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Partial observability poses a major challenge for a reinforcement learning agent since the complete
history of observations may be relevant for predicting and acting optimally. This is especially true in the
general case where the underlying state space and dynamics are unknown. Existing approaches either
try to learn a latent state representation or use decision trees based on the history of observations. In this
paper we present a method for explicitly identifying relevant features of the observation history. These
temporally extended features can be discovered using our PULSE algorithm and used to learn a compact
model of the environment. Temporally extended features reveal the temporal structure of the environ-
ment while empirically outperforming other history-based approaches.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

In most real-world environments the true (Markov) state can-
not directly be observed. For instance we only perceive blurred
figures in a haze and cannot discern whether a door is locked or
not. This implies that any observation from the past may be rele-
vant in predicting the future and acting optimally. If the under-
lying latent state space and its dynamics are known – like the fact
that a door can be locked using a key – this can be exploited, for
instance, by using belief states [1]. However, frequently even this
information is not available. In this general case, which is our
concern in this paper, classical methods for partially observable
Markov decision processes (POMDPs) that assume the underlying
MDP to be known are not applicable. In this situation, we may
either try to identify a latent state space that is sufficient for
predicting or acting optimally – as done when learning a predictive
state representation [2] or a finite state controller [3] – or directly
work with the given history of observations, as context tree
methods [4–7] do.

Apart from noisy observations, such as a robot with noisy
sensor data, a particularly relevant cause for partial observability
are delayed causalities, which means that we only observe the
effect of an action while the chain of events leading to this
observation remains hidden. In this case, which will be in our
(R. Lieck).
focus in this paper, distinct events in the past lead to a specific
observation in the future – like switching on the electric kettle
leads to boiling water at a later time. This is a scenario of practical
relevance, for instance, for household robots, and the key chal-
lenge is to identify and represent these delayed causalities based
on the observed history.

The aim of our work described in this paper is to find a small
set of distinct history-based features that gives structural insight
by making this temporal structure explicit and accessible, and
allows an intuitive integration of prior domain knowledge – an
important means to improve autonomous artificial agents. Since
an explicit representation of the temporal structure is not possible
when it is concealed within the dynamics of a latent state space
we focus on history-based approaches.

Our main contribution is the definition of temporally extended
features and the associated learning algorithm PULSE (Periodical
Uncovering of Local Structure Extensions) on a common basis by
using a generating operation Nþ that spans a space of features
with increasing complexity and temporal extent tailored to
represent delayed causalities. We provide convergence guarantees
and use PULSE for solving partially observable domains in a model-
based and model-free fashion showing that, in terms of achieved
rewards as well as the number of required features, our model-
based agent outperforms existing methods.

In the course of this paper, we will first establish the connec-
tion to related work on context trees, and feature expansion and
selection in Section 2. We will then introduce our method by
defining temporally extended features, describing our discovery
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algorithm PULSE in detail, and discussing convergence properties
and the richness of the generated representation in Section 3. In
Section 4, we show how PULSE can be used to train reinforcement
learning agents. Finally, we discuss our empirical evaluations in
Section 5 and conclude with Section 6.
1 The process of choosing features to include into the final set is also called
forward selection of features, whereof feature expansion is a special case.
2. Related work

Since we cannot cover the whole breadth of approaches to
solving problems with partial observability we once again expli-
citly state what our focus is on:

Non-MDP versus POMDP: We are dealing with problems where
the underlying MDP is not known, that is, we are not
dealing with classical POMDP problems. While this kind
of problem is frequently subsumed under the term
“POMDP” we think it would actually be more appro-
priately described by the term non-Markov decision
process (non-MDP) since with respect to the observa-
tions these problems are non-Markov and the potential
existence of an underlying MDP is purely hypothetical. In
non-MDP problems any methods that assume the
underlying MDP to be known – specifically all methods
relying on belief states [1] – are not applicable.

History-based: We focus on history-based approaches because we
think in many cases these reveal the structure of the
non-MDP more clearly than approaches that learn
dynamics in a latent state space. Specifically, this
excludes methods like predictive state representations [2]
or finite state controller [3].

Feature-based: We focus on feature-based approaches for the
same reason. Even from an exceedingly well performing,
say, recurrent neural network (RNN) it is often difficult to
draw deeper insights into the problem structure. While
the branch or research on RNNs applied to reinforcement
learning [see e.g. [8]] is highly interesting we will for this
reason not discuss these approaches here.

Model-based: While we also present a model-free reinforcement
learning (RL) agent and compare against a model-free
method, our focus clearly is on model-based RL. There are
various arguments concerning the general choice between
model-based versus model-free RL. The most popular one
in favor of model-free RL is that learning a value function is
less complex than learning a complete model so that
learning rates may be better. The most popular argument
in favor of model-based RL is that the transition model is
independent of the reward model so that model-based RL
generally performs better in case of changing reward
functions, that is, in transfer learning where different tasks
are to be fulfilled in the same or a closely related envir-
onment. We do not intend to joint this general discussion
but rather have another, more specific reason to focus on
model-based methods, namely that – again – a learned
model frequently reveals a more structured insight into the
given problem than a value function.

