fails to localize the intended uncertainty factor
with a small probability ε. The parameter ε explicitly limits
the failure probability of a subtask, therefore it depends on
the failure probability of its children actions. In our case,
it depends on how we implement the lower-level subtasks.
Each lower-level subtask’s failure probability is bounded by
the error bound of the greedy policy’s performance that has
been provided in adaptive submodularity. Therefore, we can
recursively compute ε for each parent subtask in bottom-up
ordering.

Further, as state transitions are static, we can directly
estimate the transition function over belief states, i.e. bt =
p(φ|ψ). Relying on the termination conditions, the belief
transition conditioned on the selected subtask Ti and current
partial realization ψ is

p(bt+1|bt, Ti) =

{
1− ε , if bt+1 = p(φi|ψ)
ε , if bt+1 = bt

This means that after the task i terminates with a success
probability of 1−ε, the next belief must clearly represent this
success with the same certainty probability. Otherwise, the
belief transition represents the unsuccessful localization by
staying intact at the previous belief. Starting from an initial
belief b0, the belief tree is relatively small. For instance, if a
task Ti has Ni children actions and the horizon is set to k, the
tree consists of (2Ni)

k nodes. This number is rather small, a
standard value iteration for belief MDPs [18] could be used.
In the ideal case, if ε is set very small when each lower-level
subtask is solved using a large amount of samples, we could
set k equal to Ni. Because we have assumed that a task
terminates when all child actions have been executed or the
intended uncertainty factors are localized before resorting to
all actions.

One could avoid estimating the models in case of very
complex domains with a complex action hierarchy by using
a sample-based method for hierarchical POMDPs [7]. Each
macro action corresponding to one high-level action Ai
terminates when all actions in the set Ai are already executed
or the terminal conditions as in Assumption 2 are satisfied.

2) Adaptive Submodularity: The action hierarchy is de-
signed specifically to satisfy the assumptions of adaptive
submodularity, and each higher-level action does not affect
the transition of the environment’s state. We propose to
purely use adaptive submodularity to choose actions at all
levels, though the action set at the higher-level subtasks
is small. Information gain when executing an action aij at
subtask Ti is

∆(aij ; Φ) = H(Φ)− Eo
[
H(Φ|o)

]
(14)

We select actions greedily as

a = arg max
a′∈Ai

∆(a′; Φ)

E
[
c(a′)

] (15)

The difference to the standard adaptive submodularity is that
we use the expected cost of actions. We take the example
described in Section 1 to show how the algorithm works.

First, we describe how we construct the sets of trajectories
for each high-level action. Generally, localizing one partic-



ular uncertainty factor requires to sample many different
trajectories. In the peg-in-hole-like task, we initially sample
a set of 5-tuples φ = {w, l, x, y, z} (particles) that are
width, length, positions of the table. There are two lower-
level subtasks: Detect Z and Detect E, and one higher-level
subtask: Root. For the Detect Z subtask, we construct a set of
NZ trajectories that starts at different starting points from the
prior: s1 ∼ p1(starting). For each pair (s1, φ), we optimize
a trajectory to go down straightly from s1 until sensing the
table of height h or the floor. For the Detect E subtask,
we construct a set of NE trajectories that starts at different
starting points from the prior: s2 ∼ p2(starting). For each
pair (s2, φ), we optimize a trajectory to go in parallel with
the floor from s2 until observing a change of observations or
discovering a side boundary limit. If s2 starts on the table’s
surface, the robot should be able to disambiguate both height
and edge uncertainties. Therefore, the information gain of
choosing Detect E first at Root node is higher than that of
choosing Detect Z if ignoring the cost E

[
c(a′)

]
. However,

when taking the cost of actions into account, the cost for each
subtask is defined as the average number of taken actions
until termination,

E
[
c(Detect E)

]
=

1

NE

NE∑
i=1

i =
NE + 1

2
(16)

E
[
c(Detect Z)

]
= 1 (17)

and the robot will select Detect Z first. The example is in an
ideal situation with an assumption that the robot hand always
starts on top of the table.

D. Sequential Adaptive Submodularity Algorithm
The full adaptive submodularity algorithm with action de-

composition is pictorially depicted in Algorithm 1. For each
subtask a, we denote Aa its executed action set, ψa its partial
realization. This algorithm uses adaptive submodularity to
select actions at all levels. If a is a higher-level subtask, one
could alternatively replace the action slection strategy at step
16 by the policy computed offline by a POMDP solver as
described in Section III-C.1. For a sketch of the algorithm,
if an action is an optimized trajectory, it is directly executed
then returns an observation as the result. Otherwise, we first
construct an action set Aa for the subtask a as explained
in step 5. Steps from 8 to 20 try to solve one particular
adaptive submodular problem depending on different types,
that would result in a sequence of observations as represented
by obs.

