
Policy Search in Reproducing Kernel Hilbert Space

Ngo Anh Vien and Peter Englert and Marc Toussaint
Machine Learning and Robotics Lab

University of Stuttgart, Germany
{vien.ngo, peter.englert, marc.toussaint}@ipvs.uni-stuttgart.de

Abstract
Modeling policies in reproducing kernel Hilbert
space (RKHS) renders policy gradient reinforce-
ment learning algorithms non-parametric. As a re-
sult, the policies become very flexible and have
a rich representational potential without a pre-
defined set of features. However, their perfor-
mances might be either non-covariant under re-
parameterization of the chosen kernel, or very sen-
sitive to step-size selection. In this paper, we pro-
pose to use a general framework to derive a new
RKHS policy search technique. The new derivation
leads to both a natural RKHS actor-critic algorithm
and a RKHS expectation maximization (EM) pol-
icy search algorithm. Further, we show that kernel-
ization enables us to learn in partially observable
(POMDP) tasks which is considered daunting for
parametric approaches. Via sparsification, a small
set of “support vectors” representing the history is
shown to be effectively discovered. For evalua-
tions, we use three simulated (PO)MDP reinforce-
ment learning tasks, and a simulated PR2’s robotic
manipulation task. The results demonstrate the ef-
fectiveness of the new RKHS policy search frame-
work in comparison to plain RKHS actor-critic,
episodic natural actor-critic, plain actor-critic, and
PoWER approaches.

1 Introduction
Policy search methods in reinforcement learning (RL) have
recently been shown to be very effective in very high di-
mensional robotics problems [Williams, 1992; Kober et al.,
2013]. In such applications, the policy is compactly repre-
sented in a parametric space and effectively optimized using
gradient-descent [Sutton et al., 1999]. Theoretically, policy
gradient methods have strong convergence guarantees. In
larger problems, their performance and computation can be
further enhanced when combined with function approxima-
tion. The function approximation techniques might be lin-
ear [Kober et al., 2013] or non-linear [Silver et al., 2014;
Lillicrap et al., 2015].

Nonetheless, parametric approaches require a careful de-
sign of the features, which is inflexible in practical use and

inefficient in large problems. One can overcome this inflex-
ibility and limited adaptability by using nonparametric tech-
niques, esp. by modeling policy in RKHS (reproducing kernel
Hilbert space) function space [Bagnell and Schneider, 2003a;
Lever and Stafford, 2015; van Hoof et al., 2015]. More-
over, an adaptively compact policy representation can be
achieved via sparsification in RKHS. For the case of a
multi-dimensional output policy (multi-dimensional actions),
a vector-valued kernel can be used [Micchelli and Pontil,
2005].

However, standard policy gradient methods might face dif-
ficult convergence problems. The issue stems from either
using a non-covariant gradient or from selecting an adhoc
step-size. The latter is a standard problem in any gradient-
based method and is classically addressed using line-search,
which may be sample-efficient. The step-size selection prob-
lem can be avoided by using EM-inspired techniques instead
[Vlassis et al., 2009; Kober and Peters, 2011]. Using a non-
covariant gradient means that the gradient direction might
change significantly even with a simple re-parameterization
of the policy representation. Fortunately, the inherent non-
covariant behaviour due to coordinate transformation [Amari,
1998] can be fixed using the natural gradient with respect to
one particular Riemannian metric, namely the natural metric
or the Fisher information metric [Kakade, 2001; Bagnell and
Schneider, 2003b; Peters and Schaal, 2008].

The EM-inspired and policy gradient algorithms have fur-
ther been shown to be special cases of a common policy
framework, called free-energy minimization [Kober and Pe-
ters, 2011; Neumann, 2011]. Being inspired by this general
derivation, in this paper we propose a policy search frame-
work in RKHS which results in two RKHS policy search al-
gorithms: RKHS natural actor-critic and RKHS EM-inspired
policy search. We derive the following

• The natural gradient in RKHS is computed with respect
to the Fisher information metric, which is a by-product
of considering the path-distribution manifold in policy
update. We show that plain functional policy gradi-
ents are non-covariant under the change of the kernel’s
hyperparameters, e.g. variance in RBF kernels or free
parameters in polynomial kernels. We prove that our
functional natural policy gradient is a covariant update
rule. As a result, we design a new Natural Actor-Critic
in the RKHS framework, called RKHS-NAC. Using a

simple example we show that using RKHS-AC requires
very careful choice of the kernel’s hyperparameters, as it
drastically affects the performance and converging pol-
icy quality. By contrast, RKHS-NAC free us from that
painful problem.
• The RKHS EM-inspired algorithm is considered as a

kernelized PoWER (Policy Learning by Weighting Ex-
ploration with the Returns). As a result, both mean and
variance functionals of the policy are updated analyti-
cally based on a notion of bounds on policy improve-
ments.
• The general RKHS policy search framework turns out

to be an efficient technique to learning in POMDPs
where the policy is modeled based on a sparse set of
observed histories. This nonparametric representation
renders our standard RKHS policy search algorithms a
promising approach in POMDP learning which is daunt-
ing for parametric ones.