2.1. Context trees

Existing history-based approaches use context trees [4–7] to
build a decision tree such that any given history can be associated
to a specific leaf node. Based on this classification additional
learning steps are performed. Specifically we will use the utility
tree (U-Tree) algorithm [5] as a reference method in our
evaluations. In its original version U-Tree is a model-free method.
The leaf nodes take the role of an abstract state to learn an action
value function using standard Q-iteration [see for instance [9]].
Learning the action values is interleaved with expanding the
decision tree where the Kolmogorov–Smirnov test is used to find
the expansion that best discriminates the distribution of action
values. U-Tree is easily modified to become model-based, which
we do in order to also have a model-based comparison method.
The difference is that instead of learning the action value we learn
a prediction for the next observation and reward and therefore
replace the Kolmogorov–Smirnov test with the chi-square test. To
differentiate the two U-Tree versions we write U-Tree (value) or U-
Tree (model) from now on. Note, that in both U-Tree versions the
classification of histories into leaf nodes, while being sufficient for
predicting the action values or the next observation and reward,
respectively, is not sufficient for predicting the leaf node in the
next time step. The leaf nodes thus do not represent the Markov
state of the environment even though for U-Tree (model) we can
predict the dynamics based on the current history.

Context tree methods and our proposed temporally expanded
features have in common that atomic basis features of the history
are used. In context trees each internal node corresponds to such a
basis feature while in our method we combine multiple basis
features to more complex ones (see Section 3 for the details).
A closer comparison reveals three major differences:

Feature values: When building a decision tree, the employed basis
features have to return discrete output values. This is
necessary even if their inputs (i.e. the observations) may be
of arbitrary type. In contrast, for our method we use a
weighted sum of features allowing for general scalar valued
feature outputs, which could not be used in a decision tree.

Descriptive power: Even if using only discrete basis features a set
of n temporally extended features still has an exponen-
tially larger descriptive power than a decision tree with n
leaf nodes (cf. Section 3.5). This is because multiple fea-
tures can be active at once in arbitrary combinations
where in a decision tree the classification into leaf nodes
is mutually exclusive.

Flexibility: A common problem, for instance, in transfer learning
tasks or with changing environments, is to adapt an
existing model to new data without starting to learn from
scratch. In this situation it might be beneficial to drop or
change only part of a model. With a decision tree this may
become cumbersome since, for instance, changing an
internal node influences many leaf nodes at once. In
contrast, in a set of temporally extended features we may
easily modify or drop one or more features as needed. In
fact, this is an inherent part of our learning algorithm
PULSE, which restructures the feature set by growing and
shrinking it throughout the learning process.

2.2. Feature expansion

Feature expansion techniques were successfully applied to
learn (conditional) random field models for text [10,11] and, in
reinforcement learning, for linear approximations of the value or
transition function [12,13].

The idea of feature expansion is to successively build an
increasingly large feature set by using a set of simple basis features
and combining them to form more complex features.1 The basis
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features are usually binary features that are combined via logical
conjunctions to form more complex (again binary) features. This
approach is particularly useful if applying feature selection (see
Section 2.3) based on the complete feature set is impossible
because the number of features is infinite or too large for practical
purposes. To construct a feature set with feature expansion, at any
time a relatively small set of candidate features is maintained.
These candidate features are scored to decide which ones are
included in the final set. Since the scoring method alone deter-
mines which features are included it is the crucial part in all fea-
ture expansion methods.

If the feature weights are optimized “offline” (that is, for a fixed
data set as e.g. in [10,11]) a candidate feature can be scored by
temporally including it into the set, then optimizing its weight
(while keeping the other weights fixed to speed up the process),
and using the increase in data likelihood as score value. The
highest scored features are then successively included to build the
final feature set.

If the feature weights are incrementally adapted in an “online”
setting (that is, as new data are continuously coming in as e.g. in
[12,13]) the feature scores, too, are updated in each step. To this
end, the score of all “active” candidate features (that is, those that
would change the model for the current data point if they were
included) is incremented by some error metric of the current
model – like the temporal difference error in value function
approximation. Candidate features are added to the final feature
set as soon as their score surpasses a fixed threshold.

The approach we present in this paper can be seen as a kind of
feature expansion method since we also construct complex fea-
tures from simple basis features. However, there are two major
difference with respect to existing feature expansion methods:

1. Existing methods comprise two separate parts, one for includ-
ing candidate features – the scoring heuristic – and one for
learning the feature weights of the resulting feature set, which
follows an objective that is distinct from the scoring method.

2. Existing methods grow a feature set of increasing size without
providing a sound mechanism for removing existing features in
case they turn out to be sub-optimal.

We address both issues at the same time by including and
excluding features solely based on the objective function that is
also used to learn the model. The resulting advantage over existing
feature expansion methods is that we do not need to come up
with a scoring heuristic that may be inconsistent with the
objective function and our method may produce smaller feature
sets by excluding superfluous features.

2.3. Feature selection

The idea of feature selection is to start with a large feature set
that contains all features possibly being relevant and then suc-
cessively remove features.2 The most common way of finding
features to remove is to use an L1-regularized objective and to
remove all features that end up having zero weight after the
optimization. In terms of the general idea, most closely related to
our work is the strand of research on L1-regularized temporal
difference learning [14–18] that mostly deals with the question of
how to efficiently optimize the L1-regularized objective.

The main difference in our approach is that we cannot apply
feature selection to our problem in a “brute-force” manner
2 In this paper, we use the term feature selection in this specific sense, which is
also called backward selection of features and must not be confused with forward
selection methods, such as feature expansion.
because we have intractably large or even infinite feature sets and
can therefore not start with a complete feature set containing all
possible features. Instead we use feature selection as a subroutine
to discard some of the candidate features in a way that makes both
the overall algorithm as well as the feature selection step more
efficient (see Section 3.2 for the details).

