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Abstract— In this paper, we address the problem of how
a robot can optimize parameters of combined interaction
force/task space controllers under a success constraint in an
active way. To enable the robot to explore its environment
robustly, safely and without the risk of damaging anything,
suitable control concepts have to be developed that enable
compliant and force control in situations that are afflicted with
high uncertainties. Instances of such concepts are impedance,
operational space or hybrid control. However, the parameters of
these controllers have to be tuned precisely in order to achieve
reasonable performance, which is inherently challenging, as
often no sufficient model of the environment is available.
To overcome this, we propose to use constrained Bayesian
optimization to enable the robot to tune its controller param-
eters autonomously. Unlike other controller tuning methods,
this method allows us to include a success constraint into
the optimization. Further, we introduce novel performance
measures for compliant, force controlled robots. In real world
experiments we show that our approach is able to optimize
the parameters for a task that consists of establishing and
maintaining contact between the robot and the environment
efficiently and successfully.

I. INTRODUCTION

The vision that robots leave caged industry halls to col-
laborate safely with humans in unstructured environments
is highly appreciated. Recent research [1], [2] has shown
that exploiting contacts between the robot and the environ-
ment plays an important role here, because it reduces the
uncertainty about the state of the world and hence is able to
improve the robustness during the manipulation. However,
seeking contacts can be dangerous, especially in uncertain
and dynamically changing environments. Therefore, the new
generation of autonomous robots requires suitable control
concepts that are capable of interacting with unknown objects
robustly and without the risk of damaging anything. Stiff
joint space control, designed for the precise execution of
preplanned trajectories, cannot achieve this. Instead, compli-
ant control frameworks like operational space or impedance
control are much more appropriate in this situation, where
the focus is on establishing a dynamic interaction between
the robot and environmental constraints. Such frameworks
realize force and variable stiffness control, which increases
the safeness and enables the robot to exploit contacts.

However, the performance of those interaction control
concepts is subject to parameters which heavily depend on
the physical properties like stiffness, mass or shape of the
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objects in the environment. This contradicts the idea of using
those control frameworks in uncertain environments where
usually no model of the objects is available a priori.

In an autonomous robot way of thinking, we suggest that
the robot should be enabled to tune its controller parameters
by itself. Formally, this can be seen as an optimization
problem, where the goal is to minimize a certain cost
function that measures the performance of the controller.
However, standard optimization algorithms cannot be applied
here, as the dependency of the cost function on the controller
parameters is unknown. Moreover, for manipulation tasks,
often discrete success constraints are involved that indicate
whether the manipulation was successful or has failed. We
think that combining real valued cost terms and discrete
success indicators into one single objective function is unfa-
vorable and discards the structure of the problem. Recently,
Englert et al. [3] have introduced a method that augments
Bayesian optimization, a black-box (unconstrained) opti-
mization algorithm suitable for analytically unknown cost
functions, to include a discrete success constraint.

In the present work, we propose to combine this special
constrained Bayesian optimization with a class of interaction
control frameworks to tune the controller parameters for
manipulations that are afflicted with uncertainties. As an
important step, we consider how the performance of such
controllers in the context of compliant and force controlled
interactions can be measured, since standard criteria like
deviation from reference trajectories are not suitable to eval-
uate manipulations focusing on interaction. Our presented
controller framework enables to control in multiple weighted
task spaces with varying stiffness/damping properties, as
well as to limit interaction forces simultaneously. In contrast
to existing controller tuning approaches, by including a
constraint into the optimization process, we can ensure that
the optimized parameters lead to successful manipulations.

Our paper is organized as follows. Section II reviews
related work dealing with automatic tuning of controller
parameters and interaction control concepts. An overview
of our approach is given in section III. Section IV, V and
VI give details about our methodology, the controller frame-
work, the evaluation criteria and the constrained Bayesian
optimization algorithm. Finally, our approach is demon-
strated in real world experiments, see section VII.

