
Relational Activity Processes for Modeling Concurrent Cooperation

Marc Toussaint1 Thibaut Munzer2 Yoan Mollard2 Li Yang Wu1 Ngo Anh Vien1 Manuel Lopes2

Abstract— In human-robot collaboration, multi-agent do-
mains, or single-robot manipulation with multiple end-effectors,
the activities of the involved parties are naturally concurrent.
Such domains are also naturally relational as they involve
objects, multiple agents, and models should generalize over
objects and agents. We propose a novel formalization of re-
lational concurrent activity processes that allows us to transfer
methods from standard relational MDPs, such as Monte-
Carlo planning and learning from demonstration, to concurrent
cooperation domains. We formally compare the formulation to
previous propositional models of concurrent decision making
and demonstrate planning and learning from demonstration
methods on a real-world human-robot assembly task.

I. INTRODUCTION

Our work is primarily motivated by a human-robot col-
laborative domain where the robot has two manipulators to
assist a human in assembling a piece of furniture. In this
domain, the two hands of the robot as well as those of
the human can be conceived as agents that execute multiple
actions in concurrency. Fluently assisting the human requires
to plan ahead, ensuring that pieces are fetched in time,
and actions are initiated and terminated at the right times.
However, beyond this concrete application, concurrency is
a very natural aspect of robotic domains in general. Any
realistic robot system (say, implemented with ROS) will
involve concurrently running activities. One activity might
execute a motor primitive controller, another activity might
control the camera pose, and also perceptual processes such
as tracking an object or actively reducing uncertainty about
an object pose can be conceived as a concurrently running
activities. While the coordination of such processes could
be thought of as a software engineering issue, we think that
reinforcement learning and probabilistic planning methods
should be scalable to become applicable to such concurrent
activity domains in general.

In this paper we propose a novel formalization of relational
concurrent activity processes. While previous formulations
such as coarticulation, concurrent action models (CAM) [13]
and Concurrent MDPs (CoMDPs) [9] describe policies as
choosing multi-actions, we describe a decision process in
which different agents may initiate or terminate activities at
different times, and which exploits a relational representation
of the current activity state. We will review previous formu-
lations in detail in the following section, none of which have
addressed relational domains.

This work was supported by the 3rdHand EU-Project FP7-ICT-2013-
10610878.

1Machine Learning and Robotics Lab, University of Stuttgart, Germany.
marc.toussaint@informatik.uni-stuttgart.de

2INRIA Bordeaux, France. firstname.lastname@inria.fr

Fig. 1. A robot concurrently uses its two arms to assist a human by feeding
parts and by holding objects while the operator screws them together. See
video at https://vimeo.com/139342248).

In a relational domain the state is described in terms of
properties of, and relations between “objects”. Models of the
environment (the transition dynamics and reward function)
as well as policies generalize over objects and naturally
generalize to domains with different and varying number of
objects. Therefore, statistical relational learning (regression
& classification learning in relational domains [11]) as well
as relational reinforcement learning (rRL) (including model-
free rRL [4], model-based rRL [8], and inverse rRL [10])
showed great success in scaling to much larger domains than
what would be possible with propositional representations.

In our case of concurrent cooperation, the “objects” we
want to generalize over are not only real objects, but also the
agents: The two hands of a robot both can potentially execute
the same action if the preconditions are met. It is there-
fore particularly natural to express multi-agent cooperation
domains (as well as policies and learned reward functions)
in relational terms. Formally, objects as well as agents are
equally represented as constants in the underlying first-order
logic.

The main contributions of this work are, first, to propose
a novel formalization of relational concurrent activity pro-
cesses that is well-suited to model concurrent cooperation.
To our knowledge, this is the first formulation that consid-
ers initiation/termination decisions to describe the Markov
process and exploits the relational state representation for
this. When constraining the formalism to the propositional
setting we show that it is at least as general as the existing
concurrent action model (CAM) [13]. Second, to transfer
existing Monte-Carlo (MC) planning as well as learning
from demonstration methods [10] to the concurrent relational
domain using this formalism. The MC methods not only
allow us to estimate optimal decisions, they also provide
a reward-weighted expectation over future decisions, for
instance allowing the system to anticipate future activities of

https://vimeo.com/139342248

other agents, especially the human. And third, to demonstrate
the proposed methods on a real-world human-robot assembly
task, where the system uses either the MC planner or
a relational policy learned from demonstrations to initiate
concurrent activities that assist the human.