To sum up, one can say that our PULSE algorithm joins the
concepts of feature expansion and feature selection on a common
basis by using an expansion operation Nþ in conjunction with an
L1-regularized objective to both grow and shrink the feature set in
each iteration. As a result the shortcomings of both approaches –

growing indefinitely large feature sets and using a possibly
inconsistent scoring heuristic for feature expansion; having to solve
intractable optimization problems due to huge initial feature sets
for feature selection – are solved or at least mitigated.
3. Discovering temporally extended features

3.1. Temporally extended features

In a non-Markov decision process the next observation oAO
and reward rARDR depends not only on the last action aAA but
also on the entire history hAH up to that point, where H¼
ðA �O�RÞn is the set of all possible sequences of action-
observation-reward triplets. The set T of temporally extended fea-
tures then is the infinite set of all maps

T ≔ H-Rf g ð1Þ
from histories to the real numbers. Since in its generality this set is
of little avail we will in practice always work with a subset T N þ

DT that is generated by an operation

Nþ : PðT Þ-PðT Þ ð2Þ
where PðT Þ is the power set of T . That is, Nþ takes a subset of T
and returns another subset of T . More precisely, T N þ then is the
smallest subset of T that is closed under applying Nþ on any of its
subsets

T N þ ≔min F 0DT j 8F ″ DF 0Nþ ðF ″ÞDF 0� �
: ð3Þ

This definition reflects the workings of our PULSE algorithm
(detailed in Section 3.2), which shapes the feature set by per-
forming an expansion operation using Nþ and a selection opera-
tion using the objective function in an alternating manner. In Eq.
(3), the min-operation originates in the fact that PULSE starts with
an empty features set; the universal quantifier 8F ″ DF 0 is due to
the fact that the subset F ″ selected by optimizing the objective
function is not known in advance; and Nþ ðF ″Þ corresponds to the
expansion of F ″ based Nþ . While T N þ may still be infinitely large,
at any time PULSE will only use a finite subset (provided Nþ is
suitably defined, as detailed in the next section), so that tempo-
rally extended features become practically applicable.

3.1.1. Defining Nþ

In our PULSE algorithm Nþ takes the role of the feature expan-
sion operation by using Nþ ðF Þ as the set of new candidate features
for a given set F . The only general requirement therefore is that
Nþ ðF Þ be a finite set. The specific choice for Nþ may depend on
the problem at hand as well as the specific learning method (i.e.
the kind of model and objective) being used. As already mentioned
in the introduction we will focus on delayed causalities as the
source of partial observability. This means that if we aim at pre-
dicting a specific observation we expect large parts of the history
to be irrelevant and having to take only single, distinct events into
account – the events that actually cause the observation. In our
definition of Nþ we therefore adopt the approach of feature
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expansion methods and use a set of basis features B with each
basis feature indicating whether a specific event took place in the
past. In our case an “event” is the occurrence of a specific action,
observation, or reward at a specific point in time. For a given
feature set F , Nþ now constructs a set of candidate features as
conjunctions of an existing feature f AF and a basis feature bAB,
that is,

Nþ ðF Þ ¼ gAT j ( f AF
bA B

: g ¼ f 4b
n o

: ð4Þ

B is formally defined as

B¼ BA [ BO [ BR with

BA ¼ f a0 ;tAT j(a0 AA;tAZ�
0

f a0 ;t ¼ Iða0;h½a;t�Þ
n o

BO ¼ f o0 ;tAT j(o0 AO;tAZ�
0

f o0 ;t ¼ Iðo0;h½o;t�Þ
n o

BR ¼ f r0 ;tAT j( r0 AR;tAZ�
0

f r0 ;t ¼ Iðr0;h½r;t�Þ
n o

ð5Þ

where Ið� ; �Þ is the indicator function that takes a value of one if
the two arguments are equal and zero otherwise, and h½a;t�, h½o;t�
and h½r;t� denote the action, observation and reward at time t in
history h. That is, for instance, feature f a;t indicates whether action
a was performed at time t, where t ¼ �2 would refer to entries
two time steps ago and t¼0 to the action (or hypothetical obser-
vation or reward) that is about to come next.

There are some special cases and additional details to consider:

Gradual temporal extension: To introduce a bias towards the near
past and obtain a finite set of candidate features Nþ only
uses basis features that go one step further into the past
than the existing features. That is, if we always added all
candidate features to our set and performed n iterations
of feature expansion we would look n steps farther into
the past.

Fixed horizon: If we know that looking back k steps into the past is
enough for optimal performance (as is the case in our
experiments in Section 5) we put a hard constraint of
tmin ¼ �k on the basis features.

Empty feature sets: If the current feature set is empty Nþ cannot
form conjunctions to use as candidate features and
instead returns all basis features separately.

Model type: Depending on what we aim to learn using the tem-
porally extended features the basis features with time
index t¼0 need to be treated in a special way. These
basis features indicate the next action, observation, and
reward – the action being chosen by the agent and the
observation and reward being the hypothetical response
of the environment. If we learn a probabilistic model all
basis features with t¼0 are needed. If, on the other hand,
we learn an approximation of the action value function
only action features with t¼0 are allowed. And in the
case of U-Tree, which we use as comparison method
with the same basis features, features are only used to
classify the history, that is, basis features with t¼0 are
not used at all.

