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Abstract— Efficient object manipulation based only on force
feedback typically requires a plan of actively contact-seeking
actions to reduce uncertainty over the true environmental
model. In principle, that problem could be formulated as a full
partially observable Markov decision process (POMDP) whose
observations are sensed forces indicating the presence/absence
of contacts with objects. Such a naive application leads to a
very large POMDP with high-dimensional continuous state,
action and observation spaces. Solving such large POMDPs
is practically prohibitive. In other words, we are facing three
challenging problems: 1) uncertainty over discontinuous con-
tacts with objects; 2) high-dimensional continuous spaces; 3)
optimization for not only trajectory cost but also execution
time. As trajectory optimization is a powerful model-based
method for motion generation, it can handle the last two
issues effectively by computing locally optimal trajectories. This
paper aims to integrate advantages of trajectory optimization
into existing POMDP solvers. The full POMDP formulation
is solved using sample-based approaches, where each sampled
model is quickly evaluated via trajectory optimization instead
of simulating a large number of rollouts. To further accelerate
the solver, we propose to integrate temporal abstraction, i.e.
macro actions or temporal actions, into the POMDP model. We
demonstrate the proposed method on a simulated 7 DoF KUKA
arm and a physical Willow Garage PR2 platform. The results
show that our proposed method could effectively seek contacts
in complex scenarios, and achieve near-optimal performance of
path planing.

I. INTRODUCTION

Robot manipulation in highly uncertain environments
essentially requires information-gathering from interaction
with objects and obstacles. Imagine a scenario in which
a person manipulates objects without being equipped with
vision perception ability. Entering a dark room, then after
opening the door he wants to turn on the light. Based on
previous experience, he has a certain belief that the light
switch is on the wall next to the door. He would first want
to seek contacts with the wall to disambiguate uncertainty
about the position of the wall, then he would slide his
hand along the wall to disambiguate the position of the
light switch on the wall. All information-seeking actions use
tactile feedback.

It is a very non-trivial problem as it has non-smooth
dynamics due to contacts, and has high-dimensional and
continuous state, control and observation spaces as innate
properties of any robotic problems. Such problems can
in principle be solved using decision-theoretic approaches
such as POMDPs [1]. Once being formulated in this way,
the uncertainty can be captured easily and disambiguated
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optimally through action execution. Efficient methods such
as belief planning in Gaussian belief spaces using iLQG [2],
[3] and information-gathering via tactile sensing [4] have
achieved impressive results. However, those full POMDP
solvers often require extensive computational time.

Recently, there has been remarkable work addressing simi-
lar problems via trajectory optimization, a family of powerful
techniques for motion planning. Optimized trajectories are
considered as reference for realtime execution controllers.
With the presence of uncertainty, trajectories are often op-
timized to seek contacts with constraints [5], [6]. However
their execution controllers are heuristically implemented in
a non-trivial way.

This paper proposes an efficient approach for robot ma-
nipulation under uncertainty by integrating advantages from:
trajectory optimization and POMDP. The contact-seeking
motion problem is again formulated as a full POMDP. For
leveraging POMDP solvers, we propose a new sample-based
method that uses trajectory optimization to quickly evaluate
each belief, instead of simulating a large number of rollouts.
Specifically, our major contributions are:
• We propose the idea of factoring the POMDP model

through contact observations. The factored model helps
to separate parts of non-smooth dynamics from smooth
ones. As a result, the evaluation of beliefs via Bellman
equations are factored into value functions correspond-
ing to parts of discrete dynamics and parts of continuous
dynamics. The continuous dynamics part is perfectly
suitable for trajectory optimization, and therefore it will
be approximately marginalized in the Bellman equations
of POMDP. The discrete part serves in one-step looka-
head computation as normal Bellman equations.