We compare our new framework to the recently intro-
duced RKHS actor-critic framework (RKHS-AC) [Lever and
Stafford, 2015], other parametric approaches such as the
episodic natural actor-critic [Peters and Schaal, 2008], the
actor-critic frameworks [Konda and Tsitsiklis, 1999], and
PoWER [Kober and Peters, 2011]. The comparisons are done
on benchmark RL problems in both MDP and POMDP envi-
ronments, and a robotic manipulation task. The robotic task
is implemented on a simulated PR2 platform.

2 Background
In this section, we briefly present related background that will
be used in the rest of the current paper.

2.1 Markov Decision Process
A Markov decision process (MDP) is defined as 5-tuple
{S,A, T ,R, γ}, where S ∈ <m is a state space, A ∈ <n is
an action space, T (s, a, s′) = p(s′|s, a) is a transition func-
tion, R(s, a, s′) is a reward function, and a discount factor
γ. An RL agent goes to optimize an optimal policy π, with-
out knowing T,R, that maximizes a cumulative discounted
reward.

U(π) =

∫
p(ξ;π)R(ξ)dξ =

∫
p(ξ;π)

∞∑
t=0

γtrtdξ (1)

where ξ = {s0, a0, s1, a1, . . .} is a trajectory, st ∈ S, at ∈
A. We denote R(ξ) =

∑∞
t=0 γ

trt the cumulative discounted
reward of a trajectory ξ, and p(ξ;π) the trajectory distribution
given π. In this paper, we use Gaussian policies

π(a|s) ∼ e−
1
2

(
h(s)−a

)>
Σ−1
(
h(s)−a

)
(2)

where h(s) : S 7→ <n is a vector-valued function of the
current state s, and Σ is an n × n covariance matrix. For
instance, the linear parametrization approach of h(s) assumes
that the policy π is parametrized by a parameter space θ ∈
Rd, and depends linearly on predefined features φi(s), as

h(s) =

d∑
i=1

θiφi(s) (3)

Similarly, nonparametric approaches with a reproducing ker-
nel K represent h(s) = 〈K(s), h〉 (the reproducing prop-
erty).

2.2 A Policy Search Framework
We briefly describe a general policy framework whose main
derivation is to maximize a lower bound on the expected re-
turn at the new parameter value θ′.

logU(θ) = log

∫
p(ξ; θ)R(ξ)dξ

=

∫
p(ξ; θ′) log

p(ξ; θ)R(ξ)

p(ξ; θ′)
dξ + KL

(
p(ξ; θ′)||p(ξ|R; θ)

)
where KL

(
p(ξ; θ′)||p(ξ|R; θ)

)
is the Kullback-Leibler diver-

gence, and assuming that the rewards are positive. In order to
maximize U(θ), one can choose p(ξ; θ′) ∝ p(ξ|R; θ) to make
the KL zero (E-step). Substituting this result into the above
inequality to obtain new performance U(θ′) (M-step) as

logU(θ′) ≥
∫
p(ξ; θ)R(ξ) log

p(ξ; θ′)

p(ξ; θ)
dξ

∝ −KL
(
p(ξ; θ)R(ξ)||p(ξ; θ′)

)
= L(θ′; θ)

(4)

This derivation can result in two different types of algo-
rithms: 1) policy gradient, e.g. REINFORCE [Williams,
1992] and (Natural) Actor-Critic Algorithms [Konda and
Tsitsiklis, 1999; Peters and Schaal, 2008]; 2) EM-inspired
policy search, e.g. PoWER [Kober and Peters, 2011], MCEM
[Vlassis et al., 2009], VIP [Neumann, 2011]. All these ap-
proaches optimize U(θ′) by maximizing the lower bound
L(θ′, θ), hence take the derivative ∇θ′L(θ′; θ).

(Natural) Actor-Critic Algorithms
These methods use iterative update rules to increment θ
along the direction of the gradient ascent ∇θU(θ) =
limθ′→θ∇θ′L(θ′; θ). Using the policy gradient theorem [Sut-
ton et al., 1999; Baxter and Bartlett, 2001], we can derive that

∇θU(θ) = E
[H∑
t=0

∇θ log π(at|st)Aπ(st, at)
]

(5)

whereAπ(st, at) =
(
Qπ(st, at)−V (st)

)
is called an advan-

tage function, and Qπ(s, a) is the state-action Q-value func-
tion. Using function approximation, the advantage function
Aπ(s, a) is approximated as Ã(s, a) =

∑d
i=1 wiψi(s), in

which the basis functions are ψi(s) = ∇θi log π(a|s) in or-
der to make the function approximation compatible with the
policy parameterization. The parameter θ is updated along
the direction of the gradient ascent ∇θU(π). Interleaving
updates of the weights θ (the actor’s parameter) and w (the
critic’s parameter) lead to the actor-critic framework.