In the following section we first briefly sketch the ap-
proach of the formalization and explain our distinct use of the
words action, activity, and decision throughout the paper, to
avoid confusion. Based on this we can discuss related work.
In Section III we present our model in detail and discuss
the relation to CAM and STRIPS. Due to this formalization,
MC planning (Section IV) and learning from demonstration
(Section V) can efficiently be transferred to the concurrent
setting. In Section VI we report on the real-world human-
robot collaboration experiments.

II. OVERVIEW & RELATED WORK

A. Overview
In standard Markov decision processes (MDPs), the de-

cision variables are called actions, which have no duration
(beyond one step) or concurrency. One of the standard gen-
eralizations to the concurrent setting, the concurrent action
model (CAM) [13], introduces multi-actions (tuples M of
concurrent actions). CAMs are a semi-MDP where the state
variable is as before while the decision variable is a multi-
action for each phase, phases last for multiple steps, and the
termination time of a phase is stochastic.

In our formalism we instead speak of concurrent activities,
and the set M of currently running activities is part of
the relational state. A decision is the initiation or termi-
nation of an activity by only one or few agents. Every
such decision corresponds to a step of the underlying semi-
MDP on the relational state, but only certain decisions
lead to a real time duration. While in terms of the semi-
MDP, all decisions are sequential, in terms of real time, the
initiation and termination of activities may be synchronous
or asynchronous and activities arbitrarily concurrent. Policies
are single- or multi-agent initiation/termination rules instead
of multi-action decision rules.

To avoid confusion, we therefore use the word action only
when referring to the existing CAM model; in our framework
we only speak of activities and initiation/termination deci-
sions.

B. Related Work
We mentioned the CAM framework of Rohani-

manesh et al. [13] before and will discuss it in detail
when explicitly relating it to the proposed formulation in
Section III-C. Another core reference for concurrent action
planning is [9], which discusses reductions of Concurrent
MDPs (roughly, MDPs with multi-actions) and Concurrent
Probabilistic Temporal Planning (CPTP) (planning with
durative multi-actions) to planning in MDPs with extended
state spaces. The relation or difference to CAM, especially
between the aligned and interleaved epoch reductions of
CPTPs and the any, all, and continue schemes of CAMs
is not explicitly clarified in [9], but they are very similar.
Therefore our later comparison also holds w.r.t. CPTP.

Concerning planning algorithms, [14] propose Temporal
GraphPlan (TGP), [15] present a Generate, Test and Debug
(GTD) algorithm, and [9] evaluate Real Time Dynamic
Programming (RTDP) on the various MDP-reductions. [1]
improves on this based on policy gradient methods. We
are not aware of previous work using Monte Carlo (MC)
methods, despite the recent success of MC methods in very
large domains and games [3].

While concurrency has been extensively considered in a
planning context, it has received less attention in a reinforce-
ment learning context. Relational reinforcement learning [4],
[8] has demonstrated the great benefit of exploiting relational
representations in respective domains. But it has not yet
been leveraged to learn in concurrent cooperative domains.
Similarly, Munzer et al. [10] presented efficient methods for
inverse reinforcement learning in relational domains. The
purpose of our work is to allow us to transfer these to the
concurrent cooperation setting.

In summary, to our knowledge our formalism is the first
to reduce concurrent cooperation planning to semi-MDPs
by focusing on sequential initiations/terminations instead of
multi-actions, considering the activity as part of the relational
state, and leading to a considerably simpler formulation by
avoiding the need to formalize mutexes. Further, existing
formulations have not exploited a relational representation to
represent the activity state. We are not aware that previous
formulations have enabled to transfer MC planning and
inverse RL to concurrent cooperation domains, or demon-
strated their application in real-world robotic manipulation.

III. RELATIONAL ACTIVITY PROCESSES (RAPS) FOR
MODELING CONCURRENT COOPERATION

For brevity we first describe RAPs in the deterministic
case. However, the reader familiar with non-deterministic
decision rules [16] will anticipate how we represent stochas-
ticity by probabilistic effects of all rules. The stochasticity
of activity durations is less trivial and needs to be discussed
in more detail later.