• We exploit temporal actions [7], i.e. macro actions
or options, that significantly accelerate the POMDP
optimization process. We build a set of temporal actions
merely by deriving policies from all sampled models.
Each sample corresponds to one fully observable MDP
model. Its policy can be computed quickly via trajec-
tory optimization. The use of trajectory optimization is
expected to reduce the computational time significantly.

• We use a sample-based method to solve the factored
POMDP problem with a temporal action set. Each
belief’s value function is evaluated using Q-function
approximation, or QMDP [8], instead of using a large
number of simulations. QMDP value function of each
sampled model will be estimated via trajectory opti-
mization as discussed above. The POMDP policy is
represented as a finite state controller and incrementally
constructed via one-step lookahead.



The paper is organized as follows: the next section II
reviews related work inspiring our approach. Section III
revisits definitions of a) trajectory optimization for robot
motion generation, and b) POMDP framework. We briefly
discuss the advantages of the two techniques, and propose
a factored POMDP model with a novel solver for it in
Section IV. All experiments on a simulated KUKA arm and
a physical PR2 robot platform are described in Section V.
We conclude the paper with some remarks in Section VI.

II. RELATED WORK

Manipulation through contacts or tactile feedback must be
dated back to the work of Lozano-Perez [9] in which there
was an exemplary peg-in-hole task. Recently this setting
has received attention by teams participating in the DARPA
ARM challenge [10]–[12] and the same study on humans
when grasping without vision [13]. Those methods mostly
depend on human expertise when designing the feedback
controllers. Our proposed method approximately builds a
finite state controller with less domain knowledge, using the
principled POMDP framework.

Various approaches [6], [14]–[17] use optimization to
rigorously build smooth contact models by approximating the
expected reaction forces, e.g. using Linear Complementarity
Problem (LCP) theory, constrained trajectory optimization
involving contacts. Those methods have shown very impres-
sive results in many complex sequential manipulation tasks
of simulated robots. However they are not straightforward
when implemented on physical robot platforms. In contrast,
our method is easy to be implemented on simulated and
physical robots.

The problem we are interested in is in principle a full
POMDP which has previously been studied in many work
such as in grasping [4], [18], or Gaussian belief planning
using iLQG [2], [3], etc.. However such those approaches
have very high computational complexity, and often require
an exact model of the environment. Our proposed approach
relaxes the requirement of an exact model, and circumvent
the problem of computational complexity of full POMDPs,
by combining the advantages of trajectory optimization and
POMDP. As a result our resulting approach can inherit both
ability in dealing with uncertainties from POMDP and the
computationally efficient power from trajectory optimization.

III. BACKGROUND

A. Trajectory Optimization

We use the Augmented Lagrangian method for trajectory
optimization [19]. Let xt ∈ Rn denote a joint configuration
and xt−k:t a trajectory of length k from time t− k to t. We
formulate the trajectory optimization problem generally as a
k-order optimization problem

min.
x0:T

T∑
t=0

φt(xt−k:t)
>φt(xt−k:t)

s.t. ∀t : gt(xt) ≤ 0 . (1)

where φt(xt−k:t) ∈ Rnt are arbitrary k-order cost terms,
and gt(xt) ∈ Rmt are inequality constraints for each time
t. There are plenty of ways to encode φ and g depending
on different tasks and different optimizers. For example,
square configuration space velocities are penalized simply
using φ(xt−1, xt) ∝ (xt−xt−1), and the square accelerations
using φ(xt−2, xt−1, xt) ∝ (xt + xt−2 − 2xt−1). Similarly,
for k = 2 we can penalize square torques or velocities or
accelerations in any task space.

