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Sparse Gaussian process models provide an efficient way to perform regression on large data sets.
Sparsification approaches deal with the selection of a representative subset of available training data for
inducing the sparse model approximation. A variety of insertion and deletion criteria have been pro-
posed, but they either lack accuracy or suffer from high computational costs. In this paper, we present a
new and straightforward criterion for successive selection and deletion of training points in sparse
Gaussian process regression. The proposed novel strategies for sparsification are as fast as the purely
randomized schemes and, thus, appropriate for applications in online learning. Experiments on real-
world robot data demonstrate that our obtained regression models are competitive with the computa-
tionally intensive state-of-the-art methods in terms of generalization and accuracy. Furthermore, we
employ our approach in learning inverse dynamics models for compliant robot control using very large
data sets, i.e. with half a million training points. In this experiment, it is also shown that our approxi-
mated sparse Gaussian process model is sufficiently fast for real-time prediction in robot control.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, Gaussian processes (GPs) are a widely used non-
parametric Bayesian modeling technique [2]. In contrast to other
kernel approaches such as support vector machines (SVMs), see [3]
for more details, GPs offer a probabilistic framework. This leads to
predictive distributions for test points and model selection is easy to
achieve with standard Bayesian procedures. However, the applic-
ability of full Gaussian process regression (GPR) to large scale pro-
blems with a high number of training points n is limited due to the
unfavourable scaling in training time and memory requirements. The
dominating factors are usually Oðn3Þ cost for solving a linear system
and computing a logarithmic determinant with respect to a dense
covariance matrix KARn�n between all available training points and
the Oðn2Þ space required to store it in memory. Furthermore, the full
GPR model needs Oðn2Þ cost per predictive test point variance, as
well as OðdnÞ for predicting the mean, if a kernel evaluation costs
O dð Þ, where d is the data dimension.

To overcome these limitations in computational cost and sto-
rage requirements, many approximations to full GPR have been
proposed. In Fig. 1, an illustration showing different approximation
of the publication [1].
p, Corporate Sector Research
5 Stuttgart, Germany.
hreiter).
approaches is presented. Local GPR approaches, e.g. as proposed in
Nguyen-Tuong et al. [4], can be used to increase modeling per-
formance. These methods are based on a partition of the input
space, where for each region a local GP model is trained. On the
other hand, more sophisticated GPR approximation techniques
consider either approximations of the dense covariance matrix K
or focus on sparse likelihood approximations. For example, cov-
ariance matrix approximations such as the Nystrøm method [6]
can be employed to reduce modeling effort. Moreover, Fourier
kernel approximations [7] like the sparse spectrum GPR scheme
[8] directly consider an approximation of the specified covariance
function to increase computational speed. Additionally, various
sparse likelihood approximations have emerged recently, whose
relations have been formalized in the unifying framework [9]. The
fully independent training conditional (FITC) approximation [10]
uses a flexible subset of virtual training points to generate a sparse
GPR model and optimizes the virtual training points along with all
other hyperparameters. In contrast, the deterministic training
conditional (DTC) approximation selects a representative subset of
real training points, the so-called active points, that induces the
sparse likelihood approximation. A variational formalism for both
sparse approximation techniques, which leads to a regularized log
marginal likelihood for hyperparameter learning and the addi-
tional optimization of virtual training points with respect to the
FITC approximation plus a new greedy selection method for the
DTC approximation, is presented in [11]. Here, greedy schemes are
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Fig. 1. Relation between different approximation techniques for Gaussian process
regression. In this paper, we focus on the insertion and deletion strategies for the
deterministic training conditional (DTC) approximation. Note that this illustration
is by far not complete. For example, Gaussian process models based on network
architectures [5] are not considered in this overview.
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employed for the DTC approximation due to the high computa-
tional complexity of the optimal subset selection problem. A fast
information gain criterion for insertion of training points to the
active set is proposed in [12]. Smola and Bartlett, cf. [13], use a
computationally costly selection heuristic which approximates the
logarithmic marginal posterior probability. The same formalism as
the previous criterion is used in [14], while improving computa-
tional performance by using a simpler approximation of the pos-
terior probability. Quiñonero-Candela's [15] selection is based on
the increase in the log marginal likelihood of the sparse GP by the
insertion of a training point in the active subset. In [16], Csató and
Opper measure the projection-induced error in the reproducing
kernel Hilbert space (RKHS) and select the point which maximally
extends the spanned subspace of the RKHS. Based on this idea,
they also introduce a heuristic for deletion of training points from
the active set. They show that removing active points can con-
siderably reduce the prediction times for test points with only
slightly decreasing generalization accuracy. All of the insertion and
deletion methods mentioned above either lack computational
speed, have high memory requirements, or lack of modeling
accuracy. Moreover, if the regression model generation is based on
a purely randomized selection or on a method with a small ran-
domly selected subset of remaining training points for criteria
evaluation, e.g. as done in [11,13–15], the performance in hard
regression tasks deteriorates.