Note that the definition of Nþ plays a crucial role since at this
point most of the prior knowledge enters the method. It is also a
necessary step in order to tame the complexity of the general set
of temporally extended features. In our case it is the assumption of
partial observability and, more specifically, delayed causalities
which led us to our definition of Nþ via basis indicator features.
However, our learning algorithm PULSE (described below) will
equally well work with any other definition of Nþ . Carefully
choosing a definition for Nþ is thus the most important means to
tailor PULSE to a specific domain.
Algorithm 1. The PULSE algorithm.
ut: Nþ ;O;D

tput: F , Θ
Initialize: F’∅, Θ’∅
repeat

GROW F ;Θ;Nþ

Θ’argminΘ OðF ;Θ;DÞ
SHRINK F ;Θ.

until O did not change
return F ;Θ
function GROW F ;Θ;Nþ

Initialize: F þ’Nþ ðF Þ
for all f AF þ do
if f =2F then
Θf’0

end if
end for
F’F [ F þ

end function
function SHRINK F ;Θ

for all f AF do
if Θf is 0 then

: F’F⧹f
end if

: end for
: end function
23
3.2. The PULSE algorithm

The idea of PULSE is to exploit the structure that Nþ defines on
the feature set T N þ to explore the local vicinity of the current
feature set F . Intuitively, in each iteration we add all candidates
Nþ ðF Þ to F , then optimize the L1-regularized objective, and
remove any zero-weight features. This leads to a pulsating
dynamic of the feature set, guided by Nþ and the objective,
driving F towards an optimum. The PULSE algorithm is detailed in
Algorithm 1. The main loop consists of

� growing the feature set using Nþ and assigning zero weight to
any new features (line 3)

� optimizing the objective function O with respect to the feature
weights Θ given the current feature set F and data D (line
4), and

� shrinking F by eliminating any zero-weight features (line 5).

The crucial step is the optimization of the feature weights (line 4)
that effectively determines which features are kept and which
ones are removed. For a good performance of PULSE the objective
function O should fulfill two properties

1. to retain convergence guarantees (details in Section 3.3) fea-
tures with zero weight should not affect the objective value

2. to keep the overall feature set sparse argminΘOðF ;Θ;DÞ should
be sparse, too, that is, after optimizing O many Θf should
be zero.

O can otherwise be chosen freely. Property 1 also implies that
zero-weight features may be treated separately and the objective
function may in many cases be computed more efficiently.

3.2.1. Optional use of scoring functions
First adding all candidate features and then removing some of

them might seem wasteful compared to greedily adding single
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candidate features by using a scoring function, as classical feature
expansion methods do. Note, however, that these “bad” candidate
features are added with zero weight and are then removed
because their weight was not changed in the optimization step
(line 4 in Algorithm 1). That is, their weight was already at the
optimum initially. The number of iterations in the optimization
step, when using e.g. gradient descent methods, is thus solely
determined by the non-zero-weight features we are actually
interested in.

Nevertheless, if we wish to further reduce the dimensionality
and speed up the optimization it is still possible to additionally use
a scoring function to limit the growth of the feature set before
optimizing the weights. It is important to note that a scoring
function, when used with our method, takes a completely different
role compared to classical feature expansion methods. Its purpose
now is solely computational speed-up via pre-selecting candidate
features whereas the final say on inclusion of candidates lies with
the objective function. In contrast to the Nþ operation a scoring
function has the advantage of taking the data into account but it
may also be inconsistent with the objective function (as already
mentioned in Section 2.2). On the other hand, these incon-
sistencies are not as grave with our method because of the dif-
ferent role of the scoring function, which may now be chosen
rather permissive without impairing the final result of the selec-
tion process. We had positive experience with using the gradient
of the unregularized objective as score in conjunction with a
threshold corresponding to the L1-regularization coefficient. This
has the effect that candidate features that would in a first gradient
descent step not become non-zero are not added in the first place.
However, the amount of speed-up depends a lot on the specific
objective and optimization method. For our experiments in
Section 5 we did not use a scoring function.

3.3. Convergence guarantees

Optimality of the feature weights (line 4 in Algorithm 1)
entirely depends on the objective and optimization method and is
thus outside the realm of the PULSE algorithm itself. We will
therefore assume that the globally optimal feature weights can
always be found (which is for instance the case in our experi-
ments) and focus on convergence of the features set.

PULSE is guaranteed to converge to a locally optimal feature set
provided the objective fulfills condition 1 from above (zero-weight
features must not change the objective value). In that case the
objective value is retained across iterations despite adding and
removing features so that the optimization step greedily improves
the objective. A globally optimal feature set can be guaranteed
under certain conditions, too. To see this, we first define the
transition graph of PULSE:

Definition 1. The transition graph GðNþ ;O;DÞ of PULSE for a specific
expansion operation Nþ , objective function O, and data D is
defined as

GðNþ ;O;DÞ≔ PðT N þ Þ; Agrow [ Ashrink
� � ð6Þ

with

Agrow≔ F ;F [ Nþ ðF Þ� �jFDT N þ
� � ð7Þ

Ashrink≔ F [ F 0;Fð Þj f AF 03Θn

f ¼ 0
n o

ð8Þ

Θn ¼ argminΘOðF [ F 0;Θ;DÞ ð9Þ
where PðT N þ Þ is the power set of T N þ .

That is, the vertices of G are subsets of T N þ while Agrow and Ashrink

describe the grow and shrink step of PULSE as arcs in this transition
graph. There are two necessary and sufficient conditions for PULSE

to converge globally:

1. there exists an alternating route of grow- and shrink-arcs in G
from the initial feature set to the globally optimal feature set

2. the objective function improves strictly monotonically along
this route so that PULSE does not stop prematurely.

