
Combined Optimization and Reinforcement
Learning for Manipulation Skills

Peter Englert and Marc Toussaint
Machine Learning & Robotics Lab
University of Stuttgart, Germany

Abstract—This work addresses the problem of how a robot
can improve a manipulation skill in a sample-efficient and secure
manner. As an alternative to the standard reinforcement learning
formulation where all objectives are defined in a single reward
function, we propose a generalized formulation that consists of
three components: 1) A known analytic control cost function; 2)
A black-box return function; and 3) A black-box binary success
constraint. While the overall policy optimization problem is high-
dimensional, in typical robot manipulation problems we can
assume that the black-box return and constraint only depend
on a lower-dimensional projection of the solution. With our
formulation we can exploit this structure for a sample-efficient
learning framework that iteratively improves the policy with
respect to the objective functions under the success constraint.
We employ efficient 2nd-order optimization methods to optimize
the high-dimensional policy w.r.t. the analytic cost function while
keeping the lower dimensional projection fixed. This is alternated
with safe Bayesian optimization over the lower-dimensional
projection to address the black-box return and success constraint.
During both improvement steps the success constraint is used to
keep the optimization in a secure region and to clearly distinguish
between motions that lead to success or failure. The learning
algorithm is evaluated on a simulated benchmark problem and
a door opening task with a PR2.

I. INTRODUCTION

In this paper we consider the problem of how a robot can
improve its performance on a manipulation skill. Every real-
world interaction with the environment only gives a single
data point w.r.t. the success or failure of the manipulation.
To improve a high-dimensional skill policy from so little data
we need to exploit prior assumptions about the structure of
the problem. One interesting assumption is that for some
aspects of the problem we actually have models and analytic
cost functions, while other aspects, like the overall success or
reward, are black-boxes without known models.

We would like to exemplify this with the task of opening a
door, which consist of different subgoals such as reaching the
handle, pushing the handle down and performing the opening
motion while keeping contact. After a manipulation trial the
robot receives a single Boolean success signal on whether
the door opened. Further objectives are a smooth motion and
collision avoidance. Combining these objectives into a single
reward function and optimizing it, e.g. with policy search

This work was supported by the EU-ICT project 3rdHand 610878
and the DFG project Exploration Challenge BR 2248/3-1.
Email: peter.englert@informatik.uni-stuttgart.de

marc.toussaint@informatik.uni-stuttgart.de

methods, discards the structure of the problem and is sample-
inefficient for high-dimensional policies. Generally, in typical
manipulation problems, a kinematic or dynamic model of
the robot itself is available, wherease the environment (e.g.,
contact interactions, door joints) may be unknown or difficult
to model accurately, forbidding an analytic model for the
overall manipulation success. In our example the smoothness
term can be expressed analytically, whereas the feedback if
the door is open or not is only available as a Boolean black-
box function. It is the aim of our framework to exploit such
structural knowledge for the sake of sample efficiency.

In this paper we propose a generalized formulation of
reinforcement learning that allows to express more structure
in the problem definition. In this formulation we assume the
objectives are defined with three components: An analytic cost
function, a black-box return function and a black-box binary
success constraint. The goal of this structure is to separate the
objective terms in such a way that it is possible to exploit
knowledge (e.g., analytic form, models) when it is available
as well as to explore in a model-free way otherwise (i.e.,
black-box objectives). For black-box functions it is difficult
to optimize them efficiently in high-dimensional parameter
spaces. Therefore, we make the second assumption that the
black-box return and success constraint only depend on a
lower dimensional projection of the policy. This lower dimen-
sional projection additionally encodes crucial structure of the
problem. We make the assumption that it is given and discuss
which projection we typically have in mind in the context of
manipulation. For instance, the success of pressing the door
handle essentially depends on the placement of the contact
points rather than the full reaching motion—such interaction
parameters typically define the lower dimensional projection
we consider.

The starting point for learning is a single demonstration
of successful (but non-efficient) manipulation (e.g., given by
kinesthetic demonstration or hand-programmed). From this
initialization the robot improves the skill with respect to the
given objective functions and task success constraint. We alter-
nate between two improvement strategies to achieve this goal.
The first improvement strategy is an efficient Gauss-Newton
motion optimization that optimizes the analytic cost function
of the motion and implies a policy following this reference.
Here we fix the lower dimensional projection by incorporating
them as hard constraints into the mathematical program. The
second improvement strategy is Bayesian optimization over

peter.englert@informatik.uni-stuttgart.de
marc.toussaint@informatik.uni-stuttgart.de

the lower dimensional projection, which aims at maximizing
the black-box return function subject to the unknown success
constraint. We use Gaussian processes to learn models for the
black-box objective function and constraint. These models are
combined in a novel acquisition function to select the next
policy in a secure and efficient manner.

The main contributions of this paper are:
1) The more structured reinforcement learning formulation

with an analytic cost function, a black-box return func-
tion and a black-box success constraint.

2) A policy improvement framework CORL that combines
optimization and black-box reinforcement learning.

3) A novel acquisition function PIBU for Bayesian opti-
mization that selects the next policy in a secure and
efficient manner.

In the next section we present related work. We introduce
in Section III background on optimal control and episodic
reinforcement learning. In the Sections IV–VII we present
our problem formulation and describe the CORL algorithm. In
Section VIII we evaluate our approach on a synthetic problem
and real-world task of opening a door with a PR2.

II. RELATED WORK

A. Policy Search in Robotics

Reinforcement learning is a widely used approach for
learning skills in robotics [12]. Kober et al. [11] proposed
to use dynamic movement primitives as policy representation
and the policy search method PoWER to learn the shape and
properties of the motion. Usually this approach is initialized
from demonstration and afterwards policy search methods
improve the skill with respect to a defined reward function.
The difference to our approach is that we perform learning on
two policy parameterizations. This allows us to use efficient
Gauss-Newton optimization routines for the parts of a motion
where an analytic cost function is available.

