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Abstract

Hessian information speeds convergence substantially in motion optimization. The better the Hes-
sian approximation the better the convergence. But how good is a given approximation theoretically?
How much are we losing? This paper addresses that question and proves that for a particularly popu-
lar and empirically strong approximation known as the Gauss-Newton approximation, we actually lose
very little—for a large class of highly expressive objective terms, the true Hessian actually limits to the
Gauss-Newton Hessian quickly as the trajectory’s time discretization becomes small. This result both
motivates it’s use and offers insight into computationally efficient design. For instance, traditional repre-
sentations of kinetic energy exploit the generalized inertia matrix whose derivatives are usually difficult
to compute. We introduce here a novel reformulation of rigid body kinetic energy designed explicitly for
fast and accurate curvature calculation. Our theorem proves that the Gauss-Newton Hessian under this
formulation efficiently captures the kinetic energy curvature, but requires only as much computation as
a single evaluation of the traditional representation. Additionally, we introduce a technique that exploits
these ideas implicitly using Cholesky decompositions for some cases when similar objective terms refor-
mulations exist but may be difficult to find. Our experiments validate these findings and demonstrate
their use on a real-world motion optimization system for high-dof motion generation.

1 Introduction

Hessian information is playing an increasingly central role in trajectory optimization for motion generation,
especially in high degree-of-freedom systems with non-trivial dynamics and environmental constraints. But
generally, Hessian calculations can be hard, especially when kinematic maps or inertia matrices are involved.
Successful motion optimization methods have gone to lengths to avoid large portions of them. Many, such
as CHOMP [10], STOMP [4], and TrajOpt [11], largely ignore the curvature induced by kinematic maps
and focus solely on the connectivity encoded in the interactions between neighboring configurations within
smoothness terms of discrete-time trajectory representations. Others, such as iLQG [13, 2], KOMO [15],
and RieMO [9], have found empirically that Gauss-Newton approximations tend to be sufficient for fast
convergence. Unfortunately, there’s little theory backing the various approximations in the context of motion
optimization; we’re often left to rely on empirical justification and intuition. We don’t really know how much
the approximation hinders performance.

This paper takes a deeper look at this theoretical problem. Specifically, we analyze how the Gauss-
Newton approximation relates to the true Hessian for a widely used and expressive class of objective terms
represented as functions of task space time derivatives.1 We show that for this class of functions, when
numerically integrated across the trajectory, the true Hessian converges to the Gauss-Newton approximation
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1Here, we define a task space as the co-domain of any differentiable map from the configuration space. See Section 2.
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as the time-discretization becomes increasingly fine. This Gauss-Newton Hessian2 is actually a fundamental
representation of problem curvature. Importantly, this class of objective terms includes discrete approxi-
mations to the geodesic energy through a task space, and can therefore theoretically represent any sort of
Riemannian geometric model describing fundamental properties of the robot such Euclidean end-effector
motion, kinetic energy (see Section 4), and the geometry of the workspace [9].

Our proof also shows that this limit converges at a rate of O(∆t2k), where k is the minimal order of the
task space time-derivatives used in the terms. This Gauss-Newton Hessian is known to capture the entirety
of the first-order Riemannian Geometry of these types of terms [9]; here, we show that the Gauss-Newton
Hessian actually is the Hessian in the limit of finer discretization.

We also show that some previously computationally difficult objective terms can be reformulated in light
of these observations to exploit this efficient curvature calculation. As an example, we reformulate rigid
body kinetic energy of the robot as a squared velocity norm through a higher-dimensional Euclidean task
space to leverage this result. The calculation of the Gauss-Newton Hessian under this formulation requires
only Jacobians of kinematic maps, and is only as computationally complex as calculating the inertia matrix
M(q) required for a single evaluation of the traditional formulation K(q, q̇) = 1

2 q̇
TM(q)q̇.

Moreover, since any Riemannian metric can be represented as a Pullback metric of a mapping into a
higher-dimensional Euclidean space (see Section 2), we can approximately and implicitly exploit these results,
even when we don’t have access to the full task map, using Cholesky decompositions of the Riemannian
metric.

Our experiments provide an empirical verification of these theoretical results, as well as a full system
validation on a real-world 8 degree-of-freedom manipulation platform where we use motion optimization with
Gauss-Newton Hessians to solve problems such as obstacle avoidance and reaching to grasp preshapes that
conform to the overall shape of the object (formulated as a single optimization).

2 Motion Optimization with Finite-Differencing

This section reviews the general motion optimization formulation studied in this paper as well as some basic
concepts from Riemannian geometry useful for the discussion. For details, we point to [9].

