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Abstract— How can we close the gap between animals and
robots when it comes to intelligently interacting with the envi-
ronment? On our quest for answers, we have investigated the
problem of physically exploring complex mechanical puzzles,
called lockboxes. Biologists have discovered that cockatoos are
intrinsically motivated to explore and solve such problems
through physical explorative behavior. In this work, we study
how different strategies shape the robots’ exploration, given
basic perception-action skills. Our evaluation highlights the
influence of different statistical priors on the performance of
the exploration strategies, showing that not only a range of
computational methods, but also a range of priors could explain
different exploration behaviors. We carry out our study of
exploration strategies both in simulation and on two robot
platforms. This first step towards a fully integrated real-world
system allowed us to identify and remove limitations of our
prior theoretical work on cross-entropy-based exploration when
applied to complex realistic scenarios. In this paper we propose
novel variants of this strategy and our experiments verify that
the cross-entropy method performs well on a physical lockbox
analogue of the cockatoo apparatus, and can generalize to
lockboxes of different properties.

I. INTRODUCTION

Figure 1 (top left) shows a cockatoo interactively explor-
ing a mechanical puzzle, called the lockbox. The lockbox
consists of a series of kinematic mechanisms that have to
be sequentially unlocked to reach a nut behind the last
door. Studies revealed that cockatoos explore a lockbox, and
thereby learn about its mechanisms, even in the absence of
food, seemingly motivated by intrinsic curiosity [1], [2]. The
birds’ behavior is a perfect example of physical exploration:
the cockatoo needs to engage in interactions with the puzzle
to learn about the mechanism and eventually open it.

Replicating such behavior on robotic systems entails a
series of scientific questions that are interesting for both
biological and robotics research. The fields of machine
learning and experimental design have proposed a number of
exploration principles, e.g. choosing actions that maximize
information gain, or uncertainty sampling (see [3] for an
overview). All these principles typically define a so-called
acquisition function, which describes a degree of payoff
when choosing an action, e.g. a learning progress. The
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Fig. 1: Top-left: cockatoo Muppet opening the lockbox;
bottom-left and right: our two robotic systems actuating a
similar lockbox mechanism

behavior is then described as choosing actions that maximize
the acquisition function.

This raises the question of whether such principles can
explain the birds’ behaviors as well as allow us to replicate it
on robots. The question is, however, ill-defined! The behavior
resulting from such principles heavily depends on multiple
factors: the sensorimotor capabilities of the agent, the repre-
sentation of the exploration problem, the concrete exploration
principle applied, and the assumed prior belief. In this paper,
we implement and evaluate the exploration behaviors that
result from different exploration principles under varying
prior beliefs, assuming a set of basic sensorimotor skills for
the interaction as given.

Finally, instead of postulating optimality principles to
describe behavior, we could directly propose exploration
heuristics. Random exploration is one of the simplest heuris-
tics which, in fact, performs very well in some settings.1 In
our experiments we will consider another straight-forward
heuristic that is optimal if the mechanism is deterministic
and one presumes that there exists exactly one next lock that
can be opened, without knowing which joint this is.

The main contribution of this paper is the evaluation and
implementation of different exploration behaviors both in
simulation and on two real robotic platforms – considering

1E.g., a uniform sampling distribution reduces a GP’s posterior entropy
fairly well (though less sample efficient than uncertainty sampling). In
contrast, in MDP settings that require a series of coordinated actions to
reach certain states, random sampling may perform very poorly.



exploration principles under various prior beliefs as well as
exploration heuristics. We focus particularly on the strategies
used to explore and learn about the locking dependencies in
lockbox mechanisms, and their performance in unlocking the
entire lockbox as a side-effect of the curiosity-driven behav-
ior. In this context, we improved on our earlier proposed
theoretical methods to account for unrealistic assumptions.
Specifically, the method presented in [4] assumed that a
single action can change the configuration of multiple joints,
and that the locking state of single joints can be observed
without physical interaction. In contrast, the new system
really reflects the interactive nature of physical exploration.
A query for the locking state of a joint now actuates it and
observes its locking state at the same time. This also better
represents the cost and consequences of exploring different
joints within the system.