Kalakrishnan et al. [10] present a method to learn force
control policies for manipulations. The policy is initialized
with position control via imitation and afterwards this policy
is augmented with a force profile that is learned with the
reinforcement learning method PI2 [26]. They use a single
reward function that combines smoothness terms, force terms
and tracking errors to the demonstration. The weighting of
the different terms in the cost function is non-trivial. Again,
this method builds on dynamic movement primitives as rep-
resentation of non-stationary policies instead of exploiting
optimization w.r.t. the known analytic objectives to optimize
the non-stationary policy. In our experiments we compare to
CMA, which has been shown to be closely related to PI2 [23].

B. Bayesian Optimization with Constraints

There are many approaches on how to incorporate con-
straints into Bayesian optimization [6, 7, 8, 21]. The core con-
cept of these approaches is to use the probability of a constraint
being fulfilled and combine it with other acquisition functions
(e.g., expected improvement). There exist multiple variations
on how to formulate the acquisition function depending on

the problem requirements. In Gardner et al. [6], for example,
they assume that the objective can also be evaluated in the
unfeasible region and in Gelbart et al. [7] they consider the
case of a decoupled observation of objective and constraint.

The main difference to our work is that we additionally
want to have a secure learning process which avoids sampling
constraint violating points. To obtain this we propose a novel
acquisition function that uses the variance of the constraint to
guide the exploration on the decision boundary.

C. Safe Exploration

Schreiter et al. [22] propose a safe exploration strategy
SAL for a similar problem to ours. They optimize a function
in a safe manner where the feasible region is unknown.
For doing this they assume to observe a safety measure
when samples are close to the boundary. This information
is integrated into a differential entropy exploration criteria to
select next candidates. They also provide an upper bound for
the probability of failure. This approach would most likely
lead to fewer failures during the exploration than ours, but it
requires the additional observation of a safety measure close
to the decision boundary which is not available in our problem
formulation. We compare our approach to this strategy on a
synthetic problem in Section VIII-A.

Another approach for a safe exploration is proposed in Sui
et al. [25]. The strategy SAFEOPT optimizes an unknown
function with Bayesian optimization that is combined with
a safety criterion of the form that the function value should
exceed a certain threshold. They use the concept of reacha-
bility to categorize the search space in different sets for safe
exploration and exploitation. The next data point is selected by
sampling the most uncertain decision. This approach is used
to learn a stabilization task on a quadrotor vehicle in [1].

None of the above methods for safe or Bayesian explo-
ration would be sample-efficient when directly applied on
the high-dimensional non-stationary policy. However, they can
be integrated in our proposed CORL framework, as we will
demonstrate for UCB and SAL in the evaluations.

D. Combined Learning Approaches

There has been previous work on how reinforcement learn-
ing methods can be combined with optimization to more
powerful algorithms. In Rückert et al. [20] a reinforcement
learning algorithm for planning movement primitives is intro-
duced that uses a two-layered learning formulation. In an outer
loop the policy search method CMA optimizes an extrinsic
cost function that measures the task performance. This policy
search is over parameters that are used in the inner loop to
define a cost function for a trajectory optimization problem.
This problem is used to compute trajectories that are fed back
as input to the extrinsic cost function. A core difference to our
approach is that they couple the objective functions with each
other in a hierarchical way and only optimize the extrinsic
objective function. The intrinsic objective function is only
used to perform rollouts. In our formulation we optimize both
objectives sequentially. Additionally, we use a safety constraint

to guide the learning in a secure manner. Another approach
that combines reinforcement learning with optimization was
proposed by Vuga et al. [28]. They combine iterative learning
control with the reinforcement learning algorithm PI2. Our ap-
proach differs especially w.r.t. the lower-dimensional structure
and that we consider arbitrary black-box objectives.

Kupcsik et al. [13] propose a policy search method that
combines model-free reinforcement learning with learned for-
ward models. They learn probabilistic forward models of the
robot and the task which are used to generate artificial samples
in simulation. These samples are combined with real-world
rollouts to update the policy. The relative entropy policy
search method is used to maximize the reward and balance
the exploration and experience loss by staying close to the
observed data. One of the main differences to our approach is
that we divide the problem in model-based motion optimiza-
tion that improves the motion efficiently and reinforcement
learning that improves the task by exploring a lower-dimension
representation. A further difference is that they learn a model
of the task that is used in internal simulations, whereas we
directly learn a model that maps parameters to returns.

III. BACKGROUND ON OPTIMAL CONTROL AND
EPISODIC REINFORCEMENT LEARNING

We consider non-stationary policies π(xt , t,w) parametrized
by a parameter vector w∈Rn that map a system state xt ∈RQ

at time t to an action ut ∈ RU . In finite-horizon stochastic
optimal control with discretized time [2], we assume that
the transition model P(xt+1 |xt ,ut) is known, as well as the
objective function

J(w) = E

[
T

∑
t=0

ct(xt ,ut) |π

]
. (1)

In the case of linear dynamics, quadratic costs and Gaussian
noise (LQG) the problem can be solved analytically. In the
non-linear case one approach is a Laplace approximation,
which first computes the most likely path leveraging classical
motion optimization (e.g., KOMO [27]) and then approximates
and solves the LQG problem around the path (equivalent to
iLQG).