The discrete-time motion optimization problem can be generically represented as a constrained opti-
mization problem defined over kth-order Markov cliques [15]. We denote the full discrete trajectory3 as
ξ = (q1, . . . , qT ) with qt ∈ Rd and time index t in integer units of the the discretization ∆t > 0. Each
kth-order clique is a sequence of k + 1 configurations starting at index τt (with τt+1 = τt + 1), denoted4

qct = (qτt ; qτt+1; . . . ; qτt+k). In full, the optimization problem takes the form

min
ξ

T∑
t=1

Lt(qct ) s.t.

{
gt(q

c
t ) ≤ 0

ht(q
c
t ) = 0

∀t.

We use Augmented Lagrangian methods for constrained optimization which, in an inner loop, add the
violated constraints into the objective as penalty functions5 to form an unconstrained proxy objective which
is subsequently optimized using Newton’s method.

Each time step’s objective term Lt(qct ) usually consists of a collection of modeling costs l̃(qct ), many of

which take the form l̃(qct ) = l(φ(qct )), where φ is a differentiable nonlinear mapping of the entire clique qct to

2 Throughout this paper, we use the term Gauss-Newton Hessian rather than Gauss-Newton approximation to emphasize
its fundamental contribution to the curvature representation for these problems.

3For effective modeling of finite-differenced derivatives, we often use a fixed prefix configuration q0 and an extra (non-fixed)
suffix configuration qT+1, while still letting the terminal potential act on qT .

4Semicolons, here and elsewhere, denote Matlab-style vector stacking. Note that we use τt to denote the start index for the
clique window at time t because it’s useful for the clique to be centered at the right time step when ∆t and time are important
to the model.

5The penalty functions use Lagrange multiplier estimates to effectively shift the zero point of the penalty away from the
constraint boundary opposite the direction of constraint violation to pull the minimizer onto the constraint surface without
requiring infinitely large penalty scalars [7].



some other space. Often these clique maps are constructed from task maps of the form φ : Rd → Rm; we use
φ to denote both the map and its configuration-wise application to the entire clique zct = φ(qct ). These task
maps may be mappings from the configuration space to points and axes on the robot’s body, or from the
configuration space to the distance between a pair of fingers. We even treat the identity map as a task map
for uniformity, making the configuration space, itself, a task space. When z = φ(q) represents a task map,
we call the map’s co-domain the task space; the corresponding mapped variable z ∈ Rm is said to reside in
the that task space.

Further, each of these task space cost functions l(φ(qct )) = l(zct ) are often functions of time deriva-
tives calculated as finite-differences on the clique. We denote kth-order finite-differencing matrices (op-
erating on a task space clique) by z(k)

t = D(k)zct . For instance, if the clique is defined over triples of
configurations zct = (zt−1; zt; zt+1), the first- and second-order finite-differencing matrices take the form
D(1) = 1

∆t [−I, I, 0] and D(2) = 1
∆t2 [I, −2I, I] so that multiplication with zct calculates the velocity and

acceleration, respectively. Using this notation, we can denote functions defined on task space derivatives as
l(zct ) = f(D(k1)zct , . . . ,D

(kl)zct ).
The full Hessian of a general task space clique function of the form l(φ(qct )) = l(zct ) is

∇2
qct
l(φ(qct )) = JTzct

(
∇2l(zct )

)
Jzct

+

[
∂Jzct

∂qct

]
∇l(zct ),

where in this context Jzct
denotes the Jacobian of the full clique map zct = φ(qct ). The derivative of

the Jacobian
∂Jzct

∂q is a third-order tensor and is, therefore, computationally expensive—it’s equivalent to
calculating m separate n × n Hessians. The Gauss-Newton Hessian simply removes the term that require
this third-order tensor.

There’s a strong connection between task maps and Riemannian Geometry. For our purposes, the
Riemannian Geometry of a space is represented by a symmetric positive definite matrix A(q) that varies
smoothly with q. It defines a norm on the tangent space6 so that ‖q̇‖2A = q̇TA(q)q̇. Importantly, given any
task map z = φ(q), since ż = Jφq̇, we can rewrite tangent space norms in the task space under metric B(z)

as tangent space norms in the configuration space ‖ż‖2B = ‖Jφq̇‖2B = q̇T
(
JTφBJφ

)
q̇ with Riemannian

metric A(q) = JTφBJφ. This derived metric is called the Pullback metric [5].
The right choice of task map φ can be a very expressive model of the problem’s geometry. And, typically,

terms defined on derivatives through a task space, satisfy the preconditions of Theorem 1, allowing us to
leverage Gauss-Newton Hessians to efficiently capture and leverage the curvature of the problem. Moreover,
the Nash-Embedding theorem [6] tells us that the geometry of every non-Euclidean Riemannian manifold
can be modeled as a mapping to a higher-dimensional Euclidean task space. Such a task map can be hard
to find, a situation addressed in Section 5, but, as Section 4 shows, finding such an equivalent task map,
especially given Theorem 1, can greatly reduce the computational burden of representing and exploiting
problem curvature.