With compatible function approximation, the actor update
using Amari’s natural gradient [Amari, 1998] is proven to be-
come θ ← θ + αw. This leads to the natural actor-critic
framework, e.g. the episodic natural actor-critic framework
[Peters and Schaal, 2008]

EM-Inspired Policy Search
The methods eRWR [Peters and Schaal, 2007], Cost-
regularized Kernel Regression (CrKR) [Kober et al., 2010],
and PoWER [Kober and Peters, 2011] introduce a notion of
weighting exploration by changing the policy defined in Eq. 2
to a =

(
θ + ε

)>
φ(s), where ε ∼ N (ε; 0,Σ). For brevity, we

assume that the variance Σ is a diagonal matrix of σi. The
policy is improved by computing the next parameter value θ′
that makes ∇θ′L(θ′; θ) equal to zero. As a result, the up-
date in the form of the reward weighted exploration with the
returns is (for dimension i-th)

θ′i = θi +
E
[∑H

t=0 εi,tσ
−1
i Aπ(st, at)

]
E
[∑H

t=0 σ
−1
i Aπ(st, at)

] (6)

If taking the derivative of the lower bound w.r.t. Σ′ (or σi), we
would also receive a similar update expression for the vari-
ance Σ′.

2.3 Actor Critic in RKHS
As recently introduced by [Bagnell and Schneider, 2003a;
Lever and Stafford, 2015], the policies are parameterized
by functionals in reproducing kernel Hilbert spaces. More
specifically, the functional h(s) in Eq. 2 is an element of a
vector-valued RKHSHK

h(·) =
∑

K(si, ·)αi, where αi ∈ A(∈ Rn) (7)

where the kernel K is defined as a mapping S × S 7→ L(A)
[Micchelli and Pontil, 2005], L(A) is the space of linear op-
erators on A. The simplest choice of K might be K(s, s′) =
κ(s, s′)In, where In is an n × n identity matrix, and κ is a
scalar-valued kernel [Schölkopf and Smola, 2002].

The functional gradient, i.e. the Fréchet derivative, of the
term log π(at|st) is computed as

∇ logh πh(at, st) = K(st, ·)Σ−1(at − h(st)) ∈ HK (8)

Therefore, the gradient of the performance measure w.r.t. h
using likelihood ratio methods is approximated by a trajec-
tory set ξi of H steps as

∇hU(πh) ≈ 1

N

N∑
i=1

∇h logP (ξi;h)R(ξi)

=
1

N

N∑
i=1

H∑
t=0

A(st, at)K(st, ·)Σ−1(at − h(st))

(9)

As a result, ∇hU(πh) ∈ HK and the functional gradient up-
date at iteration k is

hk+1 ← hk + α∇hU(πhk) (10)

where α is a step-size. After each gradient update, the num-
ber of centres (st) of the next hk+1 might increase rapidly.
One can attain sparse representation via sparsification. In ad-
dition, Lever and Stafford proved that the compatible kernel
function for Aπ(s, a), where Kh is a compatible kernel that
is constructed based on K as

Kh

(
(s, a), (s′, a′)

)
=
(
K(s, s′)Σ−1(a−h(s))

)>
Σ−1(a′−h(s′))

(11)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20 22 24

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

iterations

RKHS-AC c = 1.0
RKHS-AC c = 0.2

RKHS-AC c = 0.01

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20 22 24

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

iterations

RKHS-AC var = 0.01
RKHS-AC var = 0.1
RKHS-AC var = 2.0

Figure 1: Discounted cumulative reward in Toy domain with
polynomial and RBF kernels. The horizon H is set to 20.
We report the mean performances averaged over 50 runs, and
their 95% confidence interval in shading areas

As a result of compatible function approximation, there ex-
ists a feature space Fφ ≡ HK that contains Ah(s, a) and the
weight w and satisfies

Ah(s, a) = 〈w,∇h log π(a|s)〉Fφ
= 〈w,K(s, ·)Σ−1(a− h(s))〉HK

(12)

There are a number of ways to regress Ah(s, a) from data
generated from πh. Lever et. al. [Lever and Stafford, 2015]
used kernel pursuit matching [Vincent and Bengio, 2002]
for both function regression and sparsification. Accordingly,
they propose the compatible RKHS Actor-Critic framework,
RKHS-AC.

However, the RKHS-AC’s gradient update is not covariant
w.r.t. the change of the kernel’s hyperparameter. We show an
example use of RKHS-AC in the toy problem in Fig. 1 (see
the experiment section for the problem description). We use
two types of kernel to represent our functional policy in Eq. 2
with different values of hyperparameters: polynomial kernel
κ(s, s′) = (s>s′ + c)d, where d = 5., and c = 0.01; 0.2; 1.0;
and RBF kernel κ(s, s′) = exp(−‖s− s′‖/(2 ∗ var)), where
var = 0.01; 0.1; 2.0. Note that the changes of the hyperpa-
rameters c, var lead to transformation of the coordinate sys-
tem in the same corresponding feature space. The results
show that RKHS-AC is non-covariant. RKHS-AC does not
guarantee good improvement in all setting. For instance, in
the cases of c = 0.01 and var = 2.0 some features are very
peaky, this would make the policy overwhelmingly exploit
non-optimal actions at early stage of learning.