Our proposed novel sparsification method is closely related to the
inclusion heuristic by Smola and Bartlett [13]. However, by employ-
ing some reasonable assumptions, we are able to significantly reduce
the computational costs to the level of randomized selection, without
a huge loss in model accuracy. Compared to the deletion criterion by
Csató and Opper [16], our approach offers nearly the same prediction
performance with lower computing time.

The remainder of the paper is organized as follows. In the
following section, we introduce the sparse GPR setting and review
the state-of-the-art sparsification criteria for inclusion and
deletion. Our novel strategies for fast greedy insertion and dele-
tion are presented in Section 3. We also describe an efficient way
for learning the resulting hyperparameters with a generalized
expectation maximization (EM) algorithm in our specific setup. In
Section 4, we report on the results of our comprehensive com-
parison on several benchmark data sets for learning inverse
dynamics models. Furthermore, we demonstrate the real-time
applicability of our learned inverse dynamics models for a com-
pliant robot control task. Finally, in Section 5, we discuss the
results of our method and give directions for future work.
2. Sparse Gaussian process regression

Let D¼ y;Xð Þ be the training data set, where yARn is a vector of
noisy realizations yi of the underlying regression function f : Rd-

R with f ðxiÞ ¼ f i, obeying the relationship yi ¼ f iþεi with Gaussian
noise εi �N ð0;σ2Þ. Furthermore, the n training inputs xiARd are
row-wise summarized in XARn�d. Our goal is the construction of a
sparse GPR model for the underlying regression function. Csató
[17] and Seeger [18] laid the foundation for this sparse GPR model
under the DTC approximation which is presented below. We adopt
the notation by Seeger et al. [12] to facilitate the comparability of
the different criteria. Let I be the index set of size m of all active
points xi with iA I, i.e. training points that represent the sparse
approximation, and R be the index set of all remaining points, such
that I [ R¼ 1;…;nf g. The centered prior distribution over the
latent function values f IARm corresponding to the active subset is
then given by

P f I jX I
� �¼N f Ij0;KIð Þ with KI ¼ kðxi; xjÞ

� �
i;jA IARm�m: ð1Þ

Here, K I is the covariance matrix over the active training points
determined through the specified covariance function kij ¼ kðxi; xjÞ.
The sparseness of this method is introduced via a likelihood
approximation QI yj f I ;X

� �
that is optimized with respect to the

Kullback–Leibler divergence (KL-divergence) and induced through
the active training points which leads to

QI yj f I ;X
� �¼N yjPT

I f I ;σ
2I

� �
: ð2Þ

The projection matrix PI ¼K �1
I K I;�ARm�n, where K I;�ARm�n

comprises the covariance function values between all training
points ( �notation) and the active subset of training points, maps f I
to the prior conditional mean E P f j f I

� �� �¼K I;�TK
�1
I f IARn. With

Bayesian inference we get the approximated posterior distribution

QI f I jy;X
� �¼N f I jLM�1Vy;σ2LM�1LT

� �
; ð3Þ

which is proportional to the product of the prior in Eq. (1) and the
approximated likelihood in Eq. (2). Here LARm�m is the lower
Cholesky factor of K I , V ¼ L�1K I;�ARm�n, and M ¼ σ2IþVVT A
Rm�m for fixed I of size m. The approximated marginal likelihood
directly follows from the integration over the same product about
the active function values f I and results in