When the system model and objective function are unknown
and estimating the model or a value function does not seem
promising, policy search for episodic reinforcement learning
(RL) aims at finding optimal policy parameters w for un-
known stationary rewards r(x,u) by maximizing the return
R(w) = E[∑T

t=0 r(xt ,ut)|π]. In contrast to optimal control, the
system behavior as well as rewards can only be observed by
doing rollouts on the real system. Standard methods for such
policy search are PoWER [11] and PI2 [26].

A restricted case of episodic reinforcement learning is where
only the total return ∑

T
t=0 r(xt ,ut) of an episode is observed but

not the individual rewards r(xt ,ut) [24]. In this case black-box
optimization methods can be used to solve the problem (e.g.,
covariance matrix adaptation [9] or Bayesian optimization

[15]). Our approach combines this type of episodic reinforce-
ment learning with non-linear optimal control based on motion
optimization.

IV. COMBINED OPTIMIZATION AND
REINFORCEMENT LEARNING

We propose a structured RL formulation that combines
optimal control and episodic RL. We specifically aim to deal
with cases where the policy parameters w are high-dimensional
(n ≥ 1000). But at the same time we aim for efficient skill
learning from only few (< 100) real-world rollouts. Clearly,
for this to be a well-posed problem we need to assume a
certain structure in the problem.

Our problem formulation consists of (i) an analytically
known cost function J(w) (cf. Equation (1)), (ii) a q-
dimensional projection constraint

h(w,θ) = 0 , h : Rn×Rm→ Rq (2)

that ties every policy parameter w to a lower-dimensional
projection θ ∈Rm (see details below), (iii) an unknown black-
box return function

R : Rm→ R , (3)

and (iv) an unknown black-box success constraint

S : Rm→{0,1} . (4)

The generalized reinforcement learning problem is

min
w,θ

J(w)−R(θ) s.t. h(w,θ) = 0 , S(θ) = 1 . (5)

That is, we want the best policy parameters (w?,θ ?) (measured
with J(w?) and R(θ ?)) that fulfill a task (measured with
S(θ ?) = 1).

The projection constraint h(w,θ) defines the relation be-
tween the high-dimensional w and the lower dimensional θ .
We generally assume that h is smooth and that, for given w,
h(w,θ) = 0 identifies a unique Θ(w) = θ . In that sense, θ is a
projection of w. In general, θ should represent those aspects of
the policy that are crucial for success but for which analytical
objective or success functions are not available. In the context
of manipulation, interaction parameters such as the contact
points of a grasp exemplify such aspects. In Section V-B
we will explain specifically how we choose h(w,θ) for robot
manipulation tasks.

The analytic cost function J(w) contains all the costs we
know a priori in analytic form. The black-box return function
R(θ) and success constraint S(θ) are a priori unknown and
we can only observe noisy samples by doing rollouts for a
given input.

We solve the problem in Equation (5) by using optimal con-
trol methods to improve the policy w.r.t. the high-dimensional
w and black-box Bayesian optimization to improve the policy
w.r.t. the low-dimensional θ . The resulting algorithm CORL
is summarized in Algorithm 1.

As input to our method we assume to have an initial policy
parameterization (w(0),θ (0)) that fulfills the task (S(θ (0)) = 1).

Algorithm 1: CORL
Combined Optimization and Reinforcment Learning

input: Initial parametrization (w(0),θ (0))
Analytically known: J,h
As black-box functions: R,S

Initialize (w?,θ ?) = (w(0),θ (0)), i = 0
repeat

1) Optimization (Section VI)
repeat

w(i+1) = argmin
w

J(w)

s.t. h(w,θ ?) = 0, ||w−w(i)||< εmax

Perform rollout with policy parameter w(i+1)

Set best w? = w(i+1) if rollout is successful
until ||w(i+1)−w(i)||< εw

2) Black-box Reinforcement Learning (Section VII)
Initialize D = {θ ?,R(θ ?),S(θ ?)}, d = 0
repeat

θ
(d+1) = argmax

θ

a(θ ,D)

w(i+1) = argmin
w
||w?−w||2 s.t. h(w,θ (d+1)) = 0

Perform rollout with policy parameter w(i+1)

Add datapoint {θ (d+1),R(θ (d+1)),S(θ (d+1))} to D
until ||θ (d+1)−θ

(d)||< εθ

Set best θ
? = argmax

θ∈D
R(θ) s.t. S(θ ?) = 1

until no change in policy parameter (w?,θ ?)

The first improvement strategy is constrained optimization and
acts on the high-dimensional w to improve the analytic cost
function J(w). Thereby the lower dimensional parameter θ is
kept fixed with the equality constraint h(w,θ) = 0. Fixing the
lower dimensional parameter θ means that the resulting policy
fulfills a certain property that is defined by h(w,θ). We assume
that the task success only depends on θ , which implies that
all policy parameters w that fulfill the constraint for a fixed θ

lead to the same success outcome.
The second improvement strategy in Algorithm 1 is black-

box reinforcement learning over θ that aims at improving
R(θ) and fulfilling the constraint S(θ). We propose a new
acquisition function a(θ) for Bayesian optimization that is
optimized in each iteration to select the next parameter. We
define a(θ) in such a way that it explores the parameter
space in a secure and data efficient manner by finding a
good tradeoff between making large steps that potentially lead
to risky policies and small steps that would require many
rollouts. To achieve this goal we learn a binary classification
model of S(θ) to find the boundary between policies that
lead to success or failure. This classifier is used to keep the
exploration around the feasible region and reduce the number

of (negative) interactions with the system.
At the end of each improvement step in Algorithm 1, we

select the best policy parameter (w?,θ ?) with s(θ ?)= 1, which
is the starting point for the next improvement step.