II. RELATED WORK

A. Control frameworks for interaction
So-called impedance [4] and operational space [5] control

are both suitable concepts for tasks that require interaction



between the robot and the environment. Their goal is to
directly specify the desired behavior in the operational/task
space in terms of virtual mass-spring-damper systems with
variable stiffness and damping properties. This allows to
realize compliance in different directions, making these
control concepts suitable for interaction tasks. More recent
frameworks [6], [7], [8] are based on constraint task de-
scriptions. In [8], a whole body control concept is proposed
that establishes a hierarchy between control objectives by
prioritizing tasks handling constraints over operational tasks.

In order to increase the safeness during the interaction,
it is desirable to regulate contact forces. Villani et al. [9]
give a comprehensive overview of different force control
concepts like hybrid control, where the idea is to decompose
the task space into position and force controlled, orthogonal
subspaces. Force control can either be realized by displace-
ments or directly on the force level.

Estimating reasonable parameters for these compli-
ant/force controllers can be challenging [9], especially if
little knowledge about the structural properties (stiffness,
mass etc.) of the objects in the environment is known.
This emphasizes the necessity of our method to enable the
robot to tune its parameters autonomously in unmodeled
environments.

B. Learning control and (safe, constrained) Bayesian opti-
mization in robotics

Learning/tuning controllers has a great history in robotics.
Often, this consists of identifying dynamics models [10],
[11]. Although system identification is also important for our
controller, it is not suitable to enable the robot to optimize its
interaction controller parameters in uncertain environments.

Marco et al. [12] applied (unconstrained) Bayesian opti-
mization to tune the weights of the cost functional of a linear-
quadratic regulator. They demonstrated this tuning process on
balancing an inverted pendulum. In contrast to our approach,
they do not distinguish between unstable controllers and
successful ones, instead, they assign high costs to failures,
which, we think, discards the structure of the problem and
has disadvantages. The work of Schreiter et al. [13] deals on
how safety constraints can be included in an active learning
process. Their focus lies on safe exploration, i.e. they try to
avoid sampling of parameters that lead to system failures, as
they consider them to be dangerous. Berkenkamp et al. [14]
adhere to a similar spirit. They optimize the controller gains
for a quadrocopter with Bayesian optimization augmented
by safety constraints. They consider safety constraints like a
certain maximum deviation from a reference trajectory.

The key difference to our approach is that we are interested
in successful parameters, that is, we want to find parameters
that not only minimize some costs, but simultaneously lead
to task success, since manipulation tasks often involve such
discrete success signals. Moreover, we think that optimizing
parameters in situations that are inherently afflicted with
uncertainties like robots interacting with the environment
is much more necessary than to tune well-defined systems
like quadrocopters, where the tuning mainly consists of
compensating imprecise dynamics models.
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Fig. 1. Overview: Optimization of parameters for combined interaction
force/task space controllers with constrained Bayesian optimization.

III. OVERVIEW: CONSTRAINED BAYESIAN OPTIMIZATION
OF INTERACTION FORCE/TASK SPACE CONTROLLERS

An overview of our approach is visualized in Fig. 1.
We utilize a combined interaction force/task space controller
(green box) for manipulation tasks, whose parameters ξ ∈
P ⊂ Rp should be tuned. The set P represents a priori
feasible parameters, e.g. the controller stability range. Then,
we define a cost function J that measures the performance
of the controller. Furthermore, a binary success indicator S is
specified that determines whether an execution was success-
ful or not (for example, manipulation success). Every specific
choice of a parameter ξ yields a certain cost J (ξ) ∈ R and
success S(ξ) ∈ {0, 1}, observable only, when executed in
real world. The parameter tuning process therefore consists
of the constrained optimization problem

min
ξ∈P
J (ξ) subject to S(ξ) = 1. (1)