IV. EXPERIMENTS

We evaluate the proposed method in two problems on
both a simulated 7-DoF KUKA arm (see Fig. 6) and a
PR2 physical robot systems. The first problem is simply
to localize the table’s height in order to find an object
hovering 12cm above the table. This task has one uncertainty
factor that is the table’s height, called hand-table problem.
This problem has been studied previously in [1] whose
method is based on constrained trajectory optimization using
uncertainty funneling and contact interaction rewards. The
second problem is peg-in-hole-like in which the robot is
uncertain over the position and size of the table. There is
an imagined hole that is situated at the center of the table.
Therefore, the robot has to localize the table before it can
reach the hole successfully.

Algorithm 1 Sequential adaptive submodularity with an
action hierarchy
SeqASUB(a)

1: if a is a primitive action (an optimized traj.) then
2: Execute a, observe an observation Φ(a)
3: Return: Φ(a)
4: else
5: Sample starting states and linear motion vectors for task a.

Using constrained trajectory optimization to construct the set
Aa.

6: Aa = ∅;ψa = ∅
7: obs = ∅
8: while a not terminates do
9: if a is a lower-level subtask then

10: Select aj using Eq. 13

aj = arg max
b∈Aa/Aa

∆(b; Φ)

c(b)
11: Set o = SeqASUB(aj)
12: Set Aa = Aa ∪ {aj}
13: Update ψa = ψa ∪ {aj , o}
14: obs = obs ∪ {o}
15: else
16: Select aj using Eq. 15:

aj = arg max
b∈Aa/Aa

∆(b; Φ)

E[c(b)]
17: Set o = SeqASUB(aj)
18: Set Aa = Aa ∪ {aj}
19: Update ψa = ψa ∪ {aj ,o}
20: obs = obs ∪ {o}
21: end if
22: end while
23: Return: obs
24: end if

In each problem, we sample N particles of Φ from a
multivariate normal distribution prior N (µ,Σ). After each
action execution, we compute a posterior as a particle set
of Φ, then do resampling in order to maintain a fixed
number of particles |Φ| = N . We use constrained trajectory
optimization [17] to optimize the trajectory for each sampled
model.

A. Experiment Setting

1) Hand-Table: We sample 1000 height hypotheses Φ ∈
< from a normal distribution N (0.65, 0.1) (in meters). An
action set consists of 10 optimized trajectories that are linear
motions made by 10 different starting poses on the z-axis.
Those actions can guarantee finding the table’s surface. This
task consists of only one Root node (Detect Z) that is one
lower-level subtask. Therefore, only lower-level subtask is
used that corresponds to one adaptive submodular optimiza-
tion problem. The computational time for each trajectory is
approximately 0.1 seconds in a personal computer.

We compare the proposed method with 1) a full POMDP
formulation for this problem as introduced by us in [19],
2) the dual execution framework as introduced by Toussaint
et. al. [1]. The full POMDP formulation is equipped with a
set of macro actions, which is formulated similarly to the
one in work [8], [12]. Each macro action correspond to
one QMDP policy [20] (POMDP policy using Q-function
approximation) that is a policy solved for one sampled
particle. The POMDP synthesis policy is built as a finite state
controller using one-step look-ahead. Therefore, the value
function of next belief node is estimated through QMDP
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steps, y-axis shows the end-effector’s z coordinate.

function approximation [20], and information gathering is
done via one-step look-ahead.

2) Peg-In-Hole-Like: In this problem, we sample 1000
particles of tuple (w, l, x, y, z) (see III-C.2 for their def-
initions) from a multivariate normal distribution with the
ground truth as means and a covariance matrix Σ =
diag(0.1, 0.1, 0.1, 0.1, 0.1). The action hierarchy is as given
in Fig. 1. The lower-level subtask Detect Z consists of 10
different trajectories as similar as in the hand-table problem.
The lower-level subtask Detect E consists of 100 different
trajectories. The action selection at the higher-level subtasks,
i.e. Root node, is executed offline using either POMDP or
adaptive submodularity. All trajectories of Detect E start
at the contact point with the table, which is the terminal
point of the Detect Z execution. Each different trajectory
that is a linear motion with different movement directions
is optimized to keep contacts with the table’s surface using
a force controller as described in [1].