3 The Convergence of Hessians to Gauss-Newton

This section states and proves the primary theoretical results of this paper. The theorem is stated in a fairly
general form, which makes the proof somewhat more difficult to follow. For a simpler theoretical statement
covering a useful special case with a more verbose and explicit proof, see [8]. The proof presented here may
be skipped on first reading without loss of continuity.

In what follows, we denote the full Hessian of a function F(ξ) defined on the entire trajectory as ∇2F(ξ)
and the corresponding Gauss-Newton Hessian as ∇GNF(ξ). See Section 2 for additional notational defini-
tions.

6More generally, an inner product, but we’re primarily concerned with norms here. The tangent space is effectively the space
of velocities here.



3.1 Basic theorem statements and corollaries

The main theorem states that discrete approximations of trajectory integrals with objective terms defined on
finite-differenced time derivatives of the trajectory mapped into some task space have Hessians that converge
quickly to the Gauss-Newton Hessian as the time-discretization becomes small.

Theorem 1 Consider a sequence of objective terms of the form

F(ξ) =

T∑
t=1

f(D(k1)zct , . . . , D
(kl)zct ) ∆t (1)

defined over task-space cliques, where f(·) is independent of ∆t. Then ∇2F(ξ)→ ∇2
GNF(ξ) as ∆t→ 0

at a rate of O(∆t2k) where k = mini{ki}li=1.

The proof of this theorem is given in Section 3.2. A direct corollary of this result is that squared task space
velocity and acceleration norms—common modeling tools—have Hessians that converge to the Gauss-Newton
approximation at well defined rates that increase with the order of the derivative.

Corollary 1 Let żt = D(1)zct and z̈t = D(2)zct . Then objectives of the form

Fż(ξ) =

T∑
t=1

1

2
‖żt‖2 ∆t and Fz̈(ξ) =

T∑
t=1

1

2
‖z̈t‖2 ∆t

have Hessians that converge to the Gauss-Newton approximation at the rates of O(∆t2) and O(∆t4),
respectively, independent of the particular choice of differentiable map defining zt = φ(qt).

3.2 Proof of Theorem 1

Due to space restrictions, we prove only convergence of the block diagonal entries for the special case where
each clique function is defined on only single derivative ft(z

(k)

t ). It’s straightforward to show that the off-
diagonal Hessian blocks are always equivalent to the Gauss-Newton approximation, independent of ∆t, and
the proof of mixed time-derivatives is similar. In this section, we denote the dimensionality of the task space
as m > 0 with φ(q) = z ∈ Rm denoting the task map.

We first note that finite-differencing matrices for kth order derivatives take the blockwise form

D(k) =
[
D(k)

0 D(k)

1 · · · D(k)

k

]
with D(k)

i =
σ(k)

i

∆tk
I,

where σ(k)

i ∈ R are constants and I ∈ Rm×m. Consider any sequence of clique terms of the form

F(ξ) =

T∑
t=1

l(zct ) =

T∑
t=1

f(D(k)zct ). (2)

In the following, we use subscripts to indicate which clique a function is applied to. For instance, we denote
l(zct ) as lt.

Let Nt = {τ | zt ∈ zcτ} be the set of all indices of cliques containing the task space variable zt and let
t = minNt be the smallest of those indices. Generally, in terms of l (defined directly on the clique variables),
the Hessian block corresponding to the single configuration qt is

∇2
qtF = JTt

(
k∑
i=0

∇2
zt lt+i

)
Jt +

[
∂Jt
∂qt

] k∑
i=0

∇zt lt+i. (3)



Note that ∂Jt
∂qt

= ∂2φt
∂qt

is a third-order tensor, so the product is a tensor product. The first term in Equation 3
is already the Gauss-Newton Hessian, so what remains to be shown is that the second term gets vanishingly
small relative to the first as ∆t gets small.

Now we can expand these expressions in terms of f (defined on the finite-differenced time derivatives).
Denoting the derivative of f with respect to the time-derivative variable as z(k) = D(k)zc as ∇z(k)f , the sum
of first derivatives in Equation 3 becomes

k∑
i=0

∇zt lt+i =

k∑
i=0

D(k)

k−i
T∇z(k)f(D(k)zct+i) = D(k)gct ,

where the ith m-dimensional segment of this new clique variable gct is ∇z(k)f(D(k)zct+i), and D(k) =[
D(k)

k D(k)

k−1 . . . D(k)

0

]
evaluates the kth-order finite-differencing time derivative approximation for time run-

ning in reverse (note that each D(k)

i is symmetric). This sum, therefore, limits to the following kinematic
quantity

D(k)gct −−−−→
∆t→0

− dk

dtk

(
∂f

∂z(k)
(z(k)(t))

)
, (4)

where z(k)(t) = dk

dtk
φ(q(t)).