Toussaint et. al. [6] let the inequality constraints gt rep-
resent contacts with objects. Then they used a modified
Augmented Lagrangian (AL) [20] method to deal with
inequality constraints. On the other hand, contact interactions
are directly rewarded by appending a term (−g(xt) + α)
into each cost term φ(xt−k:t). This contact reward implies
a squared potential (−g(xt) + α)2 cost at each time slice t,
which pulls towards a state violating the constraint with a
positive value α. The resulting solution of this constrained
optimization problem is a dual trajectory of (xt, λt) which
are joint configuration and Lagrange multiplier trajectories,
where λt ∈ Rmt . This dual solution specifically encodes
the temporal profile of contact interactions with constraints.
In more detail, if one dimension’s value of λt is positive,
its respective constraint is active. During execution, a force
controller then aims to reproduce this contact profile. This
method obtains good results and is computationally efficient
in both simulated and physical robot systems. However, the
experiments are simple with a single uncertainty term as
in the hand-table problem introduced in [6]. Though the
formulation is general, the implementation of both optimizer
and controller parts is non-trivial to extend to incorporate
more than one uncertainty terms.

The purpose of all above modifications to constrained
optimization is to simulate information-gathering behaviour
via contacts similar to the way POMDPs do. Since the simple
potentials do not capture uncertainty, the generated trajectory
is not optimal in terms of a trade-off between exploration
and exploitation. The constraints are released from contacts
with the constraint plane at non-optimal time steps. We
circumvent this problem by formulating this contact-seeking
problem as a full POMDP. This POMDP problem will be
solved computationally efficiently using sampling, where
trajectory optimization plays a central role as a solver for
each sampled instance.

B. Partially Observable Markov Decision Process

A POMDP P is defined as a tuple {S,A,O, T ,Z, C, b0}
[21]; where S is an unobservable state space; O is an
observation space; A is a control space; T defines a state
transition function, T (s, a, s′) = Pr(s′|s, a) that tells the
probability of next states if take a control a at state s; Z
is an observation function, Z(s′, a, o) = Pr(o|s′, a) that
defines the probability of observations at state s after taking
control a; b0 is an initial belief which represents a probability
distribution over states b0(s) = Pr(s0 = s); and C is a cost
function, C(s, a, s′). A policy π : B 7→ A is defined as a
mapping from the belief space to the control space.



The value function (or cost-to-go function) of a policy π
is defined as the expected total return of discounted costs:

V π(b) = E
[ ∞∑
t=0

γtct(st, at, st+1)|b0 = b
]

(2)

if the agent starts from the belief b; where γ ∈ [0, 1]
is a discount factor; and the expectation is w.r.t. stochas-
ticity of π, T ,Z, C, b0. The beliefs can be updated as
bt+1(s) = Pr(st = s|bt, at, ot). Abstractly, we denote
bt+1 = B(bt, a, o) as a belief update operator. The goal of
the agent is to find an optimal policy π∗ that minimizes the
expected total return V π

∗
(b0).

In object manipulation problems, the states are presumed
to be s ∈ Rn+ne , where the robot’s joint configuration
is x ∈ Rn, and the environment state is e ∈ Rne that
is unobservable to the robot (i.e. the environment model,
e.g. table position and size, object location). The control
actions a are motor commands computed by the operational
space/force controller. Observations o = {or, oe} contain a
measurement vector sensed from the robot’s internal state
(noisy measurements at joints) and a measurement vector
sensed from the external environment. Observations oe are
sensed forces of a F/T sensor at the wrist of the PR2 robot’s
arm. Alternatively, one can model observations oe as binary
feedback, i.e. contacts. Based only on a sequence of contacts,
the robot should be able localize the table to accomplish his
task. In other words, it is required to execute contact-seeking
actions to gather information, in similar notion of POMDP
planning, to accomplish the task. Alternatively, if we cast
one type of binary observation (encoding contact or not) for
each constraint, then we can implicitly represent Lagrange
multipliers λt as in the constrained optimization approach
by Toussaint et. al. [6]. A control sequence at (in execution
controller) and λt can now be replaced by a sequence of con-
trol and observations in POMDP, τ = {a1, o1, · · · , aT , oT }.
Therefore, in this paper we optimize a full POMDP controller
instead of finding a dual trajectory. Our proposed POMDP
solver is expected to be as much general as possible in
term of continuous and very high-dimensional state and
control spaces. In order to achieve these goals, our solver is
based on sampling and exploits advantages from trajectory
optimization. Each temporal action in our new POMDP
formulation corresponds to one contact-seeking trajectory. As
a trajectory can only be optimized via trajectory optimization
if given the model, sampling from the belief is used to bridge
between sample-based factored POMDP solvers and model-
based trajectory optimization frameworks.