3 Policy Search in RKHS
Inspired by the derivation of the parametric policy search
framework, we derive a new policy search framework which
enables policy modeling in RKHS. Assume that the controller
is a ∼ N (a;h(s),Σ(s)), where a ∈ <n, h(·) ∈ HK as
defined in Eq. 7, and Σ(·) is a matrix-valued function. By
reshaping Σ(·) to a vector-valued function, one could em-
bed it into a another vector-valued RKHS. For brevity, we
assume that Σ(·) is a diagonal matrix-valued function which
allows independent exploration in each dimension of actions.
The following derivation still applies for the cases of gen-
eral matrices. The variance on each dimension is a scalar-
valued functional gi(·) ∈ HKi with a reproducing kernel Ki,
∀i = 1, . . . , n.

The lower bound of the expected return is similarly derived
as

logU(h′) ≥
∫
p(ξ;h)R(ξ) log

p(ξ;h′)

p(ξ;h)
dξ ∝ L(h′;h)

(13)
Its derivative is

∇h′L(h′;h) = E

[
H∑
t=0

∇h′ log π(at|st)R(ξ)

]
(14)

We next derive two RKHS policy search algorithms based on
the above notion of bounds on policy improvement.

3.1 (Natural) Policy Gradients in RKHS
The RKHS policy gradient of Lever and Stafford [Lever
and Stafford, 2015] can exactly be re-derived by comput-
ing the derivative of U(h) in Eq. 10 if we set ∇hU(h) =
limh′→h∇L(h′;h) (see Eq. 14).

In this paper, we are interested in applying the natural gra-
dient method [Amari, 1998] to update the functional policy.
The key idea is to constraint the change of p(ξ;h) after each
gradient update. For vanilla gradient, the functional gradient
direction is g = ∇hU(πh). With the constraint of a small
change in the trajectory distribution, we compute the steepest
gradient direction by solving an optimization problem,

max
h′

. L(h′;h), s.t. KL
(
p(ξ;h)||p(ξ;h′)

)
≤ δ (15)

Using the second-order Taylor expansion for the KL-
divergence constraint, we can prove that the Fisher informa-
tion operator [Nordebo et al., 2010] is

G = Eξ∼P (ξ;h)

[
∇2
h logP (ξ;h)

]
= Eξ∼P (ξ;h)

[
∇h logP (ξ;h)⊗ log∇hP (ξ;h)

] (16)

in which we use the fact:
∫
p(ξ)dξ = 1 twice.

We now prove an important property of G in order to de-
rive further results: the bounded property. Consequently,
there exists the inverse operator G−1 of G according to the
bounded inverse theorem [Reed and Simon, 2003].

Proposition 1 The linear operator G : H 7→ H is bounded.

Proof: The linear operator G is a mapping from a Hilbert
space H to H, hence according to the Riesz representation
theorem [Reed and Simon, 2003] there exists the adjoint of
G. The adjoint is a continuous linear operator G∗ : H 7→ H
such that 〈Gh, g〉 = 〈h,G∗g〉, where h, g ∈ H. Moreover,
we can easily see that G∗G defines a Gram operator, hence it
is positive definite and self-adjoint. Thus, G∗G is a bounded
linear operator [Reed and Simon, 2003]. In other words, there
exists a number M > 0 such that ‖G∗Gh‖ ≤ M‖h‖. From
those results of G and G∗G, we can derive

〈Gh,Gh〉 = 〈h,G∗Gh〉
≤ ‖h‖‖G∗Gh‖ ≤M‖h‖2

that means the linear operator G is also bounded. �

From a set of N trajectories {ξi}, G can be estimated as

Ĝ =
1

N

N∑
i=1

∇h logP (ξi, h)⊗∇h logP (ξi, h)

=
1

N
Φ(ξ)Φ(ξ)>

(17)

where Φ(ξ) = [∇h logP (ξ1;h), . . . ,∇h logP (ξN ;h)]. Us-
ing Lagrange multipliers for the optimization problem in (15),
the natural functional gradient is

∇NGh U(πh) = G−1∇hU(πh)

≈ 1

N

(1

N
Φ(ξ)Φ(ξ)> + λI

)−1

Φ(ξ)R
(18)

whereR = [R(ξ1), . . . , R(ξN)], and λ is a regularizer. Using
the Woodbury identity for Eq. 18, we obtain

∇NGh U(πh) ≈ Φ(ξ)
(

Φ(ξ)>Φ(ξ) + λNI
)−1

R

= Φ(ξ)
(

Λ + λNI
)−1

R

=

N∑
i=1

H∑
t=0

K(st, ·)Σ−1(at − h(st))R̂i

where Λ is a Gram matrix of trajectories which is built based
on the trajectory kernel function Kξ(ξi, ξj); and R̂ =