We consider a relational domain with a set of predicates
P. For a given set of constants C (referring to objects, agents,
activities, and other constants) the state s is the conjunction
of all true grounded literals.

A RAP is a semi-MDP on the state s, which we define
in the following by first defining the decision set D(s) in
each state, the transition function (s, d) 7→ s′ (below, the
transition probabilities P (s′|d, s)), then the duration model
(s, d, s′) 7→ τ that defines the real-time duration of a Markov
step and the reward function (s, d, τ, s′) 7→ r. Finally we
define optimality of a policy.

Decision Set: Given a set A ⊆ C of activity constants, for
each activity a ∈ A there exist one or multiple initiation
operators

oi(a, X̄) : prei(a, X̄)→ go(a, X̄) = τa, posti(a, X̄)

as well as termination operators

ot(a, X̄) : pret(a, X̄)→ ¬go(a, X̄), postt(a, X̄)

where X̄ is a tuple of logical variables, prei(a, X̄) a
precondition (as in STRIPS), go ∈ P a special real-valued
predicate detailed below, τa ∈ R an expected duration, and
posti(a, X̄) a list of effects (as in STRIPS). For instance

start(pickup X Y):
{ (go pickup X Y)! (hand X) (object Y)

(inhandNil X) (busy X)! (busy Y)! }
{ (go pickup X Y)=2.1 (busy X) (busy Y) }

describes the option of agent X to initiate picking up Y .
In general, initiation and termination operators may (with
X̄) refer to a single agent or multiple agents1, and single or
multiple objects or constants. In state s, the decision set D(s)
includes all grounded initiation and termination operators
s.t. s |= pre(a, X̄). In addition, the decision set includes
a single special decision, the wait decision.

Transition model: Given state s, if the decision d ∈ D(s) is
a feasible grounded initiation decision oi(a, x̄), we define an
intermediate state as ŝ = posti,a(x̄) ◦ s, which applies the
effects of the operator on s. We further assume a knowledge
base KB that includes a set of first-order rules

r(X̄) : prer(X̄)→ postr(X̄) .

The new state s′ is given by the stable model under this KB
(cf. answer set programming), that is, the result of forward
chaining all rules on ŝ until convergence. Analogously, if the
decision is a feasible grounded termination decision ot(a, x̄).

In the other case, when the decision is wait, the se-
mantics is that all agents decide not to initiate or terminate
anything further, and that real time progresses until the
relational state changes and activities might terminate. We
discuss below how this relates to the any scheme in CAM.
We concretely define the state transition for a wait as the
following procedure:

1) Find the go-predicate with the minimal time-to-go
value τmin.

2) Decrement all go-predicate-values by τmin.
3) All zero-valued go-literals, go(a, x̄), are deleted from

ŝ and a corresponding the terminate(a, x̄) is added
to ŝ.

This defines the intermediate relational state ŝ. Again, the
new state s′ is defined as the stable model under ŝ∧KB. The
KB is assumed to include the rules that express the effects
of termination.

Duration model: In the context of hierarchical RL and
the standard CAM, steps of the sMDP correspond to the
execution of an option, and the duration of the sMDP step is
integer-valued, counting the steps of the underlying MDP.
However, in general sMDPs the duration of one Markov
step is real-valued, arbitrarily depending on (s, d, s′). In
the concrete case of RAPs we assume that initiation and
termination decisions themselves have zero duration, while τ
is equal to τmin for the wait decision and therefore implicitly
given by the go predicates in initiation operators.

1Some activities inherently involve multiple agent, such as one hand
handing over an object to another hand.

Reward model: Rewards in RAPs are generally given as
a relational mapping (s, d, τ, s′) 7→ r. In our applications
we represent this as a relational regression tree over (s, s′)
(e.g., to reward switching to a success state) and a separate
(negative) reward function over τ , which are both added to
define r.

Optimality: Unrolling a policy generates an episode
(s0, d0, τ0, r0, s1, ..). We define the discounted return for an
episode as

R =

∞∑
i=0

γ τ̄iri , τ̄i =

i∑
j=1

τj . (1)

The objective is to find a policy that maximizes (the expec-
tation over) this return.