If our assumption holds that the black-box return R really
only depends on θ , then Algorithm 1 converges after the
second iteration when the optimization step finishes. This
follows from the property that the optimization fixes θ ? with a
constraint, which means that the reinforcement learning has to
be executed only once. In practice, this convergence property
is not always the case since it strongly depends how R is
chosen. To gain more robustness we may perform multiple
iterations. However, we will show in the experimental section
that our assumption holds for different synthetic and real world
problems.

V. CORL FOR ROBOTIC MANIPULATION SKILLS

So far we described our algorithm CORL independent of a
specific application domain. The CORL framework allows us
to express priors, e.g., in terms of the choice of the policy
parametrizations, the objective functions and especially the
projection constraint h(w,θ). In this paper, we will focus on
robot manipulation skills and propose such domain knowledge
that fits in the framework of Algorithm 1.

A. Policy Parametrization w

We represent the policy as a unique LQR around a ref-
erence trajectory ξ (w, t) with t ∈ [0,T]. We assume a linear
parametrization of the reference trajectory ξ (w, t) = B(t)w by
the policy parameters w. B(t) are RBFs or B-spline basis
functions, leading to n = PQ parameters for P basis functions
and a Q-dimensional robot configuration.

B. Assumed Projection Constraint h(w,θ) for Manipulations

A key part of our approach is the lower dimensional
representation θ and the corresponding projection constraint
h(w,θ). The choice of these elements requires domain knowl-
edge. In this paper we propose a definition of θ and h(w,θ)
for robot manipulations under the assumption of a rigid body
kinematic world. In this case, manipulation means to articulate
an external degree of freedom by establishing contact with the
respective body. We assume that the dynamics and objectives
of the pre-contact motion as well as the post-contact motion
of the external degree of freedom can be modeled, while the
choice of how to contact the object is a crucial black-box
for success, implying parameters θ . In other words, the parts
of the motion where the robot is performing the contact are
difficult to model with an analytic cost function J, but very
important for achieving task success. Following this heuristic,
we use the contact points during the manipulation task as
lower dimensional representation of θ . If φCP(ξ (w, tC)) is the
forward kinematics of the robot’s contact points at the time of
contact tc, the projection constraint can be defined as

h(w,θ) = φCP(ξ (w, tC))−θ . (6)

For example, in a door opening task θ could be the
point where the robot is grasping the door. This concept is

transferable to other manipulation tasks where the contact
points are crucial for performance and success (e.g., button
pushing, drawer opening). More generally, θ should capture
essential parameters of the interaction with the objects, e.g.,
where and how to establish contact and where to release con-
tact. Essentially our framework assumes that this interaction
parameter space is much lower dimensional than the full robot
motion.

In the following, first the motion optimization (Section VI)
and afterwards the Bayesian optimization (Section VII) are
described in detail.

VI. MOTION OPTIMIZATION FOR FIXED θ

In the first part of Algorithm 1 the goal is to improve the
policy while keeping the lower dimensional parameter θ fixed.
We use a Gauss-Newton motion optimization framework [27]
that improves ξ (w, t) w.r.t. J by computing Newton steps. We
adapt this framework for learning manipulation tasks in a step-
wise manner.

A. Trust-region Policy Improvement

The goal of trajectory optimization is to find optimal param-
eters w of a trajectory ξ (w, t) that minimize the objective func-
tion J(w). We discretize the trajectory ξ (w, t) with a stepsize
of ∆t into K + 1 points (x0,x1, . . . ,xK) where xt = ξ (w, t∆t).
Our objective function is

J(w) =
K

∑
t=0

v>t φ
2
t (x̃t) . (7)

This defines the objective as a weighted sum over all time
steps where the costs are defined in form of squared features φ .
Each cost term depends on a k-order tuple of consecutive states
x̃t = (xt−k, . . . ,xt−1,xt), containing the current and k previous
robot configurations [27]. In addition to this task cost we
also consider the projection constraint h(w,θ) as an equality
constraint that can be also defined with features φ .

The resulting optimization problem is

w(i+1) = argmin
w

J(w) (8)

s.t. h(w,θ) = 0, ||w−w(i)||< εmax

where we also added an inequality constraint to limit the
stepsize of the trajectories between two iterations with εmax.
This trust-region constraint guarantees that the current tra-
jectory is close to the previous trajectory w(i). We could
solve this trajectory optimization problem in Equation 8 also
without this trust-region constraint until it converges to a fixed-
point solution. However, this would lead to potential large
steps between different trajectory candidates. This could be
problematic since it is not guaranteed that the found trajectory
leads to task success. Note also the strong relation to relative
entropy policy search which limits the divergence between the
trajectory distribution before and after the update [18].

We incorporate the constraints with the augmented La-
grangian method and solve the resulting problem with Gauss-
Newton optimization [17]. Thereby, we exploit the structure

of the gradient and Hessian for efficient optimization (see [27]
for more details).

B. Optimizing Smoothness and Phase Profile

Our first objective criteria is smoothness. In our experiments
we define configuration space acceleration features

φt(x̃t) = (xt −2xt−1 + xt−2)/∆
2
t (9)

that contribute to the objective (7). We use this feature to select
the next policy parameters w(i+1) by minimizing the problem
defined in Equation (8).

To achieve smoother motions also w.r.t. the time course
of the constraints (e.g., when contacts are established),
we additionally optimize the phase of the trajectory and
keep the geometry fixed. We optimize the phase profile
p(t) : [0,T]→ [0,1] of this trajectory w.r.t. transition costs.
We discretize p(t) in K + 1 points p̂ = [p0, p1, . . . , pK] that
we use as additional trajectory parameters with the boundary
conditions p0 = 0 and pK = 1.