IV. BELIEF PLANNING VIA TRAJECTORY OPTIMIZATION

For simplicity, we assume that objects in the environment
are static. We will discuss shortly how to generalize to
the case of dynamic environments. We separate the state
information s ∈ Rn+ne into two types: the robot’s joint
state x ∈ Rn, and the environment state e ∈ Rne (i.e.
the environment model, e.g. table position and size, object
location). We denote or the sensor information sensed from
the robot’s internal state, and oe observations sensed from the

environment’s state. Observations from the robot’s internal
state could be understood as noisy information about its
sensed force, sensed joint, and sensed position information.
The noise comes from noisy sensors and imperfect actuators.
Observations from the environment might come from the fact
that the robot partially knows about its working environment.
For instance, it is uncertain about the positions and poses
of objects in the environment. In order to accomplish a
given task, the robot must deal with uncertainty due to
both its own imperfect mechanical subsystems, and external
unknown environment.

A. Factored POMDP Model

We formulate the problem as a full POMDP as following.
As dynamics of the environment is static, we can decompose
the transition function T (s, a, s′) as

T (s, a, s′) = T (x, e, a, x′, e)
= p(x′, e|x, e, a)
= p(x′|x, a, e) (3)

because e is static, where x and e are a state of the robot and
environment, respectively. The factored observation function
is

Z(s, a, o) = Z(x, e, a, or, oe)
= p(or, oe|x, e, a)
= p(or|x, e, a)p(oe|x, e, a) (4)

Though the full POMDP can be factored as above, solving
it is known to be intractable. Because the state and control
spaces are continuous and very high-dimensional, as for the
case of a 22-DoF PR2 robot. To the best of our knowledge,
there have been no efficient POMDP solvers able to deal with
such large problems. Trajectory optimization is efficient and
robust in generating motion trajectories if the environment
model e is known. We propose a transformed POMDP that
can enjoy many advantages of trajectory optimization with
mild assumptions.

Given a model e (a sampled model from unknown environ-
ment is fully observable) we can use a trajectory optimization
method to optimize a trajectory achieving the task, e.g. iLQG
[22], differential dynamic programming [23], or constrained
optimization [6], etc. Assuming that for a specific sampled
model e and a starting joint configuration x0, an optimized
trajectory τex0

is returned. We denote by τe = {τe· } the set
of optimized trajectories with respect to all sampled starting
joint configurations. We can represent τe approximately.
This approximation is somehow similar to an MDP’s value
function approximation or QMDP [8], [24]. Because the
set of optimized trajectories implicitly represents an optimal
policy, an MDP solver or a stochastic optimal control solver
is used. In our case, we use trajectory optimization to find
an approximately optimal policy of the sampled model e. In
detail, the QMDP approximation is

QMDP (b, a) =

∫
x,e

b(x, e)QMDP (x, e, a)dxde (5)



where QMDP (x, e, a) can be approximated by using a mo-
tion planning algorithm. Assuming this function is evaluated
implicitly for the initial joint configuration, which is not
shown due to brevity reason. By sampling from b(x, e)
we can approximate QMDP (b, a) quickly. However, sam-
pling from the joint belief b(x, e) is redundant and might
be intractable due to the high dimensionality of the joint
space X . Because the problem with noises from the robot’s
joint state can be efficiently dealt, e.g. by using a linear
quadratic regulator (LQR) to execute the reference trajectory.
Therefore if we know e accurately, we would simply use
a traditional trajectory optimization algorithm to solve for
a reference trajectory. Then LQG is used to regulate the
execution of the optimized trajectory. Fortunately, in the case
of manipulation problems, we may assume Gaussian noise on
the control signals and we can use stochastic optimal control
(SOC) methods such as iLQG or trajectory optimization (and
a Laplace approximation around the optimal trajectory) to
evaluate QMDP (x, e, a) quickly and accurately. This can be
done using the above POMDP factorization