A. Stochasticity

State transition stochasticity in RAPs is represented by
probabilistic effects of initiation operators as well as KB
rules, exactly as done in NDRs [16]. We propose to generally
define duration stochasticity via P (τa,x̄ | s, a, x̄), that is,
the probability over the time-to-go of an activity (a, x̄)
depending on the current state. Let M(s) = {(a, x̄) | s |=
go(a, x̄)} be the set of current activities in state s (that is, the
multi-action in the conventional formalisms). Then we define
the effect of the wait decision by the stochastic procedure:

1) Sample a τa,x̄ ∼ P (τa,x̄ | s, a, x̄) for each (a, x̄) ∈M
2) Select the minimal τmin of these.
3) For all τa,x̄ = τmin, delete the go(a, x̄) literal and add

the terminate(a, x̄) literal to ŝ
4) For all τa,x̄ > τmin, modify the value of the go(a, x̄)

literal such that E{τa,x̄ | s, a, x̄} reduces by τmin.
In practice, we use Gaussians with the mean defined by the
go(a, x̄)-value, which makes the last step simple to realize.

B. Generalization and Comparison to STRIPS

The above formulation differs from standard STRIPS (or
its stochastic version, NDRs [16]) essentially in the wait
operator and respective treatment of the go-predicate, as well
as that the new state is the stable model under an additional
knowledge base KB. We introduced the latter for representa-
tional convenience, allowing for a significantly more flexible
declaration of environments. The wait operator, however,
seems essential for the description of concurrent processes
as it defines the relation between Markov steps and real time.
This is out of the scope of what could be represented in plain
STRIPS frameworks.

The special semantics of the initiation and termination
operators, and that they necessarily need to set/delete a go-
predicate, can be relaxed. An alternative formulation is the
following: The rules in the KB are labeled as either “decision
rules” or “auto rules”; decision rules are applied when the
respective decision is made, auto rules are forward-chained
as above to find the next stable model. The decision set is
then the set of grounded decision rules s.t. s models prer
plus the wait decision. What we introduced as initiation
and termination operators become special case decision rules.

However, the explicit definition of initiation and termination
operators clarifies the semantics in concurrent activity pro-
cesses.

C. Comparison to Concurrent Action Models

The above formulation is a reduction of concurrent action
planning in relational domains to sequential decision making
in a relational sMDP. A plan (or unrolling of a reactive
policy) will give a sequence of decisions, each referring to a
different agent (or set of agents), that can be interpreted by
a robot either as own decision or as anticipation of the other
agent’s decision. This is in contrast to multi-action policies,
where it remains somewhat unclear how a single agent should
actually react (do his own, single-agent decision) given that
the another agent is observed to initiate his own activity.

We want to compare RAP in more detail to the Concurrent
Action Model (CAM) as presented in [12]. This comparison
becomes most explicit by reducing a CAM model to a RAP
model:

Proposition 1: Every CAM process can be represented as
a RAP; an optimal policy of this RAP can be translated back
to an optimal CAM-policy.
We sketch a prove of this proposition by construction,
making the reduction explicit. To this end we limit our RAP
model to the case of a propositional state s. We first consider
the decision set. In CAM, the decision space is the set of
multi-actions M ∈ M(s) ⊆ A∗ in a subset M(s) of the
power set of the action set A. The subset M(s) depends on
the state and is defined via mutex conditions, expressing that
certain actions cannot be chosen concurrently (potentially
depending on s). In RAP, let us define a decision episode as
a sub-sequence of decisions D = 〈d1, .., dm,wait〉 where
all decisions di are initiation or termination decisions, except
for the last, which is a wait. We need to show that the
preconditions of initiation operators can be chosen such that
every feasible multi-action decision M can be reproduced by
a decision episode D, and that feasible D exist that create an
infeasible M . In other words, can the preconditions express
constraints that are equivalent to the mutex conditions. If
the preconditions are general propositional logic expressions
this is clearly the case. But in the concrete case of mutex
conditions that are literally mutexes of pairs or tuples of
actions, this can very naturally be encoded as negative literals
in initiation preconditions. Therefore we can construct an
equivalence between M(s) in CAM and the set D(s) of fea-
sible decision episodes in RAP. If the constructed initiation
precondition allow for all possible permutations of initiation
decisions, the D is larger than M. This could be excluded
by construction. However, even then a specific policy in
RAP can always generate decision episodes equivalent to
any multi-action decision.