Note that such a route is unique since a vertex in G may have any
number of incoming arcs but has exactly two outgoing arcs, one in
Agrow and one in Ashrink.

We can prove global convergence for a specific class of pro-
blems that is highly relevant for delayed causalities. This is the
problem of predicting a future event y that depends on a number
of past events x1;…; xn. To expand on our example from above,
consider that whether you will be able to open a closed door may
depend on preconditions such as “putting the key in the lock and
turning it and pushing the handle and pulling”.

Definition 2. A binary random variable yAf0;1g is a conditional
event with independent preconditions x1;…; xnAf0;1g if and only if

pðy¼ 1jx1;…; xnÞ ¼
py if x1 ¼ 14…4xn ¼ 1
py else

(
ð10Þ

pyapy ð11Þ

pðy; x1;…; xnÞ ¼ pðyj x1;…; xnÞpðx1Þ⋯pðxnÞ ð12Þ

8 xi0opðxiÞo1: ð13Þ

In the special case where py¼1 and py ¼ 0 the preconditions are
each strictly necessary and jointly sufficient for y to occur.

Definition 3. For a conditional event y with preconditions x1;…;

xn the optimal k-predictor using preconditions x1;…; xk is

πkðy; x1;…; xnÞ≔
X

x1 ;…;xk

pðyjx1;…; xnÞpðx1Þ⋯pðxkÞ: ð14Þ

Definition 4. The quality of a predictor π for a conditional event y
with preconditions x1;…; xn is

qðπÞ≔E πðy; x1;…; xnÞ½ �pðy;x1 ;…;xnÞ ð15Þ
where E½��p is the expected value for a distribution p.

Theorem 1. For a conditional event y with preconditions x1;…; xn if

1. using Nþ as defined in Eq. (4)
2. the basis feature set B contains indicator features for x1;…; xn and y
3. optimizing the objective function O for a feature set F containing

multiple k-fold conjunctions produces a predictor with a quality
equal to the best corresponding optimal k-predictor and assigns a
non-zero weight to that conjunction

4. the objective function O is a strictly monotone function of the
predictor quality

then PULSE converges to the globally optimal feature set in at most
n� i iterations for an initial feature set containing at least one i-fold
conjunction of preconditions.

Proof (sketch). Using Nþ as defined in Eq. (4) – assumption
1 – means that grow-arcs in the transition graph G will add all
possible extensions of existing conjunctions with any basis feature.
That is, by assumption 2, if F contains some k-fold conjunction of
preconditions then, as long as kon, Nþ ðF Þ will contain at least
one kþ1-fold conjunction generated by extending the existing
conjunction. Furthermore, we can show that extending a k-pre-
dictor to a kþ1-predictor by adding one precondition strictly
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improves the quality (see Appendix A for the proof). Therefore, by
assumption 3, the quality of the learned predictor improves as
long as kon. Assumption 4 assures that PULSE does not terminate
as long as this is the case.

Altogether, as long as kon, for a feature set F k containing at
least one k-fold conjunction of preconditions the outgoing grow-
arc leads to a feature set F kþ1 with at least one kþ1-fold con-
junction while the shrink arc retains this conjunction. By induction
the highest-order conjunction therefore grows in each iteration
until reaching the globally optimal feature set with the full
(unique) n-fold conjunction of preconditions. This establishes the
alternating route with strictly monotonically improving objective
required for global convergence of the feature set. □

If global convergence cannot be guaranteed in this manner for
the specific Nþ and objective being used it is of course possible to
use stochastic methods like simulated annealing [19,20] (within
both Nþ as well as the optimization of the objective) that still
guarantee asymptotic convergence to the global optimum. This,
however, is a much weaker guarantee and may heavily impair the
empirical performance.

3.4. Richness of the representation

The generated representation entirely depends on the defini-
tion of Nþ so that general statements cannot be made. However,
the specific definition of Nþ suggested in Section 3.1.1 generates a
set of temporally extended features that has a descriptive power
similar to that of a tabular k-MDP representation (that is, using the
last k observations as state representation).

If using a fixed horizon of tmin ¼ �k and no gradual temporal
extension PULSE generates a feature set with the same descriptive
power as a tabular k-MDP representation after k iterations. If using
gradual temporal extension, after running PULSE for n iterations the
features reach back n steps into the past and after n¼ kþjOj
iterations they have a descriptive power at least as high as a k-
MDP representation, where jOj is the number of possible
observations.3 If additionally using a fixed horizon it is strictly
equal to a k-MDP representation otherwise it is higher because we
have additional features (with lower-order conjunctions) reaching
even farther into the past. All this assumes that the regularization
part of the objective does not eliminate the corresponding
features.

In general, PULSE can be used with any Nþ that produces finite
sets of candidate features Nþ ðF Þ. This provides a powerful fra-
mework that can be extended in various ways beyond what is
presented in this paper. Some examples that we think would be
worth exploring are:

Continuous observations and time: For continuous observations
Nþ could use the tensor product (outer product) of basis
functions in different observation sub-spaces to select a
sparse subset of basis functions for the whole observa-
tion space. For instance, combining plane waves in x-, y-,
and z-direction would produce the Fourier basis for 3D-
space. In case of continuous time, the basis features
could be basis functions in the temporal dimension for
each possible observation. A combination of both would
be possible, too.