QI yjXð Þ ¼N yj0;σ2IþVTV
� �

: ð4Þ

The predictive distribution for a test point xnARd is given by

QI f n jxn; y;X
� �¼N f n jkT

I;nL
�TL�T

M βI ;knn� JL�1kI;n J2
�

þσ2 JL�1
M L�1kI;n J2

�
ð5Þ

with the Cholesky decomposition M ¼ LML
T
M , βI ¼ L�1

M VyARm, and
the covariance vector kI;nARm between the test input and the
active points. If only the predicted mean values are of interest, the
prediction vector αI ¼ L�TL�T

M βI can be precomputed to perform
computations of mean values with only O mdð Þ cost. Note that this
cost depends on the calculation of the vector kI;n and, thus, on the
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specified covariance function, and is typically proportional to the
input dimension d. The predictive variance is feasible in Oð�2Þ if
dom. The approximated posterior distribution for all training
points QI f jy;Xð Þ induced through the active subset indexed by I is
given by

QI f jy;Xð Þ ¼N f jVTL�T
M βI ; K�VTVþσ2VTM�1V

� �
ð6Þ

with the estimated mean vector μI ¼ E QI f jy;Xð Þ� �¼ VTL�T
M βIARn.

Due to the matrix–matrix multiplications, the training complexity
of this sparse GPR model is Oðnm2Þ. Predicting the mean for one
test point is feasible in OðdmÞ.

2.1. State-of-the-art strategies for sparsification

Before the various state-of-the-art insertion and deletion
schemes are presented, the most important symbols of the sparse
GPR technique are summarized in Table 1. Most of the GP
approximation techniques differ in the way, how the active set X I

is selected [9]. Sparsification deals with the insertion and deletion
of training points to or from the active set. Usually, the remaining
point xi with iAR that has maximum gain with respect to an
insertion criterion Δi will be selected. Analogously, we will remove
the active point from the current posterior model given by Eq. (6)
that has minimal loss with respect to a deletion criterion ∇i. In the
following, let I0 ¼ I [ i

� 	
. One of the simplest and fastest point

selection and deletion methods is to randomly select one of the
training points. This approach provides the baseline strategy to
which we compare all other methods.

Currently, one of the best selection methods with respect to
modeling accuracy is proposed by Smola and Bartlett. Their greedy
scheme [13] select the remaining point that maximizes the pos-
terior likelihood

P αjy;Xð ÞpP yjα;Xð ÞP αjXð Þ ¼N yjKα;σ2I
� �N αj0;Kð Þ ð7Þ

for the admission of the prediction vector αARn of the full GP
model under the given data set D. This likelihood approach is
based on the transformation of α¼K �1f and leads to the
Table 1
This table summarizes the most important symbols for the presented sparse GPR
approximation and the considered insertion and deletion strategies. A short
description provides additional information about the used notations.

Symbol Format Description

K n� n Full covariance matrix
K I m�m Covariance matrix induced by the active set of training

points
K I;� m� n Covariance matrix induced by the active set points and all

other training points
PI m� n Projection matrix PI ¼K �1

I K I;� which induces the sparse
approximation

L m�m Lower Cholesky factor of K I

V m� n Nystrøm factor for approximating the full covariance matrix
K

M m�m Short-hand notation for the matrix M ¼ σ2IþVVT

LM m�m Lower Cholesky factor of M

kI;n m� 1 Covariance vector induced by the active set points and the
test point xn

kI;i m� 1 Covariance vector induced by the active set points and the
remaining point xi

k�;i n� 1 Covariance vector induced by all training points and the
remaining point xi

αI m� 1 Prediction vector αI ¼ L�TL�T
M βI

βI m� 1 Short-hand notation for the vector βI ¼ L�1
M Vy

μI n� 1 Estimated mean vector μI ¼ VTL�T
M βI of the sparse GPR

model
equivalent formulation

τI ¼min
αI

τðαIÞð Þ ¼min
αI

1
2
αT
I LMLTαI�αT

I LVy

 �

¼ �1
2
βT
I βI ð8Þ

in the sparse sense as pointed out in [12], i.e. αR¼ 0. The decrease
in the sparse posterior likelihood derived from Eq. (7) defines the
selection criterion of Smola and Bartlett (SB), i.e.