Identifying these unrealistic sensorimotor capabilities has
only become possible because we moved away from pure
simulated environments towards integrated real-world in-
teractive systems. We propose that this understanding-by-
building approach is the best way to study the interplay
between all the factors that influence the exploration behav-
ior. While in this work we focus on principles and prior
beliefs, we plan to further research the interplay along the
other dimensions, representation and sensorimotor skills. By
generating real robot interactive explorative behavior our aim
is to eventually be able to compare the robots and birds on
specific tasks like the lockbox.

In the next section we review related work. In Sections III
and III-A we describe the challenges in the lockbox task
as well as the two robotic systems on which we evaluate
the exploration strategies, one at RBO Berlin, one at MLR
Stuttgart. Section IV describes the five evaluated exploration
strategies, which include a random and an optimal-expert
heuristic, as well as information-based principles under dif-
ferent prior beliefs. Section V describes real-world experi-
ments and provides a quantitative evaluation of the strategies
in simulation.

II. RELATED WORK

In this work we present an integrated system to evalu-
ate different exploration behaviors for learning dependency
structures in articulated mechanisms (lockboxes). Therefore,
we first review work on physical exploration of articulated
objects and then theoretical approaches to (physical) explo-
ration.

The need for active exploration in robotic manipulation
stems from the fact that not all object properties can be
inferred from passive observation alone [5]. Interactive ex-
ploration to enable perception has thus been applied to a wide
variety of manipulation tasks, such as (rigid) object segmen-
tation [6] and shape reconstruction [7]. Physical exploration
of the environment to discover the kinematic structure of
articulated objects has also been recently addressed [8]–[10].
These approaches neglect locking mechanisms and instead
assume that joints are permanently unlocked and can be fully
actuated at all times. This assumption does not hold for the

lockbox and common mechanisms like doors or windows.
The method we apply in this work provides exploration
strategies for discovering interlocking dependencies between
joints.

Since each manipulation interaction is costly, exploration
needs to be efficient. A theoretically well founded branch of
exploration strategies is active learning [11], also known as
optimal experimental design [3]. These methods differ from
standard machine learning methods in that they iteratively
generate the training data so as to maximize the learning
success. In general, this implies a long horizon planning
problem, where data selection decisions should be reactively
planned to maximize the expected final model quality, e.g.,
minimize the model’s final entropy. One approach to solving
such planning problems is belief space planning [12], which
considers the current belief as the state of a Markov decision
process. While this leads to optimal exploration strategies,
it comes at the expense of a significant amount of com-
putation. In contrast to a planning approach, typical active
learning methods select the next data points by maximizing
a simpler measure of utility, called the acquisition function,
which is typically designed as an (approximation of) upper
(optimistic) bound of the true utility. The expected 1-step
look-ahead information gain and uncertainty sampling are
instances of this. Both are supported by the sub-modularity
of the predictive entropy of a model [13].

However, in [14] we showed that entropy over la-
tent variables (instead of predictive entropy) may be non-
submodular w.r.t. observations, and we proposed a variant
of the information-gain acquisition function, the Maximum
Cross Entropy (MaxCE), which more robustly escapes local
optima. Informally, it prioritizes samples (here: actions) that
are expected to maximally change the belief state. This leads
to exploration of regions where the current belief is expected
to be either strengthened or challenged most.

One of the exploration behaviors we investigate is an
extension of our previous method [4] using MaxCE to
discover dependencies in simulated kinematic mechanisms.
This previous work was not integrated into a complete
robotic system and made assumptions that violate the direct
real-world application. Specifically, it assumed that a single
interaction with the system could bring it to an arbitrary
configuration Q1:N , thus changing all joint poses simultane-
ously. This is analogous to typical active learning, where any
input configuration x can be queried to maximize learning
progress of a model. However, given a real lockbox, we
cannot query arbitrary configurations but instead can only
try to move a single joint. Second, it was assumed that after
an interaction the locking state of any joint can be queried
(without a further interaction). Again, on a real lockbox we
can “query” the locking state of a joint only by trying to
move it. We revised the MaxCE method of [4] to account
for these real world aspects.