Towards latent state representations: If features are not computed
from the current history but instead updated in every
time step we move from a history-based approach
3 We use the term “observation” here in a general sense in that it may include
the action and reward, too.
towards learning a latent space representation. Finite
state machines and their continuous generalization,
multiplicity automata [21], provide suitable building
blocks that could be recombined by Nþ . Another option
would be structure learning in deep recurrent neural
networks (RNNs) by using smaller RNNs as building
blocks. Which choice of Nþ could generate, for instance,
a set of temporally extended features equivalent to k-
order predictive state representations [2] is an interest-
ing non-trivial question.

3.5. Comparison to decision trees

A decision tree can be converted into a corresponding set of
binary temporally extended features, as illustrated in Fig. 1 for the
case of binary basis features. For a k-valued basis feature in the
decision tree the temporally extended features will instead use k
binary indicator features, one for each possible outcome, within
their basis features. After the conversion, there is a one-to-one
correspondence between leaf nodes and temporally extended
features such that at any time exactly one temporally extended
feature is active (true), which corresponds exactly to the classi-
fication of the decision tree. That is, a decision tree with n leaf
nodes becomes a set of the same size.

In contrast, converting a set of temporally extended features
into a decision tree is only possible if the temporally extended
features are discrete but not for real-valued features. For such a
conversion, the temporally extended features themselves (not their
basis features) need to be used in the decision tree so that each
possible assignment of feature values is represented by a separate
leaf node. This means that a set of n binary features becomes an
exponentially larger decision tree with 2n leaf nodes.

In that sense, temporally extended features have a higher
descriptive power than decision trees. This is also the reason why
Fig. 1. Transforming a binary decision tree into a set of temporally extended fea-
tures: for each leaf node we build one temporally extended feature. For all nodes on
the path from the root node to the corresponding leaf node we take the conjunc-
tion of the corresponding basis features fi or their negation f i , respectively.



Fig. 2. 2�2 Maze (1600 k-MDP states, 12 latent states): on the left the maze was “unrolled” for a successful activation and collection of the single reward, which has a delay
of Δt ¼ 2 and is depicted by the red arrow. The two plots on the right show the mean reward with standard error of the mean for the tested methods (see text for details and
the web version of this paper for interpretation of the references to color).
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the conversions between decision trees and sets of temporally
extended features are not inverse to each other – transforming a
decision tree into a set of temporally extended features and simply
back again results in a blown up version of the decision tree.
4. Reinforcement learning with PULSE

In the preceding section we described the workings of our PULSE
algorithm in general. In this section we describe more concretely
how PULSE can be used in a reinforcement learning agent. We
already gave a definition for Nþ in Section 3.1.1 that is tailored to
the kind of problem we are dealing with – delayed causalities. The
second important ingredient is the objective function, which
depends on the kind of agent we aim to train. We will present the
two agents that we used in our experiments, one model-based and
one model-free.

4.1. Model-based agent (TEFþCRF)

For our model-based agent we use temporally extended fea-
tures in conjunction with a conditional random field (CRF) [22,23]
to learn a predictive model of the environment. We refer to this
agent as TEFþCRF. The CRF models the conditional probability for
the next observation and reward given the current history and
action. It is a log-linear model of the form

pðo; r jh; aÞ ¼ 1
ZðhÞexp

X
f AF

θf f ðhÞ ð16Þ

with ZðhÞ ¼
X
o ;r

exp
X
f AF

θf f ðhÞ ð17Þ

where ða; o; rÞ is the last action-observation-reward triplet in his-
tory h and h is the remaining part of h. We optimize the weightsΘ
to maximize the likelihood of data D¼ fða1; o1; r1Þ;…; ðan; on; rnÞg or
equivalently minimize the neg-log-likelihood

ℓðΘÞ ¼ � log ∏
n

i ¼ 1
pðoi; ri jhi�1; aiÞ ð18Þ

ℓðΘÞ ¼ �
Xn
i ¼ 1

X
f AF

θf f ðhiÞ� log ZðhiÞ
2
4

3
5 ð19Þ

via gradient descent using L-BFGS [24,25]. That is, ℓ is the objec-
tive used by PULSE. To enforce sparseness we additionally use a L1-
regularization of variable strength ρ

ℓðΘ;ρÞ ¼ ℓðΘÞþρ
X
f AF

jθf j : ð20Þ
This objective fulfills all requirements needed to guarantee global
convergence to an optimal feature set (cf. Section 3.3).

4.2. Model-free agent (TEFþLinear Q)

For our model-free agent we learn a linear approximation of
the action-value function (Q-function) and refer to this agent as
TEFþLinear Q. The Q-function is computed as

Q ða;hÞ ¼
X
f AF

θf f ðhÞ ð21Þ

where a;h, and h are defined as in Eq. (16). TEFþLinear Q is
trained via least-squares policy iteration [26]. Again a L1-regular-
ization of variable strength is used. We have not proved global
convergence of the feature set for this objective but local con-
vergence is guaranteed nonetheless.
5. Experiments

We performed evaluations in four different deterministic par-
tially observable maze environments that we believe exhibit a
prototypical structure for temporally delayed causalities. The 2�2
and 4�4-maze (Figs. 2 and 3) contain delayed rewards that are
“activated” at one location and later “collected” at different one
with a fixed temporal delay Δt. For both mazes we used the
maximum Δt as a fixed time horizon in all compared methods.
The 4�4-maze additionally contains doors that are opened by
taking a step into the wall at the location of the switch and remain
open for 2 more time steps. The small and large Cheese Maze
(Figs. 4 and 5), where the agent only perceives adjacent walls,
were introduced in [5] and adapted from [27], respectively. While
these mazes cannot be formulated as a k-MDP the time horizon of
tmin ¼ �2, which we used for all compared methods, is still suffi-
cient for performing optimally. In the Cheese Mazes the agent
receives a reward of �1 for bumping into a wall, a reward of þ1
for reaching the goal location (indicated by the cheese) and a
reward of �0.1 otherwise. Upon reaching the goal location the
agent is immediately relocated to a random location (small Cheese
Maze) or the start location (large Cheese Maze, indicated by the
mouse).