Again, we use the squared configuration space accelerations
as smoothness term that results in an overall cost

J(p̂) =
K

∑
i=0

(
(ξ (w, pi−1T)−2ξ (w, piT)+ξ (w, pi+1T))/∆

2
t
)2

+(pi−1−2pi + pi+1)
2 . (10)

The second term is a cost term directly on the acceleration
of the phase variable. The resulting phase profile p̂? defines
a new trajectory with parameter w. Similar to the problem in
Equation (8) we also limit the stepsize with εmax.

There are different ways to combine the trajectory im-
provement and phase improvement with each other. In our
experimental evaluation we first apply the trajectory im-
provement steps until convergence, and afterwards apply the
phase improvement steps. Alternatively, one could also iterate
between the two steps. It is also possible to extend the motion
optimization part with other improvement steps that fit in the
Gauss-Newton framework.

VII. REINFORCEMENT LEARNING OVER θ WITH
UNKNOWN SUCCESS CONSTRAINTS

We introduce a black-box reinforcement learning method
to improve the policy with respect to the lower dimensional
parameter θ . The goal of this improvement strategy is to
optimize the black-box return function R(θ) under the success
constraint S(θ) so as to have a low amount of negative
interactions with the system. We use Bayesian optimization
to learn a binary classifier for the success constraint S(θ) and
a regression model for the return function R(θ). We propose
a new acquisition function a(θ) that combines both models
in such a way that the next policy is selected in a secure and
data-efficient manner.

We briefly introduce some background on Gaussian pro-
cesses and Bayesian optimization before introducing our rein-
forcement learning strategy.

A. Background on Gaussian Processes

For both function approximations we use Gaussian pro-
cesses (GP). The advantage of GPs is that they can express
a broad range of different functions and that they provide
probability distributions over predictions. A GP defines a prob-
ability distribution over functions [19]. We will first handle the
regression and afterwards the classification case.

A GP is fully specified by a mean function m(θ) and a
covariance function k(θ ,θ ′). In the regression case we have
data of the form {θ (i),r(i)}d

i=1 with inputs θ (i) ∈ Rm and
outputs r(i) ∈ R. Predictions for a test input θ? are given by
mean and variance

µ(θ ?) = m(θ ?)+ k>? (K +σ
2I)−1r (11)

V(θ ?) = k(θ?,θ?)− k>? (K +σ
2I)−1k? (12)

with k? = k(Ω,θ?), Gram matrix K with Ki j = k(θ (i),θ (j)), and
training inputs Ω = [θ (1), . . . ,θ (d)] with corresponding targets
r = [r(1), . . . ,r(d)]>.

In the binary classification case the outputs are discrete
labels s∈ {−1,1} and we have data of the form {θ (i),s(i)}d

i=1.
Here we cannot directly use a GP to model the output.
Therefore, the GP models a discriminative function g(θ)
which defines a class probability via the sigmoid function,

p(s = 1|θ) = σ(g(θ)). (13)

Since this likelihood is non-Gaussian the exact posterior over
g is not a Gaussian process—one instead uses a Laplace
approximation [16]. For more details regarding GPs we refer
to [19].

B. Background on Bayesian Optimization

Bayesian optimization [15] is a strategy to find the maxi-
mum of an objective function R(θ) with θ ∈ Rm, where the
function R(θ) is not known in closed-form expression and
only noisy observations r of the function value can be made
at sampled values θ . These samples are collected in a dataset
{θ (i),r(i)}d

i=1 that is used to build a GP model of R. The next
sample point θ (d+1) is chosen by maximizing an acquisition
function a(θ). There are many different ways to define this
acquisition function [3]. One widely used acquisition function
is the probability of improvement [14] that is defined as

PI f (θ) =P
(
R(θ)≥ R(θ+)

)
= Φ

(
µ(θ)−R(θ+)√

V(θ)

)
(14)

with θ
+ = argmax

θ∈{θ1,...,θd}
R(θ) (15)

where Φ is the cumulative distribution function of the nor-
mal distribution. We will make use of this probability of
improvement in our acquisition function and extend it for an
exploration in a safe manner.

C. Reinforcement Learning over θ

We want to improve the skill by optimizing the parameter θ

with respect to R(θ) under the success constraint S(θ) = 1. To
do this we collect data of the form D= {θ (i),r(i),s(i)}d

i=1 where

θ are the parameters, r is the return and s is the task outcome.
We use this data D to select the next sample θ (d+1). We use a
GP gR to model the return function R(θ) and a classifier σ(gS)
with GP gS to model the success function S(θ). The regression
GP contains only data points that are feasible and lead to task
success. The classification GP describes the feasible region of
all θ that lead to task success. This region is incrementally
explored with the goal to find the maximum R(θ) that leads
to task success.

For both GPs we use a squared exponential kernel function

k(θ ,θ ′) = σ
2
sf exp

(
− 1

2 (θ −θ
′)>Λ

−1(θ −θ
′)
)

(16)

where Λ = diag([l2
1 , l

2
2 , . . . , l

2
D]) is a matrix with squared length

scales and σsf is the signal standard deviation. In the regression
model gR we use a constant prior mean function of 0. For the
classification model gS we use a constant prior mean function
m(x) = c to incorporate knowledge that regions where no
data points are available yet the unfeasible class is predicted.
Therefore we select a constant c smaller than 0 that allows to
keep the exploration close to the region where data points are
available. We use gR and gS to define an acquisition function
that we use to select the next sample θ (d+1).