(
Λ +

λNI
)−1

R. We now define the scalar-valued trajectory ker-
nel Kξ(ξi, ξj). Note that the gradient of log trajectory distri-
bution is

∇h logP (ξi;h) =

H∑
t=0

K(st, ·)Σ−1(at − h(st)) (19)

Therefore,

Kξ(ξi, ξj) =
∑
i,j

(
K(si, sj)Σ

−1(ai − h(si))
)>

Σ−1(aj − h(sj))

=

Ti∑
i=1

Tj∑
j=1

Kh

(
(si, ai), (sj , aj)

)
The resulting kernel of trajectories is a sum of kernel func-

tions of all visited state-action pairs Kh

(
(s, a), (s′, a′)

)
de-

fined in Eq. 11. As a result of summing of many proper
kernels, the trajectory kernel is proper and specifies a RKHS
HKξ of trajectory feature maps.

Finally, the plain natural policy gradient in RKHS, reported
in Algorithm 1, has the following update

ht+1 = ht + α∇NGh U(πh) (20)

3.2 Episodic Natural Actor-Critic in RKHS
We now use the above results to propose a new episodic nat-
ural actor-critic framework that enables policy modeling in
RKHS.

Algorithm 1 RKHS Policy Search Framework
Given the kernel K, initialize h0 = 0
for k = 0, 1, 2, . . . do

Sample N trajectories {ξi} from πhk
Estimate Aπ(s, a) using {ξi}Ni=1 to obtain w ∈ HK
RKHS-NPG : hk+1 = hk + α∇NGh U(πhk)
RKHS-NAC : Update the policy hk+1 = hk + αkw
RKHS-PoWER: Update hk+1, gk+1 as in Eq. 24
Sparsify hk+1 ∈ HK

end for

The Actor Update
First, we rewrite the Fisher information operator in Eq. 16 by
substituting the definition of∇ logP (ξ) in Eq. 5 to obtain

G = EP (ξ,h)

[H∑
t=0

∇2
h log π(at|st)

]
= EP (ξ,h)

[H∑
t=0

∇h log π(at|st)∇h log π(at|st)>
] (21)

where we use the fact:
∫
π(a|s)da = 1 twice. On the other

hand, we replace A(s, a) in Eq. 12 into Eq. 9 to obtain

∇hU(π) = EP (ξ,h)

[H∑
t=0

〈w,∇h log π(at|st)〉∇ log π(at|st)
]

= EP (ξ,h)

[H∑
t=0

∇h log π(at|st)〉∇ log π(at|st)>w
]

= Gw

As a result, the natural gradient in RKHS used in the actor
update is

∇NGh U(πh) = G−1Gw = w ∈ HK (22)

The Critic Evaluation
Similar to eNAC [Peters and Schaal, 2008], we write the en-
tire rollout of Bellman equations for an episode, and put the
definition of Aπ(st, at) in Eq. 12 to get

H∑
t=0

γtr(st, at) =

H∑
t=0

γtAπ(st, at) + V π(s0)

= 〈w,
H∑
t=0

γtK(st, ·)Σ−1(at − h(st))〉+ V π(s0)

where V π(s0) is the value function of the starting state. One
could use another kernel to estimate V (s0). We propose to
use kernel matching pursuit algorithm [Vincent and Bengio,
2002] to regress Aπ(s, a) by sampling a set of trajectories
from the policy πh.

Putting all ingredients together, we derive the RKHS natu-
ral actor-critic framework (RKHS-NAC), as described in Al-
gorithm 1. The algorithm uses the kernel matching pursuit
method to sparsify the new functional hk+1.

3.3 EM-Inspired Policy Search in RKHS
The major problem of the policy gradient approaches, like
RKHS-AC and RKHS-NAC, is the step-size αk. As in-
spired by PoWER, we propose an alternative solution for
maximizing the lower bound L(h′;h) by setting its deriva-
tive ∇h′L(h′;h) to zero and solving for h′ to obtain

Eπh

{
H∑
t=0

A(st, at)K(s, ·)Σ−1(s)
(
at − h′(st)

)}
= 0

Hence,

h′ = h+Eπh

{
H∑
t=0

A(st, at)K(s, ·)Σ−1(s)K>(s, ·)

}−1

×

Eπh

{
H∑
t=0

A(st, at)K(s, ·)Σ−1(s)
(
at − h(st)

)}
where we exploited the reproducing property h′(s) =
〈h′,K(s, ·)〉. The update rule for the variance functionals
Σ(·) or gi(·) are similarly derived as

g′i =
Eπh

[∑H
t=0 ε

i2
t A(st, at)Ki(st, ·)Ki(st, st)

−1
]

Eπh
[∑H

t=0 ε
i2
t A(st, at)

] ∈ HKi

where εit =
(
at − h(st)