III. THE LOCKBOX TASK

We define a lockbox as a mechanical puzzle with locking
dependencies between joints. A joint has a locking depen-



dency on other joints if it can only move when these other
joints are in specific configurations. Two different lockboxes
can be seen in Figure 1. The smaller lockbox (top left) is
actuated by a cockatoo (taken from [1]), while the two larger
lockboxes (right and bottom left) were built for our robot
experiments. The lockboxes have a serial joint dependency
structure, which means that each joint can only be locked
by one or both of its direct neighbors.

Our robot lockbox is composed of rigid links connected to
a common frame through 1 DoF joints: two revolute “doors”
(joints 1 and 5), two prismatic slides (joints 2 and 4) and
a rotating wheel (joint 3). Every joint locks the following
one at one of its joint limits, but joints 2, 3 and 4 also
lock their previous joint after being opened, i.e. after being
moved to the opposite joint limit. We define “locked” to
be any state of a joint where it can not be articulated over
its complete joint range. If only parts of the joint range
are blocked, we still consider the joint to be locked. The
lockbox is built in a way that a joint can unlock another joint
only at its own joint limits. Fig. 4d depicts the real world
lockbox (left), a diagram of its dependency structure (second
left) and additional virtual lockboxes we use to evaluate our
exploration strategies.

We identify two potential primary goals for an agent
that interacts with the lockbox: 1) inducing a (partial) goal
configuration (e.g. open the final door), and 2) acquiring
knowledge about the lockbox structure [1]. Measuring the
performance of an agent that interacts with the lockbox
requires then to answer the questions: 1) How well can the
agent induce a (partial) goal configuration? 2) How close is
its belief about the kinematic structure to the ground truth?
We will see in Sec. V the specific metrics we use to evaluate
these two criteria.

A. System Setup

We conducted experiments with two different robots. In
the Berlin laboratory, we used a Barett WAM arm with a
pneumatically actuated soft hand end-effector [15], mounted
to an omnidirectional base. In the Stuttgart laboratory, we
used a stationary Rethink Robotics Baxter robot with an
electrical parallel gripper.

Motion generation follows standard approaches, namely
using a basic operational space control [16] to compute de-
sired robot joint accelerations from a set of currently running
task constraints. The accelerations are integrated to become
a pose reference that is sent as a position command. We
designed an atomic action to actuate a link, which involves
approaching, grasping, actuating, releasing, retracting and
returning to a home position. Each of these states is defined
by a set of task constraints, and transitions to a next state
when all constraints are met.

Both setups use an RGB-D sensor to detect QR code mark-
ers. These markers are used to localize grasp affordances
for each link, generate manipulation trajectories and infer
the current state of the joints. The locking state can not be
perceived visually; it is perceived differently from sensor data
for both implementations. The Stuttgart system uses the error

between the true end-effector position (based on robot’s joint
encoders and forward kinematics) and the reference pose. If
the error becomes too large, we assume this indicates that a
joint is locked, and a safe abort is performed. Note that this
requires a degree of compliance of the robot actuation, which
is implicit in Baxter’s PID position reference controller and
mechanical series elasticity. The Berlin system does not
use the error between reference and measured end-effector
pose to detect locked joints, but detects if the measured
force-torque signal exceeds a certain threshold. The locking
dependency is inferred from estimations of the locking state
at different joint configurations.

We realize that engineering the sensorimotor skills this
way is a significant simplification of the task. While we
deem this appropriate for our current study of the interplay
between exploration principles and prior belief, in the future
we will extend the exploration behavior also to learning such
perception and action capabilities.

IV. EXPLORATION STRATEGIES AND PROBABILISTIC
MODEL

In our study we evaluate five different exploration strate-
gies, under two different prior beliefs, that decide on the next
joint to be actuated:

1) random heuristic
2) expert heuristic
3) minimal entropy principle
4) MaxCE (one-step-look-ahead) principle
5) pseudo-two-step MaxCE principle

The two heuristics describe behavioral decisions that are
independent of what the model has learned from the inter-
actions. In contrast, the three information-based principles
update and base their decisions on a Bayesian belief over
the locking dependency structure conditional to previous
experiences.

To maintain a Bayesian belief over the locking dependency
structure we adopt the probabilistic model for joint depen-
dencies presented in [4], with the simplification that we only
consider the limits of joints to be sensible desired positions,
and thus do not need change point detection.