The sum over second derivatives in Equation 3 is

k∑
i=0

∇2
zt l(z

(k)

t+i) =

k∑
i=0

D(k)

k−i
T
(
∇2

z(k)f
(
D(k)zct+i

))
D(k)

k−i

=
Sk

∆t2k

k∑
i=0

α(k)

i

(
∇2

z(k)f
(
D(k)zct+i

))
,

where Sk =
∑
i

(
σ(k)

k−i
)2

and α(k)

i =
(
σ(k)

k−i
)2
/Sk are both constant with respect to ∆t, and α(k)

i form nor-

malized nonnegative weights with α(k)

i ≥ 0 and
∑
i α

(k)

i = 1. Each of the Hessians C(k)

ti = ∇2
z(k)f(D(k)zct+i)

limit to the same value C(k)

t = ∇2
z(k)f(z(k)(t)) as ∆t→ 0, so the weighted average of Hessians, itself, limits

to C(k)

t . Since this expression we’re evaluating—the first term of Equation 3—is also the Gauss-Newton
Hessian, and we’ve just shown that it scales with O( 1

∆t2k
) (getting large as ∆t gets small), we need to scale

the expressions by O(∆t2k) to understand their limiting behavior so that the Gauss-Newton portion limits
to a finite nonzero value. The scaled expression in Equation 3, using the derived calculations, becomes

∆t2k

Sk
∇2

qtF = JTt

(
k∑
i=0

α(k)

i C(k)

ti

)
Jt +

∆t2k

Sk

[
∂Jt
∂qt

]
D(k)gct .

The first term is always the (scaled) Gauss-Newton Hessian and limits to JTt C
(k)

t Jt, while the second term
approaches zero at a rate of O(∆t2k) since the unscaled portion of that term approaches the kinematic limit
in Equation 4. �

4 Reformulating Kinetic Energy for Efficient Curvature Calcula-
tions

Kinetic energy is an important quantity in motion, but interestingly it’s not usually modeled in kinematic
optimization strategies for motion planning such as CHOMP [10], STOMP [4], TrajOpt [11], or AICO [14].
We can largely attribute that discrepancy to its computational complexity, especially with respect to Hessian
calculation. The kinetic energy is most commonly expressed in the configuration space as

K(q, q̇) =
1

2
q̇TM(q)q̇, (5)



where M(q) is the symmetric positive definite inertia matrix. Generally, taking derivatives of M(q) is hard.
There are some clever algorithms for calculating such derivatives [3], but fundamentally, the first derivative
will always be a third order tensor, and the second derivative will always be a fourth order tensor. Computing
these in practice is both difficult and computationally expensive.

But we can interpret M(q) as a positive definite Riemannian metric, and Equation 5 as a generalized
squared velocity norm. The Nash Embedding Theorem (see Section 2) suggests that there exist a nonlinear
map to some higher dimensional task space under which Euclidean squared velocity norms correctly reflect
this metric weighted velocity. And importantly, if we find such a map, Corollary 1 say the Hessian of these
terms when summed across the trajectory converges to the Gauss-Newton Hessian at a rate of O(∆t2).

One such map is straightforward, but computationally intractable. If we could enumerate all particles
across the entire robot’s body R = {xi}Ni=1, the kinetic energy of the system is simply

K(q, q̇) =

N∑
i=1

1

2
mi‖ẋi‖2. (6)

This expression is a squared velocity norm through a task space of the form

φK(q) =


√
m1 x1(q)√
m2 x2(q)

...√
mN xN (q)

 . (7)

Unfortunately, N is technically on the order of 1023 (Avogadro’s number—this sum is usually best approx-
imated as an integral) and even discrete approximations would require a large number of “proxy” particles
to make a good representation.

However, we can simplify this expression by leveraging the same rigid body structure here that’s typically
used to derive the rigid body inertia matrix. Suppose ρ(u) with u = (u1, u2, u3) describes the mass density
of a rigid body in coordinates of some orthonormal basis {e1, e2, e3} relative to the center-of-mass xc. (Here
we’re taking xc, e1, e2, e3 to be described in some inertial world frame of reference, but fixed relative to the
rigid body so that the coordinates u = (u1, u2, u3) always represent a local description.7) Any given point
on the robot’s body R can be represented in world coordinates as x = xc + u1e1 + u2e2 + u3e3 ∈ R. In
these coordinates, as Appendix 1.1 shows in more detail, the kinetic energy integral over the rigid body
decomposes as