SBΔi ¼ τI�τI0 ¼
1
2
β2
I0 ;i; ð9Þ

for each remaining point and with the new component βI0 ;i of the
updated vector βI0 ARmþ1. Due to the high computational cost of
OðnmÞ for the criterion calculation per remaining point, the cri-
terion is only evaluated for a randomly chosen subset of cardin-
ality κ. The authors of [13] recommend κ ¼ 59, which they justify
with a probabilistic argument. Nevertheless, they end up with high
computational cost of Oðκnm2Þ for the whole DTC approximation.
The conjugation of this selection heuristic defines the corre-
sponding deletion criterion

SB∇i ¼ SBΔi ð10Þ
which leads to cost of Oðm2Þ per active point.

To increase the performance of the former selection heuristic
from Eq. (9), a matching pursuit approach (MPA) which reduces
the computational effort but not the memory requirements is
presented in [14]. Here, the authors fix αIARm in the minimization
of τðαI0 Þ in Eq. (8) and only vary αI0 ;i with iAR. This yields the
insertion criterion

MPAΔI ¼ τI�min
αI0 ;i

τðαI0 Þð Þ ¼
kT
�;i y�μI

� ��σ2μI;i

� �2

2 σ2kiiþkT
�;ik�;i

� � ð11Þ

with covariance vector k�;iARn. However, despite the lower com-
putational cost of O dnð Þ per remaining point, on large data sets or
under high input dimensions they also select a randomized subset
of size κ for criteria evaluation to boost efficiency. An additional
matrix cache that contains for example κ rows of the full covar-
iance matrix K can help to speed up the criterion evaluations, but
increases the memory requirements considerably.

In [12], a very fast greedy criterion with computational com-
plexity of Oð1Þ per remaining point is proposed. Here, the infor-
mation gain (IG)

IGΔi ¼ KL½ ~Q I0 f jy;Xð Þj jQI f jy;Xð Þ� ð12Þ
is measured by the increase in the KL-divergence between the
current posterior distribution QI f jy;Xð Þ following from Eq. (6) and
an approximated one ~Q I0 f jy;Xð Þ after inclusion of the remaining
point xi. Thereby, couplings between the latent function value fi
and the targets y⧹i, i.e. without the i-th element, are ignored to
guarantee low computational costs.

The intention of the following greedy selection criterion by
Quiñonero–Candela (QC) is to increase the logarithmic marginal
likelihood φIðθÞ obtained from Eq. (4) by the inclusion of a
remaining point. This leads to the equivalent criterion

QCΔi ¼φI0 ðθÞ�φIðθÞ ¼ SBΔi

σ2 � log ðlM;iiÞþ log ðσÞ; ð13Þ

where only the change induced through the inclusion is con-
sidered, i.e. the hyperparameters θ are fixed during the selection
process, cf. [15]. More details for the adaption of hyperparameters
are presented in Section 3.2. As pointed out in Eq. (13), this
heuristic is closely related to the criterion in [13], since β2

I0 ;ip l�2
M;ii,

where lM;ii is the i-th diagonal element of LM . Consequently, this
criterion leads to the same computational cost of OðnmÞ per
remaining point and is also calculated for only a small randomly
selected remaining subset of size κ.



J. Schreiter et al. / Neurocomputing 192 (2016) 29–3732
The idea in [11] is the same as in [15], but a regularized loga-
rithmic marginal likelihood given through a variational (VAR)
framework is increased. This results in the criterion

VARΔi ¼ QCΔiþ
Jk�;i�VTL�1kI;i J2

2σ2 kii� JL�1kI;i J2
� � ð14Þ

for active point selection. The relation to the criterion in [15]
induces the same computational complexity of OðnmÞ per
remaining point.To increase performance, the disadvantageous
sub-sampling on a randomly chosen subset of remaining training
points is again required.

The last insertion criterion which we discuss here is introduced
in [17]. Csató (CS) defined his selection heuristic over the
projection-induced error in the RKHS specified by the covariance
function, see [3] for more details, which leads to

CSΔi ¼ kii� JL�1kI;i J2 ð15Þ
with covariance vector kI;iARm. Due to its relatively low compu-
tational cost of OðmÞ per remaining point, it is possible to evaluate
this criterion for all remaining points, which slightly increases the
overall complexity of the DTC approximation to Oðnm3Þ. Further-
more, in [16] Csató defined a greedy deletion criterion given by