QMDP (b, a) =

∫
e

b(e)

∫
x

b(x|e)QMDP (x, e, a)dxde

=

∫
e

b(e)QSOC(e, a)de (6)

where b(x|e) is the belief over states given the true model
e. The second integral expression can be evaluated without
resorting to sampling. Using an SOC approach, the value
function QSOC(e, a) is computed when integrated out noisy
states of the robot’s joint configuration. To put it more
simply, this is the total cost of a trajectory optimized from
the initial joint configuration to the terminal state encoded
by the hypothetical environment e.

Because the POMDP model is factored as above, we can
use sample-based methods (sampling e from the prior) to
solve for a near-optimal policy with respect to the use of
SOC’s value function as function approximation. However,
a naive use of trajectory optimization in POMDP solvers can
not efficiently cope with the following problems because: 1)
the control and observation spaces are continuous; and 2) the
real-time execution requires fast and smooth trajectories with
a time resolution of a few milliseconds. In order to remedy
those issues, we integrate temporal actions into the proposed
approach. Temporal actions or macro-actions [7] have been
widely used in POMDP solvers as a principled method
to mitigate the curse of dimensionality and long-horizon
problems. We posit that temporal actions are potentially
helpful given their advantages in the case of very sparse
observations, as in manipulation problems, e.g. grasping
using hand-crafted macro actions [18], [25]. In the next sub-
section, we describe in detail how to integrate trajectory
optimization and general temporal actions into a simple
sample-based POMDP solver.

B. Transformed POMDP

We adopt the general POMDP formulation as in Section
III-B to model contact uncertainties in manipulation prob-

lems. In order to integrate temporal actions and trajectory
optimization, we first propose a transformed POMDP for-
mulation whose action space consists of only macro actions.
Each macro action is assumed to be one policy corresponding
to one sampled model e as in Eq. 6. We call them QMDP
macro actions or SOC macro actions (after integrating out
noisy joint configuration states.

The transformed POMDP P ′ can be defined as tuple
{S,A′,O, T ′,Z ′, C′, γ}, which has the same state and ob-
servation spaces; the action space A′ consists of N actions
{ae1, ae2, · · · , aeN}, where aei indicates that the robot is fol-
lowing a trajectory solved for the sampled model ei. The
termination condition for macro actions is when they observe
the change in observations, e.g. when there is sensed forces
or from sensed forces to NIL. Those macro actions are
motivated from [18], [25] where they use just four direction
macro actions. Each macro action is built as a solution of
trajectory optimization for each sampled model. Therefore,
we can use a large number of macro actions in order to
generate smooth execution trajectories, similar to the way
traditional sample-based POMDP solvers simulate a large
number of samples to reduce estimation errors.

We use τ to denote a macro action representing, with a
slight abuse of notation, either trajectories (each trajectory
corresponds to one starting joint configuration) or a policy. If
we write τ(x′, x) it would define the next state x′ if we start
at state x and following the trajectory τ . If we write τ(x, u)
it would define the policy of selecting a control u at state x.
The transition function is T ′(s, aei , s′) = τei(x′, x) that only
affect the transition of joint states x. That function defines
the probability of next joint configuration states if executing
an action aei that is an optimized trajectory w.r.t a sampled
model ei. The transition function might be deterministic or
stochastic depending on the solution’s representation of the
trajectory optimization method. For instance, iLQG assumes
Gaussian dynamics that would yield a stochastic transition
τei(x′, x, u), where u is the optimal control computed using
feedback gains. Methods using constrained optimization like
[6] would yield deterministic transitions. The observation
function is Z ′(s, aei , o) =