)
i

(the i-th dimension). For an exam-
ple of how to estimate h′ and Σ′ given a set of N trajectories
(sjt, ajt)

N,H
j=1,t=0 sampled from πh, we assume K(s, s′) =

κ(s, s′)In for simplicity purposes, where κ(si, sj) is a scalar-
valued kernel. The estimates for the i-th dimension are 1

h′i = hi +

N∑
j=1

H∑
t=0

κ(sjt, ·)αijt (23)

g′i =

N∑
j=1

H∑
t=0

Ki(sjt, ·)βijt (24)

where we denote Φ =
(
κ(s1,0, ·), . . . , κ(sN,H , ·)

)
, A1 =

diag
(
A(s1,0, a1,0)/gi(s1,0), . . . , A(sN,H , aN,H)/gi(sN,H)

)
,

A2 =
(
εi1,0, . . . , ε

i
N,H

)>
, Γ = Φ>Φ is a Gram matrix where

Γij = κ(si, sj), to compute αi = (λA−1
1 + Γ)−1A2 (the

constant λ is a regularizer) 2, and

βijt =
εi2jtA(sjt, ajt)

Ki(sjt, sjt)
∑N
k=1

∑H
l=0 ε

i2
klA(skl, akl)

The overall algorithm, named RKHS-PoWER, is reported in
Algorithm 1.

3.4 Policy Search in POMDP Environment
One of the very interesting characteristics of the RKHS pol-
icy search framework is learning in POMDP environments.
POMDP learning requires action selection at time t: µ(at|ht)

1The results are based on the use of the Woodbury matrix identity
2αi is a N.H × 1 vector, is reshaped to N ×H matrix

to depend on the history ht = {o0, a0, . . . , ot}, where ot is
an observation. Feature design in POMDP learning is elu-
sive for standard parametric policy search approaches, as the
history space is very large and high-dimensional. It’s com-
mon for the parametric methods to put regular features on
each state dimension. Hence parametric methods suffer from
not only the curse of dimensionality (the number of features
is exponential on the number of state dimensions) but also
the curse of history (the number of features is exponential
on the length of a history state). In contrast, our RKHS
policy search approaches discover history features adaptively
and sparsely. One may find this learning similar to the non-
controlled POMDP learning using conditional embeddings of
predictive state representation [Boots et al., 2013]. In our ex-
periment, we fix the length of ht (the number of history steps)
and use an RBF kernel to measure the distance between two
histories.

4 Experiments
We evaluate and compare on four domains (three learning in
MDP and one learning in POMDP): a Toy domain, the bench-
mark Inverted Pendulum domain, a simulated PR2 robotic
manipulation task, and the POMDP inverted Pendulum. The
presented methods are: RKHS-NAC, RKHS-AC [Lever and
Stafford, 2015], PoWER [Kober and Peters, 2011], eNAC
[Peters and Schaal, 2008], and actor-critic. All methods use
a discount factor γ = 0.99 for learning and report the cu-
mulative discounted reward. The number of centres used in
RKHS methods is comparable to the number of bases used
in parametric methods. All tasks use the RBF kernel. The
bandwidth of RBF kernels is chosen using the median trick.

4.1 Toy Domain
The Toy domain was introduced by Lever and Stafford [Lever
and Stafford, 2015]. It has a state space S ∈ [−4.0; 4.0], an
action space A ∈ [−1.0; 1.0], the starting state s0 = 0, and
a reward function r(s, a) = exp(−|s− 3|). The dynamics is
st+1 = st + at + ε, where ε is a small Gaussian noise. We
set N = 10, H = 20. All controllers use 20 centres. The
optimal value is around 14.5 [Lever and Stafford, 2015].

We first study the covariant behaviour of the natural RKHS
policy gradient method, as not seen in the standard RKHS-
AC described in Section 2.3. Both algorithms use line-search
over a grid of 50 choices. The results are computed over 50
runs as depicted in Fig. 2. The performance of RKHS-NAC
in all setting for both polynomial and RBF kernels ensures
that RKHS-NAC is covariant.

Figure 3 reports the comparisons of other methods without
line-search. We chose the best step-size for each algorithm to
ensure their best performance (AC and RKHS-AC use 0.005;
eNAC and RKHS-NAC use 0.1). Arbitrary choice of the step-
size may yield instability and local optimality which is not a
problem with the EM-inspired methods. All RKHS meth-
ods perform comparably well and slightly better than AC and
eNAC. PoWER improves slowly but very stably.

4.2 Inverted Pendulum
This task [Lever and Stafford, 2015] has an action domain
[−3, 3], a state space s = (θ, ω) which are angular posi-

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20 22 24

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

iterations

RKHS-AC c = 1.0
RKHS-AC c = 0.2

RKHS-AC c = 0.01
RKHS-NAC c = 1.0
RKHS-NAC c = 0.2

RKHS-NAC c = 0.01

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20 22 24

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

iterations

RKHS-AC var = 0.01
RKHS-AC var = 0.1
RKHS-AC var = 2.0

RKHS-NAC var = 0.01
RKHS-NAC var = 0.1
RKHS-NAC var = 2.0

Figure 2: Toy domain with the use of (left) polynomial kernel,
(right) RBF kernel.