In this model, a joint is called dependent on another if
its locking state (i.e., locked or unlocked) is dependent on
the joint state of the other joint. Given a set of N joints,
the locking state of joint j at time t is represented by the
parameter Lj

t ∈ [0, 1] of a Binomial. That is, we allow for
cases where the true locking state is inherently stochastic.
For deterministic locking, Lj is either 0 or 1. An action on
joint j observes a binary sample of the locking state of joint
j. In addition we assume the configuration Qj

t ∈ R of each
joint j at time t to be observed. We map this configuration
to a binary variable indicating the closest joint limit to the
current configuration.

The locking dependency structure between joints is rep-
resented as follows: For each joint j we have an integer
indicator Dj ∈ {0, .., n}, where Dj = 0 indicates that no
other joint locks j, while Dj ∈ {1, .., N} states that the
locking of joint j depends on the configuration of joint Dj .
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Fig. 2: The graphical model of the lockbox domain. The
action j determines which locking state Lj can be observed
at time t.

At time t, the full history of experiences is given by
ht =

(
Q1:N

s , js, L̂
js
s

)
s=1..t

, where Q1:N
t are the joint con-

figurations before the tth action, jt is the tth action, and
L̂jt
t ∈ {0, 1} is the observed locking state of joint jt which

is perceived from the interaction. Based on the history ht

of experiences we can compute the posterior belief bt(D) =
P (D |ht), which is a set of multinomials over Dj for every
j. Instead of a Bayesian belief update, we recompute the
belief bt(D) after every interaction as described in [4]. The
agent’s general goal can be to minimize the uncertainty
in bt(D), or maximize the likelihood bt(Dtrue) of the true
dependency structure under the belief. The graphical model
is depicted in Figure 2.

After we have explained how we update the belief (on
which three of our strategies depend), we can now explain
the five strategies:

a) Random Heuristic: The agent chooses uniformly
among the set of possible actions.

b) Expert Heuristic: Given the characteristics of the
real lockbox, it is fairly simple for an engineer to define a
strategy that is optimal iff 1) the lockbox is initially closed,
2) the locking mechanisms are deterministic, 2) there exists
exactly one next lock that is unlocked and can be actuated, 3)
a lock is more likely to unlock closer locks than locks farther
away, 4) the goal is to open the lockbox. The strategy then
is: Try to move joints in any non-repeating order until one
is found that moves; then repeat this excluding the joints
that have already been moved and picking joints sorted by
distance to the last moved joint. Note that 1), 2) and 3) are
fulfilled in our scenario, leading to the optimal behavior for
4).

c) Entropy Minimization (MinEnt) Principle: Follow-
ing standard experimental design, the agent chooses the
action that minimizes the expected entropy of bt+1(D) after
the interaction,

j∗E = argmin
j

∑
L̂j

t+1

P (L̂j
t+1 |ht) H

[
bt+1(D

j ; L̂j
t+1)
]
, (1)

where bt+1(D
j ; L̂j

t+1) is the belief after adding the hypo-
thetical observation L̂j

t+1 to the history, and
∑

L̂j
t+1

takes
the expectation over this hypothetical observation w.r.t. the
posterior P (L̂j

t+1 |ht) of what we may observe. In summary,
this strategies tries to continuously reduce the entropy of
the belief. While the sub-modularity of a predictive entropy
guarantees bounded regret of this strategy, in [14] we show

that entropy measures w.r.t. latent model parameters, such as
D, are not sub-modular.

d) MaxCE Principle: Instead of minimizing entropy,
the agent chooses the action which, in expectation, generates
the largest change in belief measured by the cross entropy:

j∗MaxCE = argmax
j

∑
L̂j

t+1

P (L̂j
t+1 |ht) H

[
bt(D

j); bt+1(D
j ; L̂j

t+1)
]
,

(2)

with H[·; ·] the cross entropy between two probability distri-
butions,

H[p; q] = −
∑
X

p(X) log(q(X)) = H[p] +KLD
(
p
∣∣∣∣ q)