1

2

∫
R
‖ẋ‖2ρ dx =

1

2

∫
ρ(u)‖ẋc + u1ė1 + u2ė2 + u3ė3‖2du

=
1

2
M‖ẋc‖2 +

∑
ij

1

2
bij ė

T
i ėj . (8)

where M =
∫
R ρ dx is the total mass, and the quantities bij are given by

bij =

∫
uiuj ρ(u) du. (9)

These quantities bij form entries in a matrix B that we call the Distributional Inertia Matrix. This matrix
describes the mass distribution of the body rather than the moments of inertia (note its structural similarity
to the covariance matrix of a probability distribution). This Distributional Inertia Matrix is just a linear
transformation away from the more traditional form as described in Appendix 1.2, and the principle directions

7ei constitute the columns of a rotation matrix from local to world coordiantes; their Jacobians can be easily calculated via
cross products with joint axes.



that diagonalize the matrix are the same. If the axes of representation are chosen as these principle directions
e∗1, e

∗
2, e
∗
3, then all off-diagonal entries of B vanish, and the above expression reduces to

K(q, q̇) =
1

2
M‖ẋc‖2 +

1

2

3∑
i=1

bi‖ė∗i ‖2, (10)

where bi = bii =
∫
u2
i ρ(u)du denotes the moment of inertia of the axis ei as though it were a infinitesimally

thin rod of material rotating around the center-of-mass. Note that the axes e∗i are normalized and the
velocities ė∗i always reflect only rotational components which are always orthogonal to the axis, itself. The
norm ‖ė∗i ‖ is, therefore, the angular velocity of the rotation of that axis.

Thus, under this representation, we can construct a task map of the form

φK(q) =


√
M xc√
b1 e

∗
1√

b2 e
∗
2√

b3 e
∗
3

 , (11)

built entirely from kinematic maps of the rigid body. Denoting this Rigid Body Inertial Map as zK = φK(q),
the kinetic energy reduces to just 1

2‖żK‖
2. This formulation represents the kinetic energy of a rigid body as

the squared velocity norm through a 12 dimensional space. Its curvature, therefore, primarily comes from its
Gauss-Newton Hessian, which, in this case, is computed entirely from kinematic Jacobians. Note that under
the original formulation, the inertia matrix, itself, already consists of a similar sum of kinematic Jacobians;8

calculating even its gradient, therefore, requires second-order derivatives of these kinematic functions, and
calculating its Hessian is even harder. On the other hand, computing the Gauss-Newton Hessian of this
reformulated kinetic energy is the same order of complexity as just one evaluation of the inertia matrix
M(q).

Notice that since the axes are orthogonal to one another, we can implement this representation using
e∗3 = e∗1 × e∗2. This formulation takes 9 numbers to describe and is, therefore, a minimal representation of
rigid body kinetic energy.9

5 Cholesky Approximations for Arbitrary Metrics

Sometimes velocities through task space are most easily represented as metric scaled velocities through the
configuration space of the form l(q, q̇) = 1

2 q̇
TA(q)q̇ for some smooth symmetric positive definite Riemannian

metric A(q). The Nash Embedding theorem suggests that all Riemannian metrics can be represented as the
Pullback some Euclidean task space metric (see Section 2, but sometimes it’s difficult to find such a task
map. This section shows that the true Hessian of these terms can be approximated even without access to
this unknown task map, using only Cholesky factorizations of the metric A(q).

Suppose z = φ(q) is a differentiable task map. The pullback metric is A(q) = JTφ Jφ. For this argument,
we assume the map is sufficient to produce a fully positive definite metric. We first note that since the
Cholesky Decomposition produces A = CTC, the upper triangular matrix C is just an orthogonal coordinate
transformation away from the task map’s Jacobian: CTC = JTφ Jφ ⇒ (JφC

−1)T (JφC
−1) = I, which means

U = JφC
−1 has mutually orthogonal columns and Jφ = UC.

For simplicity, we describe this result specifically for terms of the form

l(qt−1, qt) =
1

2
‖φ(qt)− φ(qt−1)‖2, (12)

8Note that Gauss-Newton Hessians are essentially Pullback metrics [9].
9 The traditional representation requires the linear center-of-mass velocity, the angular momentum, and the rotation of the

inertia matrix into the world frame. Each of those quantities requires 3 parameters in a minimal representation totaling 9
parameters in all.



where we assume we don’t have access to φ, but we can evaluate the Pullback metric A(q) = JTφ Jφ directly
as a function of q. The gradient takes the form

∇lt =

[
−JTφt−1

(φ(qt)−φ(qt−1))

JTφt (φ(qt)−φ(qt−1))

]
≈
[
−At−1(qt−qt−1)

At(qt−qt−1)

]
,

where the approximation on the right comes from linearizing both φ(qt−1) and φ(qt) around qt−1 for the
first entry and around qt for the second entry. Moreover, the Gauss-Newton Hessian is