CS∇i ¼ j CSΔiαI;i j : ð16Þ
The main difference between the deletion and selection heuristic
by Csató lies in the influence of the respective element of the
prediction vector αI . Since αI is known, we also need Oðm2Þ
arithmetic operations per active point, which is equally costly as
the removal heuristic by Smola and Bartlett in Eq. (10). Note that
the active point of the posterior model in Eq. (6) with minimal loss
in terms of a deletion criterion is always removed.
3. Maximum error criterion for sparse Gaussian process
regression

All the insertion and deletion methods discussed above either
lack computational speed, have high memory requirements, or
lack modeling accuracy. Moreover, if the regression model is
generated based on a purely randomized selection or on a method
with a small randomly selected remaining subset for criteria
evaluation, e.g. as done in [13–15], the performance in hard
regression tasks deteriorates. Our novel approach aims to provide
a favorable compromise between modeling accuracy, computa-
tional cost, and memory requirements.

3.1. Maximum error criterion for fast greedy insertion and deletion
of training points

In this section, we first discuss the successive inclusion of
training points into the active subset. To include a remaining point
xi with iAR in the active subset, we have to update the Cholesky
factors L, LM and the matrix V , respectively K I;�, the vector βI , and
the mean μI of the posterior distribution given in Eq. (6), as shown
in [12]. Thus, the cost for the sequential insertion in the m-th
iteration is OðnmÞ.

Similar to the method of Smola and Bartlett in [13], our approach
maximizes the posterior probability given by Eqs. (7) and (8). The
greedy scheme in Eq. (9) successively maximizes the Euclidean
norm of the vector βI0 . This task is equivalent to iteratively mini-
mizing Jy�μI0 J for the normalized vector y and, thus, approxi-
mately normalized μI0 , since we have JβI0 J

2 ¼ βT
I0βI0 ¼ yTμI0 after an

inclusion. Due to the equivalence of norms in finite dimensional
spaces, it holds true that Jy�μI0 Jrnmax8 j jyj�μI0 ;j j . In the limit,
i.e. with increasing m, we will approximately have μI0 � μI . Since
this convergence assumption holds only true for large m, we yield
not necessarily to an upper bound for the model error after an
inclusion. Nevertheless, we define

MEΔi ¼ jyi�μI;i j ð17Þ

as our new insertion criterion and select the remaining point that
has the maximal error (ME) under the current posterior model in
Eq. (6). This computationally efficient approach has Oð1Þ cost for
criterion calculation per remaining point. The convergence
assumption obviates the update of the posterior model for each
remaining point as needed for other selection criteria, e.g. in
[11,13,15].

In the following, we present our maximum error deletion cri-
terion for the removal of active points. Typically, the maximum
number of active points m is predefined, since it influences com-
puting time quadratically and memory requirements linearly. If a
stopping criterion for m is used, for example, by monitoring the
averaged square training error as in [12], deletion of appropriate
active points improves the predictive performance without sig-
nificantly deteriorating the existing model quality. The deletion
also provides a way to reduce redundancy in the greedily selected
active subset. Similar to the presented insertion strategy, we opt
for a greedy criterion to successively delete active points. Note that
deleting an active point does not necessarily lead to a state that
was previously encountered when iteratively inserting training
points. The reason is that the underlying assumptions for greedy
insertion and deletion differ considerably. While for the inclusion
strategies Cholesky updates are sufficiently fast and stable, QR-
downdates based on the factorization QR¼ LMLT are used for
deleting active points since they offer higher numerical stability.
This advantageous behavior is discussed in [19]. For our proposed
technique, the cost for deletion of one point is equal to its insertion
cost, i.e. OðnmÞ in the m-th iteration of the DTC approximation.
Inspired by the criterion in [17], we define our new deletion cri-
terion as follows. Beginning with an already selected subset
determined by I, we remove the active point with minimal value
regarding the deletion criterion

ME∇i ¼ jMEΔiαI;i j ; ð18Þ
where αI ¼ R�1Q TK I;�yARm. Note that we use the maximum error
MEΔi instead of the expensive projection-induced error CSΔI . Thus,
we obtain the same low complexity for a deletion criterion eva-
luation of Oð1Þ per active point. Here, we coupled the error of an
active training point in the current sparse model given by Eq. (6)
with its importance under prediction in relation to the behavior in
Eq. (7). So, our deletion criterion controls the current model
accuracy and the generalization capability.