In CAM, the transition and duration model is jointly and
very generally given in terms of P (τ, s′ | M, s) for τ ∈ N.
We can reproduce this in RAP by creating rules in the KB that
reproduce this transition whenever the last wait decision of
a decision episode generates a terminate predicate; as
the state s̄ in RAP includes all information of (s,M) in

CAM, any (probabilistic) mapping from (s,M) to s′ can
be realized by the KB. An interesting aspect of the CAM
model are the three alternative termination schemes any, all,
and continue (see [12] for details). The any scheme can be
reproduced in RAP when the KB “deletes” all go literals
(empties M) on a wait; the continue is reproduced simply
by not deleting all go literals; and the all by introducing
a blocked predicate that renders all initiations infeasible,
becomes true after wait if there are still activities, and
false if there are none left. Note that all three schemes are
reproducible only by initiation decisions; allowing also for
termination decisions generalizes these schemes.

In terms of the reward and notion of optimality, CAM
and RAP do not differ. In conclusion, every CAM can be
expressed as a RAP. Assuming that a RAP planner computes
and optimal RAP-policy, it is straight-forward to construct
a CAM-policy that chooses the multi-action M to be the
activity state M(s) after an decision episode D of the RAP-
policy.

IV. MONTE-CARLO PLANNING IN RAPS

A standard approach to planning in single-agent non-
concurrent relational domains is UCT (UCB1 applied to
Monte-Carlo Tree Search) [7]. As our formulation sequen-
tializes the decision process we can readily apply UCT
or other MCTS variants also for planning in concurrent
relational domains. For the purpose of the experiments in
this paper we utilized the simplest option, namely plain MC
estimates of the Q-function over the decision set D(s) in
every step. We empirically found in our specific domains that
plain MC behaves more robust than other MCTS variants
(UCT using MC backups and plain UCB1, UCT using
Bellman backups and UCB1 [6]) in terms of not getting stuck
in sub-optimal tree branches. We believe this to be a rather
special effect of the domains we consider, where “success” is
rare. Further, plain MC has the advantage of allowing us to
also compute an unbiased reward-weighted distribution over
future states and decisions, for instance allowing one agent
to anticipate the future decisions of another.

For generating finite rollouts we need to decide on a ter-
mination condition. In many domains, including our example
domains, there is a natural termination condition reflecting
success or failure. In addition, we always terminate a rollout
in a dead-end state which we define as a state without go-
predicates (no current activities) and D(s) = {wait}. If
no natural termination conditions are given, one typically
constrains rollouts to a maximal horizon H . If rewards are
bounded (as they need to be for UCB1) and γ < 1, one can
choose H to ensure a small upper bound on return that could
be collected beyond H .

Finally, when comparing to CAM we mentioned that
the outcome of decision episodes may be invariant under
permutation of initiation or termination decisions. This seems
to introduce large redundancy in the decision tree in com-
parison to a tree spanned by CAM-multi-actions. While in
plain MC this redundancy has no effect, in general MCTS
multiple nodes are created for the same state (the effect of a

decision episode) which compromises the efficient collection
of statistics for this node. This can be corrected for by
modifying MCTS to become somewhat like graph search:
after a wait decision we uniquely sort the decision episode
and hash if the same has been sampled before.

V. LEARNING FROM DEMONSTRATION IN RAPS

As for planning, the RAP formulation allows us to transfer
existing learning methods to the relational cooperation sce-
nario. We consider both, Direct Policy Learning and Inverse
Reinforcement Learning (IRL).

A. Direct Policy Learning

For direct policy learning we consider a data set D =
{(si, di)}Ni=0 of state-decision pairs from expert demonstra-
tions. Recall that in our case these are multi-agent concurrent
activity demonstrations where di encodes which agent is (or
agents are) initiating or terminating which activity. From
this data we learn a policy π : s 7→ d that predicts expert
decisions for a novel state.