∑
uZ(s, τei(s, u), o), if we as-

sume that τei(s, u) is a “policy” solved for a sampled model
ei. Eq. 6 can be re-written and expanded using one-step
lookahead for P ′ as

Q(x0, a
e
i ) ≈

1

N

N∑
i=1

(
c(x0, a

e
i )+

∑
o

∫
x′
Z ′(x′, aei , o)τei(x′, x0)QMDP (x

′, eei , a
e
i )dx

′

)

=
1

N

N∑
i=1

(
c(x0, a

e
i ) +

∑
o

Z ′(x1, aei , o)QSOC(eei , aei )

)
(7)

where x0 is a starting joint configuration at a specific time
slice; x1 is assumed to be the next state in a deterministic
trajectory; the function c(x0, aei ) that is the cumulative cost
of executing an action aei plays as an intermediate cost term.



Algorithm 1 FSC-Optimizer
1: Sample N models ei ∼ b0.
2: Given x0 as an initial joint configuration.
3: Set a node x0 as Root of FSC.
4: call FSC-EXPAND(FSC, 0, x0, E0 = {ei}Ni=1)

The second term in the last equation is the expectation of the
approximate value function of the next belief set (the parti-
cles are filtered via the observation likelihood function Z).
We discretize observations as touch or no-touch depending
on the sensed forces.

The formulation P ′ is approximation to P using temporal
abstraction (temporal actions), sampling (sampled models)
and function approximation (trajectory optimization or SOC).
Therefore solving P ′ accurately would only solve P ap-
proximately. As each macro action is a QMDP (or SOC)
policy as in Eq. 7, it could not gather information. However
the policy derived recursively via one-step lookahead would
do this task. In the next section, we propose a simple and
efficient algorithm to solve P ′.

C. Trajectory Optimization Guided POMDP

First, we use a finite state controller (FSC) in order to
represent the optimal policy for P ′, as its action and obser-
vation spaces are discrete. The FSC’s nodes are annotated
with actions and joint configurations at time t, (aei , xk),
its edges are observations. The real execution from node
(ak, xk) to node (ak+1, xk+1) is controlled by the trajectory
solving the model ak with starting state xk and target
xk+1. Assuming that at time slice t = 0, the starting joint
configuration is x0 and the prior belief over environment is
b0, as presented in Algorithm 1. A root node is created and
labeled with the initial joint configuration. Then it calls FSC-
EXPAND to recursively construct a finite state controller,
given a set of initial particles representing an initial belief.
As shown in Algorithm 2, we use trajectory optimization
as in line 3 to solve for policies for each sampled model
given a starting state. Then one-step look-ahead as in Eq. 7
is applied to select the best action at the current belief
node. This operation is expected to select actions able to do
information gathering. Recursively, we build an FSC with
the tree-depth of T in a breadth-first search style. Since
observations are sparse due to involvement of few objects
during manipulation, the FSC has a pretty small branching
factor.

For environment has dynamic objects, we assume that
their dynamics are parameterized by a parameter vector
θ. The unknown parameter vector could be learnt through
Reinforcement Learning (RL). One technique to use planning
for learning is Bayesian RL [26]. In BRL, the unknown
parameters are cast as unobservable state components in
another POMDP [27], [28]. Then POMDP planning is used
to find a Bayes-optimal policy that is known to be best trade-
off between exploration and exploitation. An action hierarchy
may also be used as in our recent work for offline learning
[29], [30] or online learning [31].