Unfortunately, standard methods to solve (1) are not appli-
cable, because no structural information like gradients about
J and S is available. Instead, only (probably noisy) samples
of J and S can be drawn for specific parameter choices
ξ. In order to overcome this, we utilize the method from
Englert et al. [3]. This constrained Bayesian optimization
(blue box) iteratively selects parameters ξl that should be
tested on the real robot in order to improve its performance,
while trying to be successful. The outcome of each trial
is collected in a dataset D = {(ξl,Jl,Sl)}

w
l=1 with Jl =

J (ξl) and Sl = S(ξl). Based upon this dataset, we learn
two Gaussian processes (GP), one regression gJ that is a
surrogate model for the cost function J and a classifier gS
that represents the parameter region leading to success. The
information encoded in the two GPs is combined in a so-
called acquisition function a, that decides which parameter
ξw+1 should be rolled out next. The decision is made based
upon the goal of both exploring the success region without
sampling many failures and improving the parameter inside
the feasible region.

Our purposed combined force/task space controller allows



to specify the desired behavior of the robot in multiple
task spaces. This includes task references, variable stiffness
and damping properties. Simultaneously, interaction forces
in these task spaces can be limited. The force controller
is designed in a way that no switching in control laws
is required, i.e. the same controller can be used for the
free and constrained motion. The controller consists of two
nested loops. In an outer loop (100 Hz), the computational
complex quantities for realizing the task space behaviors
are calculated by solving an optimal control problem. The
solution is then projected to the inner loop (realtime 1 kHz),
a joint space PD/limit force controller.

IV. COMBINED INTERACTION FORCE/TASK SPACE
CONTROLLER

The control concept is an important ingredient for the
vision of autonomous robots that exploit contacts during
manipulations. We consider rigid body manipulators with n
degrees of freedom, whose dynamics can be modeled by

u = M(q)q̈+ F(q, q̇), (2)

with the mass/inertia matrix M(q) ∈ Rn×n, the vector
F(q, q̇) ∈ Rn representing Coriolis, centripetal and gravity
forces, u ∈ Rn are the motor commands and q, q̇, q̈ ∈ Rn
denote the joint state, velocity and acceleration of the robot.

A. Task Space Controller

We describe the desired behavior of the robot in terms
of task maps φ : D ⊂ Rn → Rd, y = φ(q), which are
(differentiable) functions from the robot configuration q to
a d-dim. space. Common task maps are the (3D) position or
orientation of the end-effector of the robot. But also other
tasks like distances to objects, collisions, joint limits etc. are
possible. The idea behind task space control is to realize
a mass-spring-damper system in the task space, specified
by positive definite stiffness Kp ∈ Rd×d and damping
Kd ∈ Rd×d matrices that realize a PD behavior around the
desired references yref , ẏref , ÿref ∈ Rd in that task space.
More formally, in m task spaces φi : D ⊂ Rn → Rdi ,
i = 1, . . . ,m, we want to impose certain acceleration laws

φ̈i = ÿ∗i = ÿref
i +Kpi

(
yref
i − yi

)
+Kdi

(
ẏref
i − ẏi

)
. (3)

With suitable tuned gain matrices Kpi and Kdi , these ac-
celerations accomplish the desired references asymptotically.
Given these task space PD laws, the sake of the task
space controller is to generate motor commands u such
that the robot behaves like these virtual mass-spring-damper-
systems. Peters et al. [6] have found out that a variety
of control laws suitable for this goal can be derived from
one unifying methodology, namely by minimizing squared
motor commands while requiring to achieve a task perfectly.
This is realized by formulating (3) into a constraint after
differentiating φ with respect to time twice, i.e. Jφi

q̈ +
J̇φi q̇ = ÿ∗i with the Jacobian Jφi of φi. In the formulation
of [6], only one task (m = 1) is considered and a constrained
optimization problem is solved. In contrast, our task space

controller solves for multiple tasks in every of its loop cycles
the unconstrained optimization problem

min
q̈
‖Mq̈+ F︸ ︷︷ ︸

u

−u0‖2H +

m∑
i=1

∥∥∥Jφi q̈− ÿ∗i + J̇φi q̇
∥∥∥2
Ci

(4)