For each maze we performed a number of trials with a training
phase of varying length (using random policy) and an evaluation
phase of fixed length (using the agent's optimal policy). The plots
on the right of Figs. 2–5 show the mean reward during evaluation
with the standard error of the mean as error bars. The number of
trials for each data point varies depending on environment,
method, and training length and is not explicitly indicated to keep
the plots clear. For Planning with the model-based methods we



Fig. 3. 4�4 Maze (4 096 000 k-MDP states; 34 012 224 latent states): on the left the 4�4 maze is shown in compact form. Red solid arrows depict rewards with a delay of
Δt ¼ 2, the orange dashed arrow depicts a reward with delay Δt ¼ 3. Doors are depicted in green with their switch being the nearby semicircle. The two plots on the right
show the mean reward with standard error of the mean for the tested methods (see text for details and the web version of this paper for interpretation of the references to
color).

Fig. 4. Small Cheese Maze (1 k�MDP states; 11 latent states): on the top left the maze is shown and locations that are indistinguishable to the agent are numbered
accordingly. On the bottom left the current observation (representing only the existence or non-existence of the adjacent walls) is illustrated. The two plots on the right show
the mean reward with standard error of the mean for the tested methods (see text for details).

Fig. 5. Large Cheese Maze (1 k�MDP states; 18 latent states): This is a larger version of the maze described in Fig. 4. Its structure is depicted on the left, again
with aliased locations numbered accordingly. The two plots on the right show the mean reward with standard error of the mean for the tested methods (see text for
details).
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used a variant of Monte-Carlo tree search [28] that exploits the
probabilities given by the model together with the known bounds
for the reward.
5.1. Results

First, note that model-based and model-free methods cannot
be compared on the same basis since they solve different tasks and
have different advantages and disadvantages [29,30]. For this
reason, we plot them on the same scale but next to each other.
Generally, learning a complete predictive model of the environ-
ment is a more complex task compared to only learning the action
values, which is also reflected by the fact that U-Tree (model) and
U-Tree (value) display a large difference in performance although
the underlying method is identical.

Having said that, notice that our model-based agent TEFþCRF
not only outperforms U-Tree (model) by a large margin in all four
environments but even performs better than U-Tree (value) in the
2�2-maze an the initial learning phase of the large Cheese Maze.
Our model-free method TEFþLinear Q, on the other hand, gen-
erally falls behind U-Tree (value) and has a performance only
similar to that of U-Tree (model) or even worse (in case of the large
Cheese Maze).

The reason behind the strong performance of TEFþCRF, we
think, is that the CRF allows an efficient decomposition of the
probability distributions, especially in case of deterministic



Table 1
Feature set learned by TEFþCRF in the 2�2-maze based on 1500 training steps (37 features): each row contains a feature (mostly pairwise conjunctions of basis features) as
well as the feature weight θ in the conditional random field (cf. (16)). An icon represents a basis feature while the subscript indicates the specific time index. For example, the
basis feature indicates whether the agent was at the top left location in the last time step; indicates whether it is (hypothetically) going to get a reward in the next
step; and ’�1 indicates that the last move was to the left. Generally, large positive weights result in high probabilities when that feature is active and large negative weights
in low probabilities. However, multiple active features sum up and features that are active for the other outcomes influence the probabilities via the normalization.
We partitioned the table into semantic blocks and sub-blocks.

Fig. 6. Growth of feature set and decision tree, respectively, in the 2�2-maze for all methods: The growth is measured by the number of learned parameters, that is, the
number of features for TEFþCRF and TEFþLinear Q and the number of leaf nodes times 5 and times 40 for U-Tree (value) and U-Tree (model), respectively. Plots are rescaled
since we are interested in the characteristics of the curves rather than the absolute values.
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environments: all probabilities are close to zero or one and can
therefore be described as the product of a few feature conjunc-
tions (also confer Table 1).

Conversely, we think TEFþLinear Q performs poorly because
the action values are diverse for the different locations and cannot
be described as the sum of a few feature conjunctions.
TEFþLinear Q thus requires a relatively large feature set that is
harder to train given limited data. Also note that in both the small
and the large Cheese Maze TEFþLinear Q does not significantly
surpass the �0:1 margin, which corresponds to a policy that
avoids bumping into the walls but does not reach the goal location.
This indicates that the poor performance of TEFþLinear Q might
partly be due to a problem with the policy-update step during
training via policy iteration.
5.1.1. Characteristics of the discovered features
We will now compare in more detail the features discovered

with PULSE to the decision tree learned by U-Tree. First note that we
cannot directly compare the number of features to the number of
leaf nodes because, for instance, U-Tree (model) in the 2�2-maze
learns 40 parameters per leaf node (one probability for each
action-observation-reward triplet). Rather we are interested in
characteristic differences in the growth of the feature set and
decision tree, respectively, over the training length. This is shown
in Fig. 6 for all methods in the 2�2-maze. There are two main
observations:

1. For the two best methods (TEFþCRF and U-Tree (value)) that
reach near-optimal performance the growth flattens out ear-
lier than their performance (cf. Fig. 2), which suggest that they



Fig. 7. U-Tree (model) learned from 1500 training steps in the 2�2-maze (74 leaf
nodes; depth 2–15): each internal node corresponds to one basis feature and each
of the leaf nodes contains 40 parameters (the transition probabilities). Both were
omitted for the sake of clarity.
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first discover the optimal feature set and decision tree,
respectively, and then keep on improving by learning better
parameters.