We propose to use TBRIL [11] within the RAP framework
to learn a relational cooperation policy. The TBRIL algorithm
represents the policy as a relational regression tree and uses
gradient tree boosting [2], [5] to train the model. The training
objective is the likelihood under the probabilistic policy
model

π(d|s) =
eβψ(s,d)∑

d′∈D(s) e
βψ(s,d′)

,

where ψ(s, d) are the features implicitly defined as the leaves
of the regression trees.

B. Inverse Reinforcement Learning

In inverse reinforcement learning (IRL) we are given ex-
pert demonstrations and assume a generative model that con-
siders these demonstrations as optimal w.r.t. some unknown
reward function. The goal is to uncover this reward function;
in our case a relational regression tree that represents such a
reward function. Note that without further constraints this is
an ill-posed problem as many solutions exist, for example,
the reward function equal to zero for any input will always
be a solution to the problem.

We propose to use RCSI [10] within the RAP frame-
work to uncover a relational reward function from expert
demonstrations of cooperation. This algorithm decomposes
the problem in two steps: First, find a Q-function Q(s, d)
such that expert decisions are maxima of the Q-function
(i.e. a discriminative function describing the expert policy).
This first step is equivalent to direct policy learning and
we use the TBRIL algorithm as above. Second, compute
a reward consistent with the Q-function by inverting the
bellman equation. There is a one to one correspondence
between the Q-function and the reward function.

Given the learned reward function we can use planning
methods to compute optimal decisions in novel states, with
the potential to generalize much better than direct policy
learning.

Fig. 2. Schematics representation and photo of the toolbox.

VI. EXPERIMENTS

We will use two domains to showcase the capability of
the proposed model.

A. Example domain: Concurrent assembly assistance robot

In this domain a robot has to assist a human in an assembly
task. We have two agents, the two end-effectors of the robot,
and a human, which we model using the KB as part of the
environment. The aim is that the robot fluently assists the
human in assembling a box composed of 5 parts.

In order to assemble the box the different pieces have
to be 1) put in the human workspace 2) positioned and 3)
attached. To put a piece in the human workspace the robot
can initiate two activities, pick(hand, piece) and give(hand,
piece). A third activity, wait for human, waits for the human
to position the next piece. The activity hold(hand, piece,
identifier) will hold a piece at a specific point allowing the
human to screw them together. Two additional activities,
go home left and go home right, put the robot’s arms back
in homing position. All activities last one unit of time except
for hold which lasts two. Each arm can only be involved in
one activity at any time.

Fig. 2 illustrates the five pieces handle, side right,
side left, side front and side back, and their attach points.
Since we do not consider impossible builds, positioning or
attaching activities need 3 arguments to avoid ambiguity (and
are used in this order by convention): the object with the
female attach point, the object with the male attach point
and the identifier of the female attach point used.

The state of the domain is represented with the fol-
lowing predicates: attached/3, positioned/3, in human ws/1,
picked/1, at home/1, busy/1, free/1, occupied slot/2, hu-
man can do.

The starting state is always the state where nothing is
on the human workspace. This domain is challenging from
the planning point of view because a high number (41) of
decisions are necessary before reaching the goal state. For
learning, on the other hand, the fact that the start state is
unique makes it easier.

B. Example domain: Concurrent blocksworld

This domain is an adaptation of the standard blocksworld
domain where two activities can be realized at the same time.
Five blocks can be put on top of each other or on a surface
(called floor) by two robotic arms.

The domain is represented with the following predi-
cates: on/2, clear/1, busy/1 and in hand/2. The activities are
pick(arm, block) and put(arm, block, block), both of them
last one unit of time and both of them can be realized by
either arm.

The goal of the task is to stack all blocks in one tower.
We generate a random starting state by first sampling the
number of initial towers and then uniformly selecting one
state that respects the total number of blocks. In the start
state no activities are active.

This domain presents different difficulties than the assis-
tance robot one. The task is shorter in terms of the number
of decisions, which simplifies the planning problem. On the
other hand, there are activities with a negative impact that
put the agent further from the goal, so random walk is not an
effective strategy. Another challenge in this domain, more for
the learning method, is that there are many different paths
to reach the goal depending on the start state. Thus it is
important to generalize well from the demonstrations as the
policy will often reach states not observed in demonstrations.