(3)

being KLD the Kullback-Leibler divergence (KL-
divergence) between probability distributions. Note that
H
[
bt(D

j)
]

is independent of the hypothetical observation
L̂j
t+1, and the principle can be rewritten to maximize

the KL-divergence. In [14] we discuss how the MaxCE
principle may be less prone to local optima as, instead of
choosing actions that are likely to confirm the current belief
(further reduce its entropy), it may also choose actions that
challenge the current belief (change it drastically even if the
next belief may have more entropy). At initialization there
is no expected cross entropy for any action (Hj = 0 ∀j)
and the agent chooses randomly.

e) Pseudo-two-step MaxCE (2MaxCE) Principle: The
entropy and MaxCE principles are one-step look-ahead prin-
ciples: we consider one action and take the expectation of
some utility w.r.t. the hypothetical observation from this
action. We propose a pseudo 2-step version here, where the
agent chooses:

j∗2MaxCE = argmax
j

∑
L̂j

t+1

P (L̂j
t+1 |ht)

∑
j′

∑
L̂j′

t+2

P (L̂j′

t+2 |ht+1)

·H
[
bt(D

j′); bt+2(D
j′ ; L̂j

t+1, L̂
j′

t+2)
]
, (4)

where j′ is a second follow-up action, L̂j′

t+2 a second hypo-
thetical observation, and bt+2(D

j ; L̂j
t+1, L̂

j′

t+2) the belief after
two additional observations. Intuitively, this is a measure
of what we can learn from a random j′ if we first would
actuate j and then query j′. In the lockbox scenario, this
makes particular sense because an action j may not lead to
immediate information but enable it in the next action. More
formally, this is not an exact 2-step look-ahead, as this would
require to optimize j′ conditional to the outcome of the first
action, while here we only sum over j′. This summation over
j′ implies that we pick the second action j′ randomly.

V. EXPERIMENTS

We evaluate and compare the performance of the
five aforementioned exploration strategies: random, expert,
MinEnt, MaxCE, 2MaxCE. The three last strategies are based
on the current belief over dependency structures, bt(D), and
are thus affected by the prior b0(D) over this dependency.
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Fig. 3: Simulation results for lockboxes with 1-to-1 locking dependencies. Each graph shows mean performance for the
same set of different lockboxes – serial and n-gram layouts with 4,5,6 joints and different initial configurations. Plots (a) -
(d) show performance with adversarial prior initialization and plots (e) - (h) for uniform prior initialization.
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Fig. 4: The real lockbox (a) and different simulated environments with joint positions and locking dependencies. The serial
and N-gram structures have also been generated with 4 and 6 joints. Nodes represent the positions of kinematic joints (in
2d) and edges represent locking dependencies, where an arrow indicates that the target joint is dependent on the joint where
the arrow originates.

Therefore we additionally evaluate two different Bayesian
prior assumptions:

1) a uniform prior belief, with all dji =
1

N+1

2) an “adversarial” prior belief, with a probability dj0 =
0.7 for joint j being independent from all other joints,
and a lower probability dji for joint j depending on
joint i which uniform among all joints i 6= j (

∑
i d

j
i =

1).

We call the second prior adversarial, because while in human
environments joints are more likely to be independent, here
in the lockbox scenario it significantly (wrongly) underesti-
mates the chances for joint dependencies. In particular, the
MinEnt strategy (the standard experimental design principle)
will have considerable difficulties with this mis-specified
prior as it avoids actions that might increase the initially
small entropy of the prior, which is necessary to learn.

As we mentioned in Sec. III, we consider two main criteria
to evaluate the performance of the agents: 1) how well they
bring the lockbox to a desired configuration, and 2) how
optimally they acquire knowledge about the lockbox. We
consider four measurements for these evaluation criteria:

1) KL-divergence between the belief bt(D) and the

ground truth represented by a delta Dirac on the true
dependency model Dtrue, which is a measure of learned
model quality.

2) The (expected) number of joints, for which the cur-
rent locking state Lj

true is correctly predicted with
P (Lj |ht), namely the quantity

∑
j P (Lj

true |ht). This
is also a measure of learned model quality and strongly
correlated with the KL-divergence, but scales more
intuitively.

3) The number of joints not yet opened, which corre-
sponds to a distance to goal if the goal is opening the
lockbox. This is a measure of how well the strategies
can open the lockbox.