2. The curves for the other two methods (TEFþLinear Q and U-
Tree (model)) are opposed to each other. While U-Tree (model)
grows an increasingly large decision tree, TEFþLinear Q as the
only method has a negative growth from some point on, which
suggests that the richer data set allows TEFþLinear Q to more
efficiently select features while improving performance.
Although TEFþLinear Q does not overall display an outstanding
performance this still proves that being able to shrink the
feature set – a major strength of our method compared to pure
feature expansion – is actually relevant in practice.

Another goal we had in mind when designing our method was to
make the temporal structure of the environment explicit and acces-
sible. In Table 1 we list the complete feature set (including all weights)
learned by TEFþCRF in the 2�2-maze; in Fig. 7 we sketched the
corresponding decision tree learned by U-Tree (model). Keeping in
mind that in Fig. 7 we not only left out the concrete features for the
internal nodes but also each leaf node actually contains 40 parameters,
we think that the feature set learned with PULSE is not only muchmore
compact but also more intuitive to interpret (see caption texts for
details).
6. Conclusion

We considered the problem of uncovering temporally delayed
causalities in partially observable reinforcement learning domains.
To this end we introduced temporally extended features along with
a training method called PULSE that efficiently and incrementally
discovers a sparse set of relevant temporally extended features.
We provided convergence guarantees and evaluated our approach
empirically showing that in terms of achieved rewards as well as
the number of required features PULSE clearly outperforms its
competitors in a model-based setting. While in this paper we
considered very simple basis features, we discussed how the
general framework provided by PULSE can be extended to learn
much richer representations.
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Appendix A. Proof
Theorem 2. For a conditional event y with preconditions x1;…; xn
extending an optimal k-predictor πk to an optimal kþ1-predictor
πkþ1 by adding one more precondition strictly improves the quality

qðπkþ1Þ4qðπkÞ ðA:1Þ
Proof. We will first show that an optimal n�1-predictor has
lower quality than an optimal n-predictor. We abbreviate notation
by writing pi for pðxi ¼ 1Þ. The quality of πn�1 using all precondi-
tions except (w.l.o.g.) x1 is (cf. Eqs. (14) and (15))

qðπn�1Þ ¼ E pðyjx2;…; xnÞ½ � ðA:2Þ

qðπn�1Þ ¼
X

y;x1 ;…;xn

pðy; x1;…; xnÞpðyjx2;…; xnÞ ðA:3Þ

q πn�1ð Þ ¼
X

y;x1 ;…;xn

p x1ð Þ…p xnð Þp yjx1;…; xnð Þ
X
x01

p yjx0
1;…; xn

� �
p x

0
1

� �2
4

3
5

ðA:4Þ

qðπn�1Þ ¼
X

x2 ;…;xn

pðx2Þ…pðxnÞ
X
y

X
x1

pðyjx1;…; xnÞpðx1Þ
" #2

ðA:5Þ

qðπn�1Þ ¼ p2…pn
X
y

X
x1

pðyjx1;…; xnÞpðx1Þ
" #2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
αðx2 ;…;xnÞ
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þ
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X
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βðx2 ;…;xnÞ

;

ðA:6Þ
where in the last step we took the termwith preconditions x2 to xn
being all fulfilled out of the sum. The quality of the optimal n-
predictor using all preconditions is (following the same structure)

qðπnÞ ¼ E pðyjx1;…; xnÞ½ � ðA:7Þ

qðπnÞ ¼
X

y;x1 ;…;xn

pðy; x1;…; xnÞ pðyjx1;…; xnÞ ðA:8Þ
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X
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pðx1Þ…pðxnÞpðyjx1;…; xnÞ2 ðA:9Þ
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β and β0 in Eqs. (A.6) and (A.11) are constant since

x2 ¼ 03…3xn ¼ 0 ðA:12Þ
for all terms of the sum, so that
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y
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Likewise α and α0 are constant since

x2 ¼ 14…4xn ¼ 1 ðA:20Þ
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Using this, we show

qðπnÞ4qðπn�1Þ ðA:25Þ

04E pðyjx2;…; xnÞ½ ��E pðyjx1;…; xnÞ½ � ðA:26Þ

304α�α0 ðA:27Þ
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304ðp1�1Þ ðpy�pyÞ2 pyapy
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where we used assumptions (Eqs. (11) and (13)).

Now we show that any optimal n�1-predictor for a conditional
event y with preconditions x1;…; xn also is an optimal n0�
predictor for a different conditional event y0 with preconditions
x01;…; x0n0 with n0 ¼ n�1. This can be trivially shown by defining

y0 ¼ y ðA:32Þ

8 iA f1;…;n�1gx
0
i ¼ xi ðA:33Þ

pðy0; x01;…; x0n0 Þ ¼
X
xn

pðy; x1;…; xnÞ: ðA:34Þ

By induction follows that an optimal k-predictor πk has a higher
quality than an optimal l-predictor πl if the preconditions used by
πk are an extension of the preconditions used by πl. Thus
extending an optimal k-predictor πk to an optimal kþ1-predictor
πkþ1 by adding one more precondition strictly improves the
quality. □
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