C. Simulation Results

Before showcasing the RAP model in a real-world robot
assistance domain we evaluate the transferred planning,
direct policy learning and inverse RL methods in simulation.

a) MC Planning: For the assistance robot domain,
results are presented in Fig. 3. We compare the performance
of the planner in terms of real task execution time and
success rate, to the optimal policy and to a random policy.
There are 50 trials for every parameter value and results
are averaged. After 1000 decisions, if the goal state is not
reached we stop the trial and consider it to be a failure. The
success rate is computed as the percentage of successes. Two
rewards function are used for planner. The first one only
rewards the final state while the second one tries to guide
the exploration by giving intermediate reward depending on
the number of attached/3 predicates. With few rollouts, the
MC planner is noisier than the optimal policy, resulting in
longer task execution times. With 200 rollouts and the guided
reward, the planner finds a policy to reach the goal in 24
robot time units against 21 for the optimal policy.

As stated earlier, the planning problem for the blocksworld
domain is easier. Fig. 4 shows that with 20 rollouts the
performance is almost optimal.

TABLE I
PERFORMANCE OF DIRECT POLICY LEARNING FROM DEMONSTRATIONS

ALGORITHMS ON THE ROBOT ASSISTANCE DOMAIN.

robot time success rate

optimal policy 21.0 1.0
random policy 84.96 1.0
policy learned (1 demos) 21.3 1.0
policy learned (2 demos) 22.25 0.96
reward learned (1 demos) 22.0 0.8
reward learned (2 demos) 21.6 1.0

b) Direct Policy Learning: For the assistance robot
domain we show in Table I the efficiency of policy learning

Fig. 3. Performance of the planner on the assistance robot domain. Shaded
areas represent standard error.

Fig. 4. Performance of the planner on the blocksworld domain. Shaded
areas represent standard error.

Fig. 5. Performance of the learning algorithms on the blocksworld domain.
Shaded area represent standard error.

from demonstration. With only few demonstrations the policy
learned achieves near optimal behavior.

For the blocksworld, results are presented in Fig. 5.
This domain is more challenging in terms of learning from
demonstration because of the number of possible start states.
However, the TBRIL learns the correct behavior with 20
demonstrations.

c) Inverse Reinforcement Learning: The results for IRL
are presented in Table I and Fig. 5 and are close to the ones
of policy learning. This is to be expected as we use TBRIL
for the first step of RCSI and use the full knowledge of the
dynamic model of the world.

D. Robot application

We realized the robot assembly domain on a Baxter robot.
To this end we additionally had to implement 1) a sensing
module that allows us to detect the truth values of the
different predicates and 2) an activity module with a routine
for each activity.

Note that now, in real-world, the wait decision really
waits until the first sensing or activity module reports a
termination of an activity or change of state. This replaces
the model assumption made in the definition of the RAP
model, namely the effect of a wait decision in simulation.

For each predicate, a detector has been coded, e.g.:
• positioned/3: The 6D pose of the objects are retrieved

with an Optitrack system and compared to the ground
truth which is provided to the system beforehand.

• attached/3: This is true if it was true in the previous
state or if objects are positioned and the human is
operating a screwdriver (tracked with Optitrack) nearby
for 7 seconds.

• in human ws/1: We check if the object is in a cube
around the human.
d) MC Planning: Planning on the real robot is achieved

with a simple loop that retrieves the current relational state
of the scene and re-plans to find the next decision using the
MC planner. The previous plan is not reused, the planner
starts from scratch each time.

The results are presented in the video supplement at
https://vimeo.com/139342248. The decisions are
computed online and result in a complete assembly of the
box. Twice the robot holds at a place not needed, otherwise
the decisions are optimal. We assume that allowing the
planner more rollouts would solve this problem. We used
the guided reward in this setup.

e) Direct Policy learning: In order to learn the policy,
we first recorded some expert demonstrations. A specific
command line interface has been developed that allows to
command the robot to execute any activity. When a command
is given, and before it is executed, the state of the scene and
the decision are logged and used later to learn the policy.
Once the demonstrations are recorded, the policy is learned.
It is then used to control the robot with a simple loop similar
to the planning case.