4) The sum of entropies
∑

j H[bt(D
j)]. This measure is

insightful as it highlights when actions first need to
increase belief entropy in order to learn.

The heuristics (random, expert) do not select actions
based on the current belief and are therefore independent of
an explicit Bayesian prior—however, our evaluation criteria
include the correctness of the learned model given the
experiences using exact Bayesian updates, and this criteria
depends on the Bayesian prior for the heuristics as well. We



will compute and evaluate the influence of the prior belief
on the computed posterior with these strategies.

A. Simulated Experiments

1) Setup: We simulate 1200 trials with different lock-
boxes using a simple analytic physics model to obtain more
accurate statistics about the exploration strategies. We sim-
ulated both a model that matches our physical lockbox and
other lockboxes that change either their spatial arrangement
(see Fig. 4), and/or their initial locking state. These other
lockboxes test the generality of the exploration strategies.
In each of the lockboxes we also changed the prior over
dependency model between adversarial and uniform prior.
For each combination of lockbox and priors we ran 10 trials
with a fixed length of 30 actions. This results in 36000
actions in total, which would have required an excessive
amount of time to execute on any real robot platform. It was
only through our validation of assumptions with our real-
world systems that we can confidently use the results of our
simulator.

2) Results: The results are depicted in Fig. 3. The expert
heuristic and the one step lookahead MaxCE strategy can re-
liably open the lockbox within the time horizon. The MinEnt
strategy can not compensate for the adversarial prior, but
works reliably with the benign uniform prior initialization.
The 2MaxCE method, in contrast, can compensate for the
adversarial prior, but fails with the uniform prior initial-
ization. This is a consequence of taking a random second
action instead of a full 2-step plan. The expert strategy is
the best (on average) at quickly opening the lockboxes. The
assumptions encoded in the heuristic (see Sec. IV) are mostly
valid in all lockboxes tested on simulation. Interestingly, the
more general variants of the MaxCE method are almost as
good as the heuristic, even if its objective is not to open the
lockboxes.

For the second evaluation criterion, the one-step look-
ahead Maximum-Cross-Entropy strategy and the expert
heuristic are generally the strategies that best acquire knowl-
edge, as is visible in the higher fraction of correctly clas-
sified joints (the ground truth dependency model has the
highest probability among models) and the KL divergence.
The pseudo-two-step look-ahead modification of the cross
entropy performs well with the adversarial prior, but with the
uniform prior its performance degrades after some actions.
After looking at the action selection sequence we observe
a constant attempt to actuate a locked joint. This is again
a local minimum created by the pseudo-two-step strategy,
that assumes a random second action. As we expected, the
exploration based on minimization is only applicable with the
uniform prior initialization and perform poorly if the prior
is adversarial. We also conclude that random exploration is
in any case not a solution to explore complex dependency
structures like the lockbox.

B. Real World Experiments

1) Setup: We first run each of the different strategies
5 times our robot systems on the real lockbox. For the
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(b) Real world adversarial
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Fig. 5: The number of joints not opened yet for simulated and
real world experiments under different priors. The simulated
experiments (left) and real world experiments (right) are
qualitatively similar.
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Fig. 6: KL divergences for simulated and real world ex-
periments under different priors. The simulated experiments
(left) and real world experiments (right) are qualitatively
similar primarily for adversarial prior. Note that the real
world experiments ended as soon as the lockbox was opened.

three belief-based strategies, we also tested the two different
priors. Trials were halted if the robot successfully completed
opening the lockbox or after a maximum of 30 actions. While
this number of trials is low to derive complete statistics, they
serve to confirm that the assumptions made in our method in
terms of action-perception are realistic and validate further
simulation experiments. During the 30 trials, the joints tested
and the resulting lockbox joint configurations were recorded.

2) Results: The results for experiments on the MLR
system are depicted in Fig. 6 (KL divergence to ground
truth) and Fig. 5 (number of joints not opened yet). The
Figures are arranged such that the real world experiments
on the right side can be compared to simulation results
for a simulated lockbox environment with 2-to-1 locking



dependencies on the left side. While they do not line up
exactly, qualitatively the results line up fairly well.