Finally, for a better comparison the complexity of each pre-
sented insertion criterion is presented in Table 2. Thereby, the row
regarding to the memory effort describes only the storage amount
which is needed for the criterion calculation for only one
remaining training point. Since the FITC approximation depends
not on a selection criterion, the respective entries in the presented
table are empty.

3.2. Generalized expectation maximization for learning
hyperparameters

The presented sparse GPR model depends not only on the
active points xi with iA I, but also on the hyperparameters of the
specified covariance function and the variance σ2 of the Gaussian
noise model. Let the vector θ denote the collection of all hyper-
parameters. For the sake of notational simplicity the dependency
of the above formulas on θ was neglected. The adaptation of the
hyperparameters can be realized by gradient based optimization



Table 2
This table summarizes the computational complexity and storage requirements of the discussed sparse GPR approximation methods. The memory row describes only the
additional needed storage amount for criterion calculation based on the already determined predictive model (6). Nevertheless, the practical memory effort and
computational performance of each method depends very strongly on their implementation, especially for the last four intelligent selection schemes.

Complexity FITC DTC insertion criterion

ME IG CS MPA SB QC VAR Random

Criterion – Oð1Þ Oð1Þ OðmÞ OðdnÞ OðnmÞ OðnmÞ OðnmÞ Oð1Þ
Complete O nm2

� �
O nm2
� �

O nm2
� �

O nm3
� �

O nm2
� �

O κnm2
� �

O κnm2
� �

O κnm2
� �

O nm2
� �

Memory – Oð1Þ Oð1Þ OðmÞ OðnÞ OðnÞ OðnÞ OðnÞ Oð1Þ
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algorithms that maximize the logarithmic marginal likelihood

φIðθÞ ¼ log QI yjX;θ� �� �¼ �ðn�mÞ log ðσÞ

�
Xm
i ¼ 1

log ðlM;iiÞ�
1

2σ2 yTy�βT
I βI

� �
�n
2
log 2πð Þ ð19Þ

obtained from Eq. (4). The values lM;ii are the diagonal entries of
the Cholesky factor LM . In [11], the author uses a regularized ver-
sion of the above logarithmic marginal likelihood, i.e.

VARφIðθÞ ¼ φIðθÞ�
1

2σ2 trace K�VTV
� �

; ð20Þ

described through his variational (VAR) approach. This additional
regularization term leads to correcting the Nystrøm approxima-
tion of the full covariance matrix in the hyperparameter learning
process and gives a lower bound to the true logarithmic marginal
likelihood in Eq. (19) of the DTC approximation, cf. [11]. One
problem encountered when maximizing φIðθÞ or φIðθÞ in the var-
iational framework, respectively, is their dependence on the active
subset of training points determined by I. To solve this problem,
we take alternating constrained optimization steps in an expec-
tation maximization manner employing the theory of [20]. Then,
the expectation step for estimating the new posterior distribution
QInew f Inew jy;X;θ

� �
from Eq. (3) with fixed hyperparameters θ is

given by

QInew f Inew jy;X;θ
� �¼ argmin

QI ðf I j y;X;θÞAQI ðy;X;θÞ
KL QI f I jy;X;θ

� �
JQI y; f I jX;θ

� �� �
: ð21Þ

Here, the posterior distribution in the expectation step in Eq. 21
regarding the KL-divergence is conditioned on the probability
distribution QIðy;X;θÞ. That is the approximated posterior, which
is induced by an active subset of size m. This condition is handled
with a fixed final size m of the active subset in the greedy selection
process. Furthermore, the maximization step results in

θnew ¼ argmax
θ

Ef I j y;X;θ log QI yjX;θ� �� �� � ð22Þ

to determine an updated set of hyperparameters θnew. The max-
imization step in Eq. (22) is realized with only few gradient ascents
on the logarithmic marginal likelihoods from Eq. (19) or (20) with a
fixed active point set X I , respectively. In this case, the repeated
alternating computation of the E- and M-steps leads to a generalized
EM algorithm, since we only increase the logarithmic marginal
likelihood. Since the generalized EM algorithm converges to local
maxima, the choice of the active training points is important in order
to obtain a good set of hyperparameters θ. For the selection of the
active subset we employ our efficient maximum error criterion to
keep the hyperparameter learning fast and stable.
4. Evaluations

In this section, we compare our maximum error insertion and
deletion criteria with other methods for the DTC approximation
presented in Section 2. Furthermore, we also consider the FITC
approximation given in [10] to present an extensive comparison.
For all experiments, we use the stationary squared exponential
covariance function

kðxi; xjÞ ¼ σ2
f exp �1

2
ðxi�xjÞTΛ�2ðxi�xjÞ


 �
ð23Þ

with magnitude σ2
f and automatic relevance determination, i.e.

with one lengthscale parameter λl per input dimension l in the
diagonal matrix ΛARd�d, see [2]. The accuracy of the methods
under consideration is measured by the normalized mean square
error (NMSE), cf. [4].