∇2
GNlt =

[
JTφt−1

JTφt

] [
I −I

−I I

] [
Jφt−1

Jφt

]
≈
[

At−1 −CT
t−1Ct

−CT
t Ct−1 At

]
, (13)

where we’ve made the approximation UT
t−1Ut ≈ I for the off-diagonal terms, which is reasonable given the

smoothness assumption on φ.
Note that this procedure is only approximate because we linearize the maps in the gradient computation

and use the approximation UT
t Ut−1 ≈ I for the Hessian calculation. It’s usually better to exploit the

actual task map φ when available. But, as our experiments show below, this procedure can supply a good
approximation when the task map isn’t readily available.

6 Experimental Results

Our experiments first verify the theoretical convergence analysis of Section 3 using controlled experiments on
kinematic objective terms under a realistic model of the manipulation system pictured in Figure 2. We then
empirically analyze the optimization performance of both the new kinetic energy formulation of Section 4
and the corresponding performance of the traditional energy formulation using the Cholesky approximation
of Section 5. Finally, in Section 6.3, we demonstrate the performance of our full motion optimization system
on the pictured Apollo manipulation platform using both simulated and real-world executions.

Our robotic platform is a dual arm manipulation system with two torque controlled 7 DOF Kuka
Lightweight arms with 4 DOF Barrett hands. Each experiment utilizes only the right side, and reduces
the dimensionality of the configuration space to 8 DOF, either by restricting the finger motion to only the
thumb/middle finger (locking the remaining fingers closed) or by using a single value to control all fingers
simultaneously (locking the finger spread at a fixed maximal value). Each real-world execution splines the
(q, q̇, q̈) trajectory using quintic splines and directly sends torque commands to the arm at a rate of 1kHz
using inverse dynamics for active compliance.

6.1 Controlled Hessian convergence experiment

Our first experiment directly addresses convergence and convergence rate of the full Hessian to the Gauss-
Newton Hessian as ∆t → 0. We defined a smooth nonlinear 8-dimensional configuration trajectory using
the formula

q(i)(t) =
π

2
sin (2πσi(t− 1

2 ) + ηi) . (14)

for each joint i (ordered by distance from the base), where σi ∈ R ranges linearly from .5 to 2 and ηi ∈ R
ranges linearly from 0 to π. Time is in units of seconds.

This experiments analyzes the true Hessian of terms of the form

F(ξ) =

T∑
t=1

1

2
‖x(k)

t ‖2dt, (15)



Figure 1: Left: Log-log plot showing convergence of full Hessians to Gauss-Newton Hessians for squared end-effector

velocity and acceleration norm terms. As predicted by Theorem 1, the acceleration Hessian shows a faster rate of

convergence than the velocity Hessian as indicated by the relative slopes of the linear log-log relations. The plot

shows 1 standard-deviation error bars for each progression. Right: Plot showing the efficacy of exact kinetic energy

optimization using the Rigid Body Inertial Map derived in Section 4, as well as the Cholesky approximation presented

in Section 5 (increasing the energy weight decreases the final energy). The Cholesky approximation usually performs

well, but occasionally has difficulty. The trimmed Cholesky progression shows the behavior with outliers removed

(see the text for details). Both axes are normalized to lie between 0 and 1; the maximum energy is chosen as the final

trajectory energy resulting from optimizing without the energy term, and the minimum energy is the energy resulting

from optimizing under the exact kinetic energy using the largest term weight. The plot shows 1 standard-deviation

error bars for each progression.

where x = φfk(q) is the forward kinematics map and k denotes the kth-order time derivative. For these
experiments, we chose k = 1, 2 to examine task space velocities and accelerations.

Figure 1 shows the basic convergence of the 8 × 8 diagonal blocks of the true Hessian (calculated using
finite-differencing) to the Gauss-Newton Hessian. The plots show the normalized error

err(qt) =
‖Ht − H̃t‖
‖Ht‖

, (16)

where Ht is the true Hessian block and H̃t is the corresponding Gauss-Newton Hessian block, both scaled
by ∆t2k as suggested by the theory. Here ‖ · ‖ denotes the Frobenius matrix norm. We additionally verified
separately that the scaled full Hessian and Gauss-Newton Hessian both converge individually to (the same)
finite non-zero quantities as ∆→ 0.

We evaluated the distribution of normalized Hessian block errors across the entire trajectory (20 linearly
spaced choices of t between 0 and 1) for each of the 20 log-linearly spaced values of ∆t between .15 and .001.
The plots show the mean and one standard deviation error bars of the normalized errors as a function of
∆t (in units of seconds). Monomials appear linear in log-log scales; the linearity of these plots verifies the
basic form of the predicted convergence rates (O(∆t2) for the velocity terms and O(∆t4) for the acceleration
terms). Moreover, the slope of the acceleration curve is twice that of the velocity curve verifying the differing
relative rates of convergence as well.