The expert heuristic and MaxCE strategy can reliably open
the lockbox and gather information within the time horizon
for uniform and adversarial prior. As we observed in the
previous experiments, MinEnt only works with the uniform
prior but not with the adversarial prior. Inversely, 2MaxCE
only works with the adversarial prior and get stuck with
the uniform prior, as we saw in simulation. The random
strategy was only able to open the lockbox once in the real
world experiments. The accompanying video illustrates the
real world experiments for both of the robotic platforms.

VI. DISCUSSION AND FUTURE WORK

In this paper we examined exploration principles and prior
beliefs as different factors that determine an agents explo-
ration behavior. We did an extensive experimental evaluation
to further understand the interplay between these factors
and also presented some modifications and extensions to
an established exploration algorithm based on the maximum
cross-entropy criterion. Our experimental results show that
the choice of exploration principles and prior beliefs can
both critically change behavior. The same algorithm, e.g.
the standard experimental design principle, may lead to very
different behavior and efficiency depending on the prior
beliefs assumed. More specifically, MinEnt and MaxCE are
both good learning criteria if the prior beliefs are well-
specified. Additionally, our experimental results give further
evidence that only MaxCE is robust to adversarial (or initially
not well known) prior assumptions. On the unmodified
lockbox, MaxCE approximately performs as good as the
optimal expert heuristic. In contrast, the MinEnt algorithm
only succeeds when initialized with a benign prior belief; if
initialized with a improper prior, it unconditionally reinforces
these false a-priori assumptions and fails.

In the paper, we revised the MaxCE strategy by removing
unrealistic assumptions and extended it to a pseudo-two-step
version 2MaxCE. The unrealistic assumptions of the original
algorithm could only be discovered because we moved from
the simulated domain to a real world robotic integration
problem. Besides the influence of prior and algorithm on ex-
ploration behavior, we believe that the agent’s sensorimotor
capabilities and problem representation are also important.
While we concentrated on algorithm and prior beliefs in
this study, for future work we plan to evaluate if and how
different sensorimotor capabilities (e.g. our prior work on
perceiving articulation [17] and generating interaction [18])
and problem representation can also influence exploration
behavior.

We hope that our study can also motivate behavioral
biologists to think about exploration behavior in a different
way. When proposing models of animal behavior, it is insuf-
ficient to only point to computational principles; differences
in behaviors (say across species or ages) might well be
explained by different inherent beliefs (prior knowledge),
sensorimotor capabilities and internal representation but the
same computational principle. Our experiments do indicate

that behaviors significantly deviate depending on the prior
beliefs assumed. Therefore behavioral biologists could model
different behaviors as being “rational”—following standard
computational principles—with respect to different prior
beliefs. We hope to stimulate future collaborations between
behavioral biologists and robotics on physical exploration
behavior with this work.
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Bayesian Identification of Kinematic Mechanisms,” in International
Conference on Robotics and Automotion, 2014, pp. 2013–2020.

[10] K. Hausman, S. Niekum, S. Osentoski, and G. S. Sukhatme, “Active
Articulation Model Estimation through Interactive Perception,” in
International Conference on Robotics and Automotion, 2015.

[11] B. Settles, Active Learning, ser. Synthesis Lectures on Artificial
Intelligence and Machine Learning, R. Brachman, W. Cohen, and
T. Dietterich, Eds. Morgan and Claypool, 2012.

[12] L. P. Kaelbling, M. Littman, and A. R. Cassandra, “Planning and acting
in partially observable stochastic domains,” Artificial Intelligence
Journal, vol. 101, pp. 99–134, 1998.

[13] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions,” vol. 14,
no. 1, pp. 265–294.

[14] J. Kulick, R. Lieck, and M. Toussaint, “The Advantage of Cross En-
tropy over Entropy in Iterative Information Gathering,” arXiv preprint
arXiv:1409.7552, vol. 1409.7552v2, 2015.

[15] R. Deimel and O. Brock, “A novel type of compliant and underactuated
robotic hand for dexterous grasping,” The International Journal of
Robotics Research, vol. 35, no. 1–3, pp. 161–185, 2016.

[16] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Oper-
ational space control: A theoretical and empirical comparison,” The
International Journal of Robotics Research, vol. 27, no. 6, 2008.
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