by relaxing the constraints to become a squared penalty.
Similar to [6], the motor commands can be weighted with
the positive definite H ∈ Rn×n. A reasonable choice is H =
M−1 [6]. The advantage of our optimal control framework is
that it is not only singularity robust, but also allows to control
in multiple, maybe interfering task spaces. In addition, these
task spaces can be weighted against each other with the
positive definite matrices Ci ∈ Rdi×di . Those with higher
eigenvalues correspond to more important tasks. In the limit
C→∞ in any norm, this controller converges for one task
to the same framework presented in [6]. For multiple tasks,
taking limits Ci →∞ individually, the squared penalties are
transformed into hierarchical hard-constraints. With u0 ∈ Rn
a nullcost control law can be realized, for example to stabilize
in the joint space or to not penalize gravity compensation
control costs (u0 = F). The solution of (4), given by
q̈∗ = A−1

(
MH (u0 − F) +

∑m
i=1 J

T
φi
Ci

(
ÿ∗i − J̇φi q̇

))
with the symmetric positive definite generalized inverse A =
MHM+

∑m
i=1 J

T
φi
CiJφi , can be translated to motor signals

via (2). If more complex task maps are involved, this control
law is not suitable to be executed in realtime. Therefore,
we linearize this controller at the actual joint configuration
q0 with yi ≈ φi(q0) + Jφi (q− q0). This yields an affine
control law

u∗ = ub − K̂pq− K̂dq̇ (5)

in terms of the joint state with the projected stiff-
ness/damping matrices

K̂p = MA−1
m∑
i=1

JTφi
CiKpiJφi

∈ Rn×n (6)

K̂d = MA−1
m∑
i=1

JTφi
Ci

(
KdiJφi

+ J̇φi

)
∈ Rn×n (7)

and the bias vector ub ∈ Rn with

ub = F+MA−1 [MH (u0 − F) + (8)
m∑
i=1

JTφi
Ci

(
ÿref
i +Kpi

(
yref
i −φi(q0) + Jφi

q0

)
+Kdi ẏ

ref
i

)]
The outer loop calculates (8), (6), (7), sends these to the inner
loop, where (5) is executed and commanded to the motors.

B. Limit Force Controller

In addition to the task space controller, we would like
to regulate interaction forces in the task space φ to a
desired reference f ref ∈ Rd. The force/torque measurements
f ft ∈ R6 of the sensors located at the wrists of our PR2
can be projected to the actual force f in the task space
via a pseudo-inverse of the Jacobian from the sensor frame
to the task space. Many force control concepts [9] realize
the force reference by the feed-forward term uf = JTφ f

ref



with an additional control law to compensate external distur-
bances. However, such kind of force control concepts suffer
from the problem that different controllers are necessary
for the free motion, where no force should be controlled,
and the constrained motion that generates the interaction
force. Unfortunately, this is not favorable in unstructured
environments, where it is difficult to estimate the moment of
contact when the control laws should be switched. Moreover,
switching controllers are known to raise serious stability is-
sues, especially if the contact is lost unforeseen. To overcome
this, we propose to use a limit force controller that intervenes
only, if the measured forces are higher than the references.
We realize this by a discounted integral term eft ∈ Rd, that
is initialized by 0 and updated in every loop with

eftj ← γje
ft
j +

[
|f j | >

∣∣∣f refj ∣∣∣] (f refj − f j

)
∀j=1,...,d. (9)

The Iverson bracket [·] is has value one, if the measured force
is higher than the reference, i.e. the force error is updated in
this case only, otherwise, it is zero. The discounting factor
γ ∈ (0, 1]d ensures that the force integral term vanishes
exponentially, if no force control is necessary anymore. The
applied motor commands for the force controller are

u∗f = JTφαeft = K̂Ifte
ft. (10)

With the positive definite matrix α ∈ Rd×d, an exponential
decay in the (limit) force error is realized. Adding (10)
to (5) leads to our combined interaction force/task space
controller, which has the advantage that it does not require
switching control laws. Very similar to hybrid control [9], we
parameterize the tasks such that the force control objective
does not interfere with other, position controlled subspaces.
This can be done in our framework by assigning a zero
eigenvalue of the task space stiffness matrices in the direction
of the force controller. To actually realize a certain force
reference f ref in the task space φ, we set a velocity reference
ẏref towards the environmental constraint. By proper tuning
of the velocity gain Kd and the force control coefficients
α,γ, the force reference is realized, as the constant velocity
towards the constraint increases the force, depending on
Kd and ẏref , while the limit force controller intervenes to
stabilize the force reference. Doing this, simultaneous force
and position control is accomplished. Since our controller
allows to weight tasks according to their importance, non
strict decompositions in position/force controlled subspaces
are also possible.