 0

 2

 4

 6

 8

 10

 12

 0 6 12 18 24 30 36 42 48

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

iterations

AC

eNAC

PoWER

RKHS-AC

RKHS-NAC

RKHS-PoWER
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120 140 160 180 200

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

iterations

AC
eNAC

PoWER
RKHS-AC

RKHS-NAC
RKHS-PoWER

Figure 3: (left) Toy Domain. (right) Inverted Pendulum

tion θ ∈ [−π, π] and velocity ω ∈ [−4π, 4π] values. The
initial state is always at s0 = (−π, 0). The reward func-
tion is r(s, a) = exp(−0.5θ2) and The dynamics is: θ′ =
θ+ 0.05ω+ ε; ω′ = ω+ 0.05a+ 2ε, where ε is a small Gaus-
sian noise with a standard deviation of 0.02. Each transition
applies the above dynamics two times (for the same action
value). We use N = 10, H = 100 whose optimal return is
roughly 46. We use 40 RBF centres in all controllers. The
averaged performance is obtained over 15 runs. If the pendu-
lum is balanced, the return should be at least 25. All methods
use carefully selected step-sizes to achieve their best perfor-
mance.

The mean performance and the mean’s first deviation of all
algorithms are reported in Fig. 3. While RKHS-AC, AC, and
PoWER are still struggling in finding the optimal policy after
200 iterations, RKHS-NAC, RKHS-PoWER and eNAC can
achieve a return over 25 after 20 iterations. The performance
of RKHS-NAC and eNAC are very promising in this domain
which are very close to the optimal performance.

4.3 POMDP Inverted Pendulum

Figure 4: The PR2 robot is
opening a door.

The third task is the
POMDP Inverted Pen-
dulum. We keep using
the original dynamics and
reward functions and add
an observation function to
create a learning task in
POMDP. We assume that
the agent can only observe
a noisy angular position
ot = θt + 2ε. We use 150
centres for all algorithms
and line-search over a grid of 50 step-sizes, and the length 20
for a history state. We use only eNAC as the best parametric
contender whose state space is 3-step history states and put

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

iterations

eNAC
RKHS-AC

RKHS-NAC
RKHS-PoWER

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 2 4 6 8 10 12 14 16 18 20 22 24

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

iterations

RKHS-AC
RKHS-NAC

RKHS-PoWER

Figure 5: Results for (left) the POMDP inverted pendu-
lum;(right) the simulated robotic manipulation task.

4 centres on each state dimension (46 features). Figure 5
reports the average performances over 10 runs and their
first deviations. RKHS-NAC performs best as this task has
a very large history state space where bandwidth setting is
very important. Because RKHS-NAC is covariant under
such transformation which is yielded from changes of the
bandwidth.

4.4 Robotic Manipulation Task
This task is a door-opening task on a simulated PR2 robot (us-
ing the physics simulation ODE internally) and is only a com-
parison of the three RKHS methods. We give a demonstration
via kinesthetic teaching on a physical Willow-Garage PR2
platform whose setting is as seen in Fig. 4. As action space
we define a two dimensional space that defines the gripper
position on the door handle. The first action is the horizontal
position of the finger on the door and the second action is the
finger opening width. Both actions transform the demonstra-
tion trajectory. The resulting trajectory is then executed on
the simulator to return a reward value. The reward function
consists of two parts: e−(R1+R2). The first part measures how
close the current trajectory is to the demonstration, R1. The
second part is a binary penalty cost that tells whether the door
is opened successful, R2. We set N = 10, H = 1.

Figure 5 reports the average performance over 5 runs with
a fixed step-size α = 0.005 for RKHS-AC and RKHS-NAC.
Each run starts from different initial poses of the robot. All
three algorithms are making improvement, RKHS-PoWER’s
performance is improving slowly but looks more stable.

5 Conclusion
We have proposed a new policy search framework that en-
ables policy modeling in reproducing kernel Hilbert space.
The main insight is in its derivation that makes the previous
RKHS policy gradient framework a special case, and addi-
tionally results in two new algorithms: natural actor-critic in
RKHS and the EM-inspired policy search in RKHS. While
RKHS-NAC is a fix for the non-covariant RKHS-AC algo-
rithm, the RKHS-PoWER is able to mitigate the step-size
problem. Their experimental results are very promising due
to the covariant behaviour and the new application track in
POMDPs. The covariant behaviour seems to play a very im-
portant role in RKHS methods, because the bandwidth setting
issue is not as easy as in parametric methods, especially in
very large problems.

Acknowledgement
This work was supported by the DFG (German Science
Foundation) under grant number 409/9-1 within the priority
program Autonomous Learning SPP 1527 and the EU-ICT
Project 3rdHand 610878. We would like to thank Guy Lever
(UCL) for fruitful discussions.