We have successfully learned and played a policy from
two demonstrations on the Baxter robot. This learned pol-

icy is presented in the video https://vimeo.com/
139342248.

VII. CONCLUSIONS

This work proposes a model of concurrent cooperation
that allows for efficient transfer of existing planning and
reinforcement learning methods to such domains. While
in other formalisms policies map to multi-actions for all
agents, RAP describes a process of sequential initiation,
termination and wait decisions that each involve only one
or few agents and exploits the underlying relational state
representation. The knowledge base and generality of activity
duration distributions offer great representational flexibility.
We compared the generality of RAP to previous concurrent
action models. Using RAP we transferred MC planning,
direct policy learning and inverse reinforcement learning to
relational concurrent cooperation domains, which previously
has not been demonstrated. We also illustrated the approach
on a real-world robot assistance scenario, where the robot
concurrently uses both end-effectors to assist a human in an
assembly task.

REFERENCES

[1] D. Aberdeen and O. Buffet. Concurrent probabilistic temporal plan-
ning with policy-gradients. In ICAPS, pages 10–17, 2007.

[2] H. Blockeel and L. De Raedt. Top-down induction of first-order logical
decision trees. Artificial intelligence, 101(1):285–297, 1998.

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton, and
others. A survey of monte carlo tree search methods. Computational
Intelligence and AI in Games, IEEE Transactions on, 4(1):1–43, 2012.

[4] S. Džeroski, L. De Raedt, and K. Driessens. Relational reinforcement
learning. Machine learning, 43(1-2):7–52, 2001.

[5] J. H. Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, 29(5):1189–1232, 2001.

[6] T. Keller and M. Helmert. Trial-based heuristic tree search for finite
horizon MDPs. In ICAPS, 2013.

[7] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
Machine Learning: ECML 2006, pages 282–293. Springer, 2006.

[8] T. Lang, M. Toussaint, and K. Kersting. Exploration in relational
domains for model-based reinforcement learning. The Journal of
Machine Learning Research, 13(1):3725–3768, 2012.

[9] Mausam and D. S. Weld. Planning with durative actions in stochastic
domains. J. Artif. Intell. Res.(JAIR), 31:33–82, 2008.

[10] T. Munzer, B. Piot, M. Geist, O. Pietquin, and M. Lopes. Inverse
reinforcement learning in relational domains. In International Joint
Conferences on Artificial Intelligence, 2015.

[11] S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shavlik.
Gradient-based boosting for statistical relational learning: The rela-
tional dependency network case. Machine Learning, 86(1):25–56,
2012.

[12] K. Rohanimanesh and S. Mahadevan. Learning to take concurrent
actions. In Advances in neural information processing systems, pages
1619–1626, 2002.

[13] K. Rohanimanesh and S. Mahadevan. Coarticulation: An approach
for generating concurrent plans in markov decision processes. In Pro-
ceedings of the 22nd international conference on Machine learning,
pages 720–727. ACM, 2005.

[14] D. E. Smith and D. S. Weld. Temporal planning with mutual exclusion
reasoning. In IJCAI, volume 99, pages 326–337, 1999.

[15] H. a. L. Younes and R. G. Simmons. Policy generation for continuous-
time stochastic domains with concurrency. In ICAPS, volume 4, page
325, 2004.

[16] L. S. Zettlemoyer, H. Pasula, and L. P. Kaelbling. Learning planning
rules in noisy stochastic worlds. In AAAI, pages 911–918, 2005.

https://vimeo.com/139342248
https://vimeo.com/139342248
https://vimeo.com/139342248

	Introduction
	Overview & Related Work
	Overview
	Related Work

	Relational Activity Processes (RAPs) for modeling concurrent cooperation
	Stochasticity
	Generalization and Comparison to STRIPS
	Comparison to Concurrent Action Models

	Monte-Carlo Planning in RAPs
	Learning from Demonstration in RAPs
	Direct Policy Learning
	Inverse Reinforcement Learning

	Experiments
	Example domain: Concurrent assembly assistance robot
	Example domain: Concurrent blocksworld
	Simulation Results
	Robot application

	Conclusions
	References