To select the next data point we introduce the acquisition
function

aPIBU(θ) = PIgR(θ) [gS(θ)≥ 0]+VgS(θ) [gS(θ) = 0] (17)

that combines the probability of improvement with a boundary
uncertainty criteria (PIBU). In Equation (17) [·] denotes the
indicator function. The first term describes the probability of
improvement (cf. Equation (14)) of gR in the inner region of
the classifier gS. The second term is the predictive variance
of the GP classifier gS on the decision boundary. The first
term focuses on exploiting improvement inside the feasible
region and the second term focuses on exploring safely on the
decision boundary.

After selecting the next sample θ
(j+1) by maximizing Equa-

tion (17), we compute the trajectory parameter

w(i+1) = argmin
w
||w?−w||2 s.t. h(w,θ (d+1)) = 0 (18)

where w? is the solution of the previous motion optimization
method (see Algorithm 1). The trajectory ξ (w(i+1), t) is exe-
cuted on the system and the observed return and task outcome
are added to the dataset D. This procedure is repeated until
convergence.

VIII. EXPERIMENTS

We evaluate our approach in two experiments. The first
experiment is a synthetic problem where we compare our pro-
posed CORL algorithm with alternative methods. The second
experiment is on a PR2 where we optimize the smoothness
and interaction forces for the task of opening a door.

Method Global optima
found

Number of
failures

Max distance
to safe region

PIBU 100/100 8.49±1.35 0.71±0.44
PoWER 67/100 8.36±5.91 1.34±0.43

UCB 97/100 14.53±1.07 1.48±0.11
CMA 77/100 7.74±4.41 1.28±0.35

CORL + PIBU 100/100 2.04±0.19 0.10±0.04
CORL + UCB 92/100 4.38±0.98 1.25±0.69
CORL + CMA 85/100 2.98±2.58 1.26±1.15
CORL + SAL 99/100 1.74±0.56 0.06±0.11

Fig. 1: Evaluation of CORL (see Section VIII-A)

A. Evaluation of CORL on a Synthetic Benchmark

In this evaluation we consider a synthetic benchmark prob-
lem to compare existing black-box RL algorithms with com-
binations of our CORL framework, including our proposed
PIBU aquisition function. We define the synthetic problem in
the form of Equation (5) with parameters w ∈ R2 and θ ∈ R.
The problem we optimize is defined by

• an analytic cost J(w) = (w2
1 +w2

2−1)2,
• a black-box return R(θ) =−0.5θ

2 + cos(3θ),
• a black-box success S(θ) = [−1.5 < θ < 2.5],
• and a projection constraint h(w,θ) = θ − atan

(
w1
w2

)
.

The total objective we want to minimize is J(w)−R(θ) under
the constraint that S(θ) = 1 (see Equation (5)). We limit the
search space to the region w ∈ [−1.5,1.5]× [−1.5,1.5]. This
problem has multiple local optima and a global optimum at
w? = (1,0) with a value of −1.

We compare two different type of algorithms with each
other. The first type uses the CORL framework we pro-
posed in this paper with different black-box reinforcement
learning algorithms (noted as CORL + <black-box-method>).
The second type are standard reinforcement learning meth-
ods that require a single reward objective and ignore the
generalized RL structure. To make this comparison possi-
ble we therefore define such a single reward objectives as
o(w) = (J(w)−R(θ)) [S(θ) = 1]+15 [S(θ) = 0]. Consistent
to our framework, the return and cost function can only be
observed for parameters that lead to success. For failures a
constant cost of 15 is received.

The evaluated algorithms are:

• PIBU: Bayesian optimization with PIBU (Equation (17))
• CMA: Covariance matrix adaptation [9] algorithm
• UCB: Bayesian optimization with the acquisition func-

tion upper confidence bound (UCB) [3]
• PoWER: Policy search algorithm [11]
• CORL + PIBU: Algorithm 1 with PIBU (Equation (17))
• CORL + UCB: Algorithm 1 with UCB
• CORL + SAL: Algorithm 1 with SAL [22]
• CORL + CMA: Algorithm 1 with CMA

Only the PIBU and SAL variants aim for a safe exploration
during the optimization process. Note that SAL assumes to
observe the distance to the feasibility boundary in critical (but
feasible) regions, which all other methods do not observe.

The optimization step in CORL is done with a Newton-
Algorithm with a maximum step size εmax = 0.001. Our PIBU
acquisition function used for the GP gR the hyperparameter
l = 0.4, σs f = 10 and σ = 0.11. For the classification GP gS
we set l = 0.4, σs f = 10 and a constant prior mean of −7.
We executed all algorithms on this problem from 100 different
initial parameters. The initial parameter are sampled uniformly
in the search region and fulfill the success constraint.

The table in Figure 1 shows the results over this experiment.
We compare the metrics:
• Global optima found: This metric describes how many

times the algorithm found the global optima w?.
• Number of failures: The number of parameters selected

by the algorithm that led to failure S(θ) = 0. All values
are given by mean and standard deviation.

• Max distance to safe region: The maximum distance
between all failure samples to the safety region. All values
are given by mean and standard deviation.

The best two algorithms are marked bold in the table in
Figure 1. The CORL + SAL method is as expected the safest
method with a mean of 1.74 failure samples—but recall that it
assumes it can observe the distance to the boundary in critical
regions, which ours does not. Our proposed methods CORL +
PIBU and PIBU always find the optimal solution and exhibits
a very low number of near-boundary failures even without
observing critical distance. The methods that do not take safety
into account reach higher number of failure samples (between
5 and 10) that are also located far away from the safety region.

B. Opening a Door with a PR2

In this experiment we address the task of opening a door.
Such kind of manipulation tasks are of special interest since for
the part of the motion where the robot is moving freely good
models are available but for the part where the robot interacts
with objects it is hard to obtain good models. This results
from the fact that the environment is usually not completely
known (e.g., object position, kinematic structure, physical
entities) and that knowledge about how the environment can
be manipulated into a certain state is not available.