Algorithm 2 FSC-EXPAND(FSC, k, node x,Ek)
1: if (k = T ) then
2: return
3: end if
4: Set xk = x // a state at level k of FSC
5: for each ei do
6: τei = Traj Optim(ei, xk). // solve for a pol.
7: Set xeik+1 = τei [1] // next state in traj.
8: end for
9: Set ae∗, x

∗
k+1 = argmaxaQMDP (x, a

e
i ) (Eq. 7)

10: Set action ae∗ to node (xk)
11: for each o ∈ O do
12: Belief update: Ek+1 = B(Ek, ae∗, o)
13: Add a label ae∗ to node xk
14: Create a node x∗k+1 and connect to node xk.
15: Label the edge xk → x∗k+1 with o.
16: Call FSC-EXPAND(FSC, k + 1, x∗k+1, Ek+1)
17: end for

force controller
finite state
controller robot

y , ẏ , x , ẋ

u

y , ẏ , x , ẋ , o

xt

Fig. 1. Control Architecture

D. Execution Controller

We use an execution controller as shown in Figure 1
with two execution loops. The inner loop is an operational
space force controller that computes motor commands. Its
frequency is 1kHz. The outer loop is an optimized finite state
controller that gives targets at each time slice and has a lower
frequency. We use a similar force controller as described in
[6].

V. EXPERIMENTS

We evaluate the proposed approach in two tasks on both
simulated and physical robots as illustrated in Fig. 2. The
first task, hand-table problem, as studied in [6] requires a
robot to find a trajectory to reach a point somewhere 10cm
above the table. Through finding contacts with the table, the
robot would gain certainty first about the height of table,
then release the table’s plane for the hanged target. This task
has one uncertainty, which is the height of the table. The
second task mimics the peg-in-hole-like problem. In this task,
the robot must both find the table’s height and size before
reaching the center of the table. The robot is expected to
slide its end-effector on the table to find one of the table’s
edge, then slide back to the table’s center.

A. Simulated KUKA Arm

1) Hand-Table Problem: In the first task, we compare
our POMDP approach against a constrained optimization
method, i.e dual-execution in [6], and against an adap-
tive submodularity approach [32]. The setting of the dual-
execution method is similar to its original paper. For both
dual-execution and POMDP approaches, we optimize their



Fig. 2. A simulated KUKA arm and a physical Willow-Garage PR2.

trajectory and policy over 200 time slices. On a 32-bit,
8GB Ram, 2.9Ghz×4 computer, the computation of our
method is 40.94 seconds for 100 samples, and the constrained
optimization method from [6] is 0.743 seconds. The adaptive
submodularity application for touch-based manipulation is
recently introduced [32] and has shown remarkable results.
We generate 100 linear motions that moves downward on
the z-axis from different starting states until sensing a
contact (with the table). Each linear motion is one trajectory
optimization problem using the optimizer from Toussaint
et. al. [6].

The result of exemplary trajectories for each algorithm is
reported in Fig. 3. There are three major points in this result.
• The POMDP controller can deal with uncertainties,

therefore its trajectory only slides on table little enough
to gain certainty. In our setting, we observe that the
uncertainty is totally disambiguated after at least 15
consecutive touches. Once gaining certainty, the robot
just moves directly to the goal. As the dual-execution
method sets funneling reward manually, the constrained
optimization trajectory would also prefer contacts if
it is highly weighted. Therefore, the dual-execution’s
trajectory would not optimize when it should release
the table.

• The behaviour of the POMDP and adaptive submod-
ularity approaches looks comparable. As the adaptive
submodularity approach can also seek contacts with the
table, it optimizes a trajectory going to the estimated
goal after getting certainty from the contacts. However
the adaptive submodularity approach is not for path
planning, therefore its entire trajectory from start to
goal is suboptimal in terms of total cost (e.g. shortest
path). Our approach based on POMDP planning can
apparently do path planning under uncertainty in a
principled way, and hence outperform both heuristic
methods like dual-execution and non-path planning
methods like adaptive submodularity.