6.2 Controlled kinetic energy and Cholesky approximation experiment

We implemented the inertial map derived in Section 4 using a slightly simplified model of the mass distri-
bution. We treat the upper arm and forearm as cylindrical uniformly distributed rigid bodies of mass 9 kg



each and use formulas for cylindrical rotational inertia around the appropriate axes to calculate the requisite
diagonal components of B as b1 = .1875 kg m2, and b2 = b3 = .0324 kg m2 along the principle axes. We
model the inertial profile of the hand to be the same as the upper and lower arms but with only .9 kg of
mass.

For this experiment, each of 12 trials started Apollo (simulated) in one of a collection of initial configu-
rations, and optimized a reach motion to touch one of a collection of points in the 3D space under kinetic
energy penalization terms of varying strengths. We used both the exact kinetic energy terms as given by the
task space velocity under the Rigid Body Inertial Map described in Section 4 and a Cholesky approximation
of the corresponding configuration space kinetic energy formulation using the method described in Section 5.
This problem is intentionally simple to provide a more controlled experimental environment for understand-
ing the behavior of the kinetic energy term and it’s Cholesky approximation. In addition to these energy
terms, this model used small squared norm terms on configuration space accelerations, initial velocities, and
terminal velocities, as well a postural term pulling back to a default configuration for Null space resolution.

The experiments used 6 separate weights for the kinetic energy term log-linearly spaced between 1 and
500, in addition to a weight of 0 (removing the term entirely). The plot shows these weights along the
x-axis normalized between 0 and 1. For all nonzero weights, the exact energy term provided an accurate
Gauss-Newton Hessian estimate of the problem curvature, and, therefore, optimized very well. We take
its final cumulative kinetic energy under the maximal weight as the minimum energy and the final kinetic
energy achieved with a weight of 0 as the maximum energy—the reported energy values are scaled linearly
between these minimum and maximum values to make them comparable across all scenarios. Figure 1 plots
the distribution of achieved normalized energy values as a function of term weight (energy decreases with
increased energy penalty term weight).

Generally, the Cholesky approximation performed well. For these trials, though, we intentionally chose
the start configuration and reaching target combinations to stress the optimizer. As a result, we found that
the Cholesky approximation had difficulty on 4 of the 12 trials especially as the term weight became larger
as can be seen in the figure. We, therefore, additionally plot the performance of the distribution of the
successful 8 trials as “cholesky trimmed” to show more generally the suboptimality of the approximation
when successful.

Understanding better when this Cholesky approximation is good is a subject of future work. When it
performs well, it converges very fast, in just slightly more iterations (one or two) than the exact terms under
Gauss-Newton Hessians. Our empirical experience, though, emphasizes that, when explicit task maps can
be found, they are both fast and highly robust to problem variations.

6.3 Experimental validation on a real-world system

Our final experimental demonstrations are on realistic problems using a full implementation of the optimiza-
tion system for optimized grasp reach and preshaping and obstacle aware motions. Figure 2 shows some of
the resulting sequences. Each optimization used T = 30 and ∆t = .1 seconds.

Our motion model included the following objective terms and constraints:

• Configuration space derivatives penalties. f(q̇, q̈) = α1‖q̇‖2 + α2‖q̈‖2.

• Task space velocity penalties. f(x, ẋ) = 1
2
‖ d
dt
φ(x)‖2, where φ : R3 → Rn is a mapping to a workspace

geometric space (see [9]). For the grasp preshape experiments, this geometric map was just the identity map.

• Joint limit proximity penalties. fi(qi) = (max{0, qi − (qmax − ε), (qmin + ε)− qi})2, where ε > 0 is a joint
limit margin.

• Posture potentials. f(q) = 1
2
‖q − qdefault‖2 pulling toward a neutral default configuration qdefault.

• Kinetic energy. These experiments use a simplified precursor to the more complete kinetic energy model
defined in Section 4. The robot was modeled as a collection of point masses at key locations along the robot’s
body.

• Joint limit constraints. We have explicit constraints on the joint limits that prevent them from being
violated in the final solution.



Figure 2: Row 1: Optimizing simultaneous reaching and cylindrical grasp preshaping, and a secondary lift motion

with orientational constraints. Row 2: Optimizing reach and elliptical preshaping for a more abnormally shaped

object. Row 3: Optimizing motions around thin cylindrical objects using Gauss-Newton Hessians on geometric task

maps mapping the workspace to a 9-dimensional latent Euclidean space modeling workspace geometry. The first 6

images show the final configuration of the trajectory and the end-effector trail traced out by the motion; the final 4

images show a sequence of configurations for a single optimized trajectory moving among both cylinders.