The task setup is shown in Figure 2a. Starting from a
demonstration via kinesthetic teaching the robot improves the
task as much as possible. As analytic cost function J(w) we
use the sum of squared acceleration in configuration space of
the motion with the goal to reach a smooth motion. As black-
box return R(θ) we use the amount of force to open the door
measured with a force torque sensor at the robot wrist. The
success criteria S(θ) is a Boolean function that tells if the
door was opened successfully. For achieving an autonomous
learning we used markers on the door to measure if the door
is open and added a simple motion that closes the door after
each trial. This allowed the robot to perform the learning on
its own without human intervention.

The reference trajectory ξ (w, t) is parametrized by a B-
spline with 150 knot points in a 7 dimensional configuration
space that leads to 1057 parameter for the full policy w. As
lower dimensional parameter θ we define two parameters in

(a)

0 5 10 15 20 25

Motion Optimization Iterations

0

0.01

0.02

0.03

0.04

A
n

a
ly

ti
c
 C

o
s
t

J
(w

)

Demonstration

Trajectory Optimization

Phase Optimization

(b) (c)

Fig. 2: Door opening experiments (see Section VIII-B). The image in (a) shows the task setup of the PR2 opening a door.
The learning curve in (b) shows the improvement on the analytic cost function J(w) of the first step of Algorithm 1. The graph
in (c) shows the learned return function R(θ) with Bayesian optimization. Blue points denote successful rollouts, red points
denote failures and the magenta star is the best parameter found. The red line denotes the decision boundary of the classifier.

the contact space of the door handle. The first parameter is the
finger position on the handle relative to the demonstration. The
second parameter is the finger opening widths. The parameters
for the regression GP gR we used are l = 0.0417, σs f = 0.1682
and σ = 0.0120. For the classification GP gS we set l = 0.02,
σs f = 10 and a constant prior mean of −7. As stopping criteria
for Algorithm 1 we set εθ = 0.003 and εw = 10−5.

The results of the motion optimization are shown in Fig-
ure 2b. This figure shows how the motion optimization method
improves the squared acceleration of the trajectory with the
trust-region motion optimization methods (see Section VI).
Starting with a demonstration, first the trajectory optimiza-
tion is applied until convergence and afterwards the phase
optimization is applied until convergence. Between iteration
16 and 17 the reinforcement learning with respect to θ

was performed and converged after 40 iterations. Afterwards
another round of motion optimization is applied until the
change of policy parameters was below the threshold. The
results of the reinforcement learning in the lower dimensional
parameter space θ are shown in Figure 2c. The 40 rollouts of
the black-box Bayesian optimization consisted of 26 successes
and 14 failures. The blue dots are successful rollouts, the
red dots are failures and the magenta star shows the best
parameter. The red line denotes the classifier boundary. The
demonstration and learning process are shown in a video
https://www.youtube.com/watch?v=bn sv5A1BhQ.

We compared our proposed Bayesian optimization strategy
PIBU to CMA. CMA has been used previously to learn robot
skills [4, 20, 23]. We applied both methods on the same return
function R(θ) over 100 iterations. The results are shown in the
table in Figure 3. We use as performance measure the highest
return achieved during the 100 iterations, the failure rate with
the system and the maximum distance to the safety region.
All values are reported as mean and standard deviation over
four runs. It can be seen that CORL + PIBU reaches a lower
failure rate with a very low standard deviation. The failures
of PIBU are also close to the safety region than CMA. This
results from the fact that the boundary is explored with our
acquisition function (see Equation (17)). CORL + CMA also

finds a slightly worse policy than CORL. Both our method
and CMA operate on the low-dimensional parameterization θ

that we proposed with the CORL framework, exploiting the
combination with the analytic motion optimization.

Method Highest
return

Failure
rate

Max distance
to safe region

CORL + PIBU 0.45±0.032 0.157±0.021 0.0146±0.006
CORL + CMA 0.41±0.017 0.190±0.102 0.0358±0.030

Fig. 3: Comparison between CORL+CMA and CORL+PIBU
We tried other approaches that do not rely on this low-

dimensional projection and the combination with an analytic
motion optimizer: We performed experiments with DMP and
PoWER similar to [11]. For this we parameterized the shape
and goal of the DMP, leading to a 96 dimensional parameter
space. However, we could not achieve a noticeable learning
performance after 150 iterations. We assume that the black-
box return function that combines the amount of forces with
path smoothness is not informative enough for this large
parameter space. This reinforces the motivation for our general
approach of dissecting returns into high-dimensional analytical
and lower dimensional black-box parts.

IX. CONCLUSION

In this paper we introduced an approach to learning
manipulation skills using a structured reinforcement learn-
ing formulation. We proposed an algorithm that combines
high-dimensional analytic motion optimization and low-
dimensional black-box Bayesian optimization. A limitation of
our approach is that the choice of h is non-trivial and requires
domain knowledge. We discussed a way of choosing h for
manipulation tasks where we assumed that the contact points
are fixed on the object. An extension for sliding contacts
is still an open research question. Another limitation is the
generalization ability of the current approach. So far we
focused on a trajectory representation for a single scenario.
In future research we will investigate the learning of more
general skill representations (e.g., cost function) by combining
it with inverse optimal control [5].

https://www.youtube.com/watch?v=bn_sv5A1BhQ

REFERENCES

[1] Felix Berkenkamp and Angela P Schoellig. Safe and
robust learning control with Gaussian processes. In
Proceedings of European Control Conference, 2015.

[2] Dimitri P Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, 2001.

[3] Eric Brochu, Vlad M Cora, and Nando De Freitas.
A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv:1012.2599,
2010.