References
[Amari, 1998] Shun-Ichi Amari. Natural gradient works ef-

ficiently in learning. Neural Computation, 10(2):251–276,
February 1998.

[Bagnell and Schneider, 2003a] J. Andrew Bagnell and Jeff
Schneider. Policy search in reproducing kernel hilbert
space. Technical Report CMU-RI-TR-03-45, Robotics In-
stitute, Pittsburgh, PA, November 2003.

[Bagnell and Schneider, 2003b] J. Andrew Bagnell and
Jeff G. Schneider. Covariant policy search. In IJCAI,
pages 1019–1024, 2003.

[Baxter and Bartlett, 2001] Jonathan Baxter and Peter L.
Bartlett. Infinite-horizon policy-gradient estimation. J. Ar-
tif. Intell. Res. (JAIR), 15:319–350, 2001.

[Boots et al., 2013] Byron Boots, Geoffrey J. Gordon, and
Arthur Gretton. Hilbert space embeddings of predictive
state representations. In UAI, 2013.

[Kakade, 2001] Sham Kakade. A natural policy gradient. In
Advances in Neural Information Processing Systems 14
(NIPS), pages 1531–1538, 2001.

[Kober and Peters, 2011] Jens Kober and Jan Peters. Policy
search for motor primitives in robotics. Machine Learning,
84(1-2):171–203, 2011.

[Kober et al., 2010] Jens Kober, Erhan Oztop, and Jan Pe-
ters. Reinforcement learning to adjust robot movements
to new situations. In Robotics: Science and Systems VI,
2010.

[Kober et al., 2013] Jens Kober, J. Andrew Bagnell, and Jan
Peters. Reinforcement learning in robotics: A survey. I. J.
Robotic Res., 32(11):1238–1274, 2013.

[Konda and Tsitsiklis, 1999] Vijay R. Konda and John N.
Tsitsiklis. Actor-critic algorithms. In Advances in Neural
Information Processing Systems 12 (NIPS), pages 1008–
1014, 1999.

[Lever and Stafford, 2015] Guy Lever and Ronnie Stafford.
Modelling policies in mdps in reproducing kernel hilbert
space. In AISTATS, 2015.

[Lillicrap et al., 2015] Timothy P. Lillicrap, Jonathan J.
Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continu-
ous control with deep reinforcement learning. CoRR,
abs/1509.02971, 2015.

[Micchelli and Pontil, 2005] Charles A. Micchelli and Mas-
similiano Pontil. On learning vector-valued functions.
Neural Computation, 17(1):177–204, 2005.

[Neumann, 2011] Gerhard Neumann. Variational inference
for policy search in changing situations. In ICML, pages
817–824, 2011.

[Nordebo et al., 2010] Sven Nordebo, Andreas Fhager, Mats
Gustafsson, and Börje Nilsson. Fisher information integral
operator and spectral decomposition for inverse scattering
problems. Inverse Problems in Science and Engineering,
Taylor & Francis, 18(8), 2010.

[Peters and Schaal, 2007] Jan Peters and Stefan Schaal. Re-
inforcement learning by reward-weighted regression for
operational space control. In ICML, pages 745–750, 2007.

[Peters and Schaal, 2008] Jan Peters and Stefan Schaal. Nat-
ural actor-critic. Neurocomputing, 71(7-9):1180–1190,
2008.

[Reed and Simon, 2003] Michael Reed and Barry Simon.
Functional Analysis. Elsevier, 2003.

[Schölkopf and Smola, 2002] Bernhard Schölkopf and
Alexander J. Smola. Learning with Kernels Support
Vector Machines, Regularization, Optimization, and
Beyond. Adaptive Computation and Machine Learning
series, MIT Press, 2002.

[Silver et al., 2014] David Silver, Guy Lever, Nicolas Heess,
Thomas Degris, Daan Wierstra, and Martin A. Riedmiller.
Deterministic policy gradient algorithms. In ICML, pages
387–395, 2014.

[Sutton et al., 1999] Richard S. Sutton, David A.
McAllester, Satinder P. Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with
function approximation. In Advances in Neural Informa-
tion Processing Systems 12 (NIPS), pages 1057–1063,
1999.

[van Hoof et al., 2015] Herke van Hoof, Jan Peters, and Ger-
hard Neumann. Learning of non-parametric control poli-
cies with high-dimensional state features. In AISTATS,
2015.

[Vincent and Bengio, 2002] Pascal Vincent and Yoshua Ben-
gio. Kernel matching pursuit. Machine Learning, 48(1-
3):165–187, 2002.

[Vlassis et al., 2009] Nikos Vlassis, Marc Toussaint, Geor-
gios Kontes, and Savas Piperidis. Learning model-free
robot control by a monte carlo EM algorithm. Auton.
Robots, 27(2):123–130, 2009.

[Williams, 1992] Ronald J. Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 1992.