4.1. Comparisons on learning inverse dynamics models

Here, a real benchmark data set from the 7 Degree of Freedom
(DoF) SARCOS master arm (13922 training and 5569 test points),
and a simulation data set from the SARCOS model (14904 training
and 5520 test points) are used for validation, see [4,21]. Each point
of the data sets has 21 input dimensions, i.e. position, velocity and
acceleration in joint space, and 7 targets, i.e. one torque for each
joint of SARCOS robot arm, see Fig. 3(c) . The goal is to learn the
inverse dynamics models, i.e. the mapping from position, velocity
and acceleration to corresponding torque for each joint. Both robot
data sets contain independent training and test points for all DoF's.

The convergence trends with respect to the NMSE for all dis-
cussed sparse GP approximations on the first DoF from the real
SARCOS test data are shown in Fig. 2(a) and (b). Here, for all DTC
type approaches, the hyperparameters were learned with ten EM
steps and randomized active point selection up to a final set size of
m¼2000. For a fair comparison, we adapt the number of gradient
steps in the FITC approximation linearly with increasing virtual
training points, i.e. we use 150þm

4 optimization steps, as the
number of hyperparameters in the FITC approximation also grows
linearly with m. The NMSE results for randomized selection in the
DTC approximation are averaged over ten runs. The learning times
and training times for the different sparsifications are further
shown in Fig. 2(c) and (d), respectively. As shown by the results,
the costs for insertion are similar for Smola and Bartlett [13] and
Quiñonero–Candela [15], as pointed out in Section 2.1. The varia-
tional framework in [11] leads to constantly higher effort in the
learning process, e.g. compared to the curves in [13,15], since the
regularization term increase the cost of gradient based optimiza-
tion techniques. We always use a remaining set size of κ ¼ 59 to
speed up the criteria calculation of the methods above. Our
maximum error approach outperforms all DTC selection criteria
with respect to training times with low NMSE on test data, see
Fig. 2(e). For large active set sizes, we nearly reach the same
accuracy as the more costly selection heuristics in [13,15] and
outperform the matching pursuit approach from [14], see Fig. 2(a).
But our selection criterion performs also very well for small active
set sizes, which empirically justify the adopted assumptions in the
derivation of the maximum error (ME) strategy. As shown by the
right column in Fig. 2, we outperform the DTC deletion criterion
from Smola and Bartlett [13] and the randomized version in term
of generalization accuracy. Our approach also yields the best
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Fig. 2. Learning results as NMSE and learning times for the first DoF. The evaluation is performed on the SARCOS test data for different sparse GPR approximations, i.e. by
Smola and Barlett (SB) [13], Seeger (IG) [18], Titsias (VAR) [11], Keerthi and Chu (MPA) [14], Quiñonero-Candela (QC) [15], and Csató (CS) [16]. The right column shows
performances of different deletion criteria of the DTC approximation. Our novel strategy (ME) gives the best trade-off between low computing times and accurate prediction.
As shown in Fig. 2(e), our approach yields the lowest learning curve and, thus, provides the best trade-off between model accuracy and computation time.
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compromise between low computational effort and high predic-
tion precision, as shown in Fig. 2(f). In Fig. 2(b), DTC þ Random
(training) describes the convergence trend dependent on the
randomized sparse GP model generation which builds the base for
the subsequent evaluated deletion criteria. Thus, in Fig. 2
(d) presented deletion times depend on the current set size of
m¼2000 and it would be helpful to read all plots in the right
column from right to left. Note that all deletion schemes yield
better NMSE results than the simple, randomized deletion.