[4] Andreas Doerr, Nathan Ratliff, Jeannette Bohg, Marc
Toussaint, and Stefan Schaal. Direct loss minimization
inverse optimal control. In Proceedings of Robotics:
Science and Systems, 2015.

[5] Peter Englert and Marc Toussaint. Inverse KKT –
Learning Cost Functions of Manipulation Tasks from
Demonstrations. In Proceedings of the International
Symposium of Robotics Research, 2015.

[6] Jacob Gardner, Matt Kusner, Zhixiang Xu, Kilian Wein-
berger, and John Cunningham. Bayesian optimization
with inequality constraints. In Proceedings of Interna-
tional Conference on Machine Learning, 2014.

[7] Michael A Gelbart, Jasper Snoek, and Ryan P Adams.
Bayesian optimization with unknown constraints. In
Uncertainty in Artificial Intelligence, 2014.

[8] Robert B Gramacy and Herbie K H Lee. Optimization
under unknown constraints. In Bayesian Statistics, vol-
ume 9, page 229. Oxford University Press, 2011.

[9] Nikolaus Hansen and Andreas Ostermeier. Completely
derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

[10] Mrinal Kalakrishnan, Ludovic Righetti, Peter Pastor,
and Stefan Schaal. Learning force control policies for
compliant manipulation. In International Conference on
Intelligent Robots and Systems, 2011.

[11] Jens Kober and Jan Peters. Policy Search for Motor
Primitives in Robotics. Machine Learning, pages 171–
203, 2011.

[12] Jens Kober, J. Andrew Bagnell, and Jan Peters. Rein-
forcement learning in robotics: A survey. International
Journal of Robotics Research, 2013.

[13] Andras G Kupcsik, Marc P Deisenroth, Jan Peters, and
Gerhard Neumann. Data-efficient generalization of robot
skills with contextual policy search. In Proceedings of
the National Conference on Artificial Intelligence, 2013.

[14] Harold J Kushner. A new method of locating the
maximum point of an arbitrary multipeak curve in the
presence of noise. Journal of Fluids Engineering, 86(1):
97–106, 1964.

[15] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas.

The application of Bayesian methods for seeking the
extremum. Towards Global Optimization, 2(117-129),
1978.

[16] Hannes Nickisch and Carl Edward Rasmussen. Ap-
proximations for binary Gaussian process classification.
Journal of Machine Learning Research, 9(10), 2008.

[17] Jorge Nocedal and Stephen J. Wright. Numerical Opti-
mization. Springer, 2 edition, 2006.

[18] Jan Peters, Katharina Mülling, and Yasemin Altun. Rel-
ative entropy policy search. In Proceedings of the
Conference on Artificial Intelligence, 2010.

[19] Carl Edward Rasmussen and Christopher K I Williams.
Gaussian Processes for Machine Learning. MIT Press,
2006.

[20] Elmar A Rückert, Gerhard Neumann, Marc Toussaint,
and Wolfgang Maass. Learned graphical models for
probabilistic planning provide a new class of movement
primitives. Frontiers in Computational Neuroscience, 6,
2013.

[21] Matthias Schonlau, William J Welch, and Donald R
Jones. Global versus local search in constrained opti-
mization of computer models. Lecture Notes-Monograph
Series, pages 11–25, 1998.

[22] Jens Schreiter, Duy Nguyen-Tuong, Mona Eberts, Bas-
tian Bischoff, Heiner Markert, and Marc Toussaint. Safe
Exploration for Active Learning with Gaussian Pro-
cesses. In Proceedings of the European Conference
on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, 2015.

[23] Freek Stulp and Olivier Sigaud. Robot skill learning:
From reinforcement learning to evolution strategies. Pal-
adyn, Journal of Behavioral Robotics, 4(1):49–61, 2013.

[24] Freek Stulp, Olivier Sigaud, and Others. Policy im-
provement methods: Between black-box optimization
and episodic reinforcement learning. Journées Franco-
phones Planification, Décision, et Apprentissage pour la
conduite de systèmes, 2013.

[25] Yanan Sui, Alkis Gotovos, Joel W Burdick, and Andreas
Krause. Safe exploration for optimization with Gaussian
processes. In Proceedings of International Conference
on Machine Learning, 2015.

[26] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal.
A generalized path integral control approach to reinforce-
ment learning. Journal of Machine Learning Research,
11:3137–3181, 2010.

[27] Marc Toussaint. Newton methods for k-order Markov
constrained motion problems. arXiv:1407.0414 [cs.RO],
2014.

[28] Rok Vuga, Bojan Nemec, and Ales Ude. Enhanced
policy adaptation through directed explorative learning.
International Journal of Humanoid Robotics, 12(03),
2015.

	Introduction
	Related Work
	Policy Search in Robotics
	Bayesian Optimization with Constraints
	Safe Exploration
	Combined Learning Approaches

	Background on Optimal Control and Episodic Reinforcement Learning
	Combined Optimization and Reinforcement Learning
	CORL for Robotic Manipulation Skills
	Policy Parametrization bold0mu mumu ww2005/06/28 ver: 1.3 subfig packagewwww
	Assumed Projection Constraint h(bold0mu mumu ww2005/06/28 ver: 1.3 subfig packagewwww,bold0mu mumu 2005/06/28 ver: 1.3 subfig package) for Manipulations

	Motion optimization for fixed
	Trust-region Policy Improvement
	Optimizing Smoothness and Phase Profile

	Reinforcement learning over with unknown Success Constraints
	Background on Gaussian Processes
	Background on Bayesian Optimization
	Reinforcement Learning over

	Experiments
	Evaluation of CORL on a Synthetic Benchmark
	Opening a Door with a PR2

	Conclusion