We compare two adaptive submodularity methods: one
with an action hierarchy (the proposed framework), and
one without an action hierarchy as introduced by Javdani
et. al. [10].

B. On Simulated KUKA Arm

1) Hand-Table Problem: First we provide the typical runs
as drawn in Fig. 3 from three compared algorithms. The
ground truth table’s height is 0.7 meter, hence the goal
position is at 0.82 meter height. Comparing between the
adaptive submodularity and dual-execution approach, the
policy computed by adaptive submodularity requires table
contacts little enough to gain certainty, therefore the end
effector releases the table’s surface early to reach the goal
that has been localized. The dual-execution method used a
heuristic way to combine uncertainty reduction via reward
funneling and movement cost, hence an optimal moment to
release the contact was not optimized.

Comparing with the POMDP policy, the adaptive sub-
modularity’s policy is suboptimal in terms of finding the
trajectory with the least cost. As our adaptive submodularity
formulation is designed to first detect the table’s surface,
therefore path planning is not taken into account. On the
other hand, POMDP is a principle framework that can
optimize uncertainty reduction and path planning altogether.
However, the computational time of the POMDP policy is
more than 50 seconds compared to one second in total of
the adaptive submodularity approach.
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Fig. 4. Relative uncertainty reduction of two algorithms, the means and
0.95% confidence intervals are averaged over 20 runs.

Figure 5(a) depicts 10 typical runs of the adaptive submod-
ularity’s policy with different ground truth table’s heights.

2) Peg-In-Hole-like: Figure 6 (top row) shows a typical
run of the adaptive submodularity approach with being given
an action hierarchy. As shown in Section III-C in detail,
the adaptive submodularity policy selects first Detect Z, then
Detect E. This is the same as the POMDP policy computed
offline at the Root node. The POMDP formulation given the
estimate model is so simple that it can be computed by the
value iteration method.

Figure 4 reports the relative uncertainty reduction of two
adaptive submodularity algorithm with and without an action
hierarchy. The means and 95% confidence intervals are
averaged over 20 runs with different ground truth, sampled
particles Φ, and sampled trajectories A at the lower-level
subtasks. The adaptive submodularity method without action
hierarchy could reduce uncertainty very slowly. Because,
most of the time an action terminates with no contact,
therefore it could prune only one hypothesis from the particle
set. Therefore, in order to reduce all uncertainty it needs
to execute O

(
(N + 1)/2

)
number of actions in average as

computed in Eq.16.

C. On Willow Garage PR2 Robot Platform
We implemented our proposed algorithm on a Willow

Garage PR2 robot platform. We used only the right arm,
which is 7 DoF, to solve both hand-table and peg-in-hole-like
problems. The experiment setup is as shown in Fig. 5(b) and
6 (bottom row). We reported a typical run in each problem
instance. The contact is sensed via a F/T sensor at the wrist.
The experimental results show that the proposed algorithms
are easily and successfully reimplemented on the physical
system. Please see also the attached video.

V. CONCLUSION

The method proposed in this paper was inspired by the ad-
vantages of hierarchical POMDP planning and adaptive sub-
modularity in tackling challenging manipulation problems
under uncertainty. As adaptive submodularity can guarantee
a near-optimal performance with a greedy policy, it provides
a powerful framework for online sequential decision making.
Being integrated with an action hierarchy, adaptive submodu-
larity can deal with more complex problems like hierarchical
POMDPs, particularly with problems that require exploration
actions more rigorously. Through the integration of an action
hierarchy we can exploit contact information to disambiguate
uncertainty in a hierarchical way such that the problem is
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(a) 10 typical runs (b) A typical run on a physical PR2 platform: the robot end-effector starts above the table; it moves down
and touches the table’s surface; it starts to release the table’s surface; it reaches the goal.

Fig. 5. Hand-table problem: typical runs.

Fig. 6. Peg-in-hole-like problem (from left to right, the same explanation for both top and bottom rows): 1) uncertainty as drawn with transparency at
the initial pose; 2) After executing Detect Z and terminating with the first contact, the hypothesis set is pruned, the height certainty is gained; 3) continue
with Detect E, moving left while keeping table contacts until losing, the left edge is detected; 4) similarly, the right edge is detected; 5) the front edge is
detected; 6) the rear edge is detected; 7) after the termination of Detect E the table is localized, the goal is reached.

solved more effectively, as in hierarchical POMDP planning.
The experimental results in both a simulated robot arm and
a physical PR2 robot platform have shown the success and
efficiency of the proposed framework.
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