In Fig. 3, we compare our maximum error selection method for
the sparse DTC approximation and the FITC approximation [10]
with other established regression procedures on all DoF's for real
and simulated SARCOS test data. The results for the other methods,
i.e. local Gaussian processes (LGP), ν-SVR, GPR, and random
Fourier regularized least squares (RFRLS), are taken from [4] and
[22]. For comparison, we also employ a final set size of m¼2000
active or virtual training points for both sparse GP approximations.
We again use ten generalized EM steps for hyperparameter
learning of the DTC approximation and 650 gradient ascents for
optimization of virtual training points with subsequent prediction.
The higher errors for the fifth and sixth DoF on the real SARCOS
test data are due to more complex non-linearities in these DoF, e.g.
induced by their joint inertia. Compared to these regression
algorithms, our approach is efficient and one of the best per-
forming methods. Compared to the FITC approximation, we have
much less effort for sparse model selection with higher general-
ization accuracy.

4.2. Compliant and real-time tracking control

In this section, we employ learned inverse dynamics models for
a real-time tracking control task [23] on a PR2 robot, as shown in
Fig. 4. Here, the model-based tracking control law determines the
joint torques y for each of the seven DoF's necessary for following
a desired joint trajectory xd, _xd, €xd, where x, _x, €x are joint angles,
velocities and accelerations of the robot, as shown in Fig. 5. This
control paradigm uses a dynamics model, while employing feed-
back in order to stabilize the system. Here, the dynamics model of
the robot can be used as a feed-forward model that predicts the
joint torques yff required to perform the desired trajectory, while a
feedback term yfb ensures the stability of the tracking control with
a resulting control law of y¼ yff þyfb. The feedback term can be a
linear control law such as yfb ¼ GPeþGD _e , where e¼ xd�x denotes
the tracking error and GP as well as GD position-gain and velocity-
gain, respectively. If an accurate inverse dynamics model can be
obtained, the feed-forward term yff will largely cancel the robot's
non-linearities [24]. In this case, the gains GP and GD can be chosen
to have small values enabling compliant control performance [25].

To obtain a global and precise dynamics model, we sample
517.783 data points with a frequency of 100 Hz from the right arm
of the PR2 robot. Furthermore, we train a sparse GP model given
through the DTC approximation with our maximum error (ME)
criterion for each of the seven DoF's. Thereby, the hyperpara-
meters are always learned with 10 generalized EM steps, as
explained in Section 3.2. We choose a final active set size of
m¼1000, which is sufficient to reach a good model quality while
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yielding prediction times of less than 3 ms for all seven DoF's.
Hereby, we are able to perform tracking control in real-time at
100 Hz. In Fig. 6(a), the percentage on total torque for each DoF of
the PR2 robot arm is shown, where the gains for feedback control
are chosen very small in order to enable compliant control. The
contribution of our sparse GPR model, i.e. approximated with DTC
þ ME, to the control effort is usually far over 50%. Here, a high
contribution to the control effort indicates a well approximated
model, since the feedback control loop does not need to strongly
intervene during the control task. The corresponding tracking
performance in task-space is presented in Fig. 7 for three test
trajectories, e.g. circle-, eight- and star-shape. Here, we compare
the low gain feed-forward control using the learned dynamics
model with the standard PD-control scheme. The results with
respect to the root mean square error (RMSE) are shown in Fig. 6
(b). It can be seen that, applying learned dynamics models, we
obtain compliant tracking control, and, at the same time, have
tracking accuracy comparable to the high gain PD-control scheme.
5. Conclusion

In this paper, we proposed a very fast greedy insertion and
deletion scheme for sparse GPR or, more precisely, for the DTC
approximation. Our criterion is based on the maximum error
between model and training data, inspired by [13] and [16]. It
leads to a stable and efficient way for automatic sparse model
selection. The primary advantage of our maximum error greedy
selection is the combination of high accuracy with low computa-
tional costs for criterion calculation for all remaining points.
In contrast, the insertion methods in [11,13–15] have to select a
small random subset of remaining points for criterion evaluation.
This random restriction can lead to poorer results, especially on
harder regression tasks. Even without caching, we are nearly as
fast as a randomized insertion. For the removal of active points our
approach almost reaches the accuracy of Csató's deletion method,
outperforms the deletion criterion in [13], and is still nearly as fast
as a randomized removal. Compared to the FITC approximation
[10], all DTC methods lead to higher prediction accuracy and lower
learning times. Further results on a real PR2 robot show that the
proposed method can be employed for compliant, real-time robot
control.
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