• Obstacle constraints. All objects are modeled as analytical inequality constraints with a margin. The end-
effector, first knuckle, and second knuckle use margins of 0cm, 1cm, and 6cm, respectively; the lower and upper
wrist joints use margins of 14cm and 17cm, respectively.

• Goal constraint. Reaching the goal is enforced as a zero distance constraint on the goal proximity function.
This strategy generalizes the goal set ideas of [1].

The optimizations to grasp preshape configurations used the weighted average position of the fingertips
and palm as the end-effector and chose the goal as a point near the centroid of the object. A constraint
surface surrounding the object and reflecting the object’s general shape enforced that the fingertip positioning
conform to a preshape configuration around the object upon achieving the goal. The cylindrical object used
a cylindrical preshape surface in conjunction with final configuration orientation constraint to align the hand
to the principle axis of the cylinder; the cup used a simple elliptical preshape surface without orientation
constraints. Explicit quadratic potentials pulling the finger joints toward open and close positions at times
b.75T c and T , respectively, implement the open and close behavior of the hand as it approaches the object.
After achieving a successful preshape, the robot simply squeezes using compliant control (implemented
approximately here simply as torque limits on the fingers and inverse-dynamics of the full arm) in the
manner of a pinch grasp. Once kinematic control over the object has been achieved, the robot executes a lift
and extend motion additionally optimized by our motion optimizer. The cylindrical lift and extend motion
used explicit orientation constraints at each time step to keep the cylinder upright, while the cup lift and
extend motion did not. Both final motions used a uniform upward potential in the workspace to implement
the lift. We used Gauss-Newton Hessians wherever possible throughout this implementation.

The top two rows of Figure 2 show examples of the reach-preshape, grasp, and lift-extend motions. Each
of these motions were optimized starting from the zero motion trajectory in about .7 seconds.10 This sys-
tem focused on the motion generation component and did not use a vision system for object localization.
The results suggest that an optimization strategy targeting viable preshapes that conform to the general
contours of the object, in conjunction with compliant grasping strategies, may constitute a successful inter-
action approach for objects in unknown environments. A more extensive empirical analysis of this approach
integrating vision is the subject of future work.

10All speed quotes here are for unoptimized code running on a Linux virtual machine atop a 2012 Mac PowerBook—we
designed the optimization and modeling library for correctness and ease of use over speed.



The final row of the figure shows obstacle avoidance behaviors optimized using latent Euclidean task maps
mapping the workspace to a higher-dimensional space that encodes how environmental obstacles warp the
geometry of the workspace (see [9]). Each of these motions took between .3 and 1 seconds of computation,
using Gauss-Newton Hessians wherever possible.
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APPENDIX

1.1 Exploiting Rigid Body Structure

Here we provide some details on the decomposition leading to Equation 8. First, we note that by the
definition of center-of-mass,

xc =
1

M

∫
x(u)ρ(u)du =

1

M

∫ (
xc +

∑
i

uiei

)
ρ(u)du

= xc +
1

M

∑
i

(∫
uiρ(u)du

)
ei.

And since the set B = {ei}3i=1 forms an orthonormal basis, it must be that∫
uiρ(u)du = 0 for all i = 1, 2, 3. (17)

Now, expanding the kinetic energy expression, we get

1

2

∫
ρ(u) ‖ẋ‖2du =

1

2

∫
ρ(u) ‖ẋc +

∑
i

uiėi‖2du

=
1

2

∫
ρ(u)

(
‖ẋc‖2 + 2

∑
i

uiẋ
T
c ėi + ‖

∑
i

uiėi‖2
)

=
1

2
M‖ẋc‖2 +

∑
i

ẋTc ėi

∫
uiρ(u) du

+
1

2

∑
ij

(∫
uiuj ρ(u)du

)
ėTi ėj

The second term vanishes because of Equation 17, and the first and last terms, together, constitute Equa-
tion 8.

1.2 Relationship between the Distributional Inertia Matrix and the traditional
Inertia Matrix

It’s fairly straightforward to show, simply from the definition of the traditional inertial matrix11 I [12], that
the entries of the Distributional Inertia Matrix defined in Section 4 are given by

B =

[
1
2
(I22 + I33 − I11) −I12 −I13

−I21
1
2
(I11 + I33 − I22) −I23

−I31 −I32
1
2
(I11 + I22 − I33)

]
.

The off-diagonal entries of B are just the negatives of the off-diagonal entries of I, so B is diagonal if and
only if I is diagonal.

11Not to be confused notationally with the identity matrix—it’s common in physics and robotics literature to denote the
rigid body inertia matrix as I, so we follow that convention here.
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