• The POMDP controller can estimate the height of the
table via their observation branching of the finite state
controller, therefore forces are softly exerted after it has
touched the table for the first time. Meanwhile, the dual-
execution policy still pushes forces so harshly that the
trajectory has sometime penetrated into the table.

2) Peg-In-Hole-like Problem: In the second task, the robot
is uncertain over both the table’s height (in z-axis) and
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Fig. 3. Exemplary trajectories of the dual-execution, POMDP, and
adaptive submodularity algorithms (x-axis is time steps). y-axis shows the
z coordinates (in meters). The legends with z mean the z coordinates of:
eff: end-effector, table: true table’s height, est: the current estimate.

table’s position (in x-axis). The dual-execution method can
not solve this task straightforwardly, as it requires to design
the contact plane in an ad-hoc way. Even if we work hard
and succeed in designing such an objective function, it is
still difficult to design the execution controller that at the
same time maintains contacts with the table plane, and pulls
the end-effector into the edge plane constraint. Therefore,
we skip comparisons against the dual-execution method, and
only report results from our method.

In Fig. 4, we report a typical run from a finite state
controller optimized with 100 samples in approximately
118 seconds. The behaviour can be described as: first the
robot gradually goes down to find the first contact with the
table; after that it is still uncertain about the center position,
therefore it slides to either edges in oder to localize the
table’s position (assuming that it knows the table’s size).

B. On Willow Garage PR2 Robot Platform

We re-implemented all above experiments on the Willow
Garage PR2 robot platform. Contacts are indicated by sensed
forces returned by the force/torque sensor at the wrist.

1) Hand-Table Problem: We samples 100 times from the
prior over the environment’s model, i.e. height information,
the computational time on this full DoF robot is approx-
imately 300 seconds. Figure 5 shows two sequences of a
run from two algorithms: the dual-exection approach and
our proposed method. As seen in the figure, the 4th picture
shows the difference of behaviour between two algorithms.
At that time slice, our controller tells the robot to release
the contact, meanwhile the dual-exection controller tells the
robot to keep sliding.

2) Peg-In-Hole-like Problem: We samples 200 times from
the prior over the environment’s model, i.e. height and length
information, the computational time on this full DoF robot is
approximately 800 seconds. On the second task, the results
are illustrated as in Fig. 4. We can also see the similar
behaviour of the simulated KUKA arm’s experiment in PR2’s
experiment. See the attached video for better explanation!

VI. CONCLUSION

In this paper, we have proposed a simple and efficient
belief planning method for robotic manipulation problems.



Fig. 4. A typical run of the peg-in-hole-like task on the simulated KUKA robot arm (top-row pictures) and the Willow Garage PR2 platform (bottom-row
pictures) (numbering: left to right): 1) initial pose, 2) it’s going down to detect the table’s height, 3) sliding right to its estimate target (an orange point),
4) detected the right edge, 5) updated the target, slide back to the newly updated target, 6) reached the true target (a red point).

Fig. 5. Exemplary runs of the first task on the Willow Garage PR2 platform. The top row are pictures from the dual-execution method. The bottom row
are pictures from our approach. Each row is numbered from left to right: 1) initial pose; 2) first contact with the table; 3) start sliding on the table; 4) top
row: still sliding, bottom row: start to release contact; 5) top row: still sliding, bottom row: keep going to the target without sliding; 6) reached the target.

We exploit tactile feedback to formulate the problems as a
full POMDP. To overcome the intractability in solving such
high-dimensional POMDPs, we have integrated powerful
trajectory optimization into a sample-based POMDP solver,
to replace the traditional expensive simulation techniques.
To further accelerate the solver, we adopt the idea of using
temporal actions whose termination condition is based on
sensed forces. As a synergy effect of such integrated solution,
we have obtained a powerful framework with solving time
increases approximately linearly in the number of samples,
due to sparse observations in manipulation problems.
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