V. EVALUATION CRITERIA FOR MANIPULATIONS

In order to optimize controller parameters, it is neces-
sary to define proper criteria to evaluate and distinguish
controllers based on their performance. Standard ways of
measuring this are cost functions that penalize deviations
from a desired reference to the actual value or control costs
penalizing motor commands. Although important, none of
these criteria seem suitable to assign costs to compliant
robots that should safely interact with their environments,
where precise position control is not the main objective.

A. Compliance Objective Measures

Optimizing for high compliance is desirable, because it
reduces the risk of damaging anything during the interaction
in unstructured environments. However, to our best knowl-
edge, it has not been considered yet to define a single scalar
value that represents the compliance of a complex structured
system like a robot manipulator. We propose to use the
eigenvalues of the stiffness and damping matrices involved in
the various task spaces as an indicator for the compliance of
the robot. The higher the eigenvalues of the stiffness matrix,
the stiffer the robot behaves on external disturbances and
high eigenvalues of the damping matrices enforce velocity
references significantly, which also corresponds to a form of
dynamic stiffness. In order to get comparable results, these
task space stiffnesses/dampings have to be projected into
a common space, the joint space, where the actual control
happens. Therefore, we propose to use the sum of the eigen-
values of into the joint space projected stiffness/damping
matrices as a scalar indicator for the compliance of a robot.
Fortunately, our controller framework perfectly fits with this
idea, as the controller computes the projected joint space
stiffness/damping matrices (6), (7). The compliance indicator
can be calculated efficiently for the set K̂p

1:nT
of consecutive

projected stiffness matrices by 1
nT

∑nT

t=1 trace
(
K̂p
t

)
for the

static stiffness, or with K̂d for a dynamic compliance. This
definition is not limited to the specific control framework
presented here. For instance, the symmetric matrix JTφKpJφ
corresponds to general projected task space stiffnesses. We
belief that in many control frameworks similar structures can
be found, such that our definition can generally be applied.

B. Contact Force Objective Measures

If the goal is to exert a certain reference force f ref on
the environment, then the root-mean-squared-error (RMSE)
between the measured force and the reference defines rea-
sonable costs. Further, in order not to brake anything, the
transition from the free motion to the contact should be as
smooth as possible, which can be measured by the force peak
fos at the moment of contact. An alternative is to quantify
the smoothness of the force signal, for example with

J = 1
|T |
∫
T

(∣∣ d
dt f(t)

∣∣+ ∣∣∣ d2

dt2 f(t)
∣∣∣+ ∣∣∣ d3

dt3 f(t)
∣∣∣)dt. (11)

VI. CONSTRAINED BAYESIAN OPTIMIZATION

Finally, we solve the optimization problem (1), i.e. finding
a controller parameter ξ that minimizes the costs J (ξ) under
the success constraint S(ξ) = 1, with the method from
Englert et al. [3], which will be summarized shortly, for
details refer to [3]. The initial parameter ξ1 is specified by
hand such that the execution is successful. The algorithm
then iteratively selects parameters ξl that should be tested
on the real robot. The outcome of each experiment yields a
certain cost Jl = J (ξl) and success indicator Sl = S(ξl),
which are collected in a dataset D = {(ξl,Jl,Sl)}

w
l=1.

From this dataset, two GPs are learned in every iteration,
one regression GP gJ for the cost function and one binary
classifier gS for the success region. In the regression case,



a GP models the probability of the model gJ conditioned
on the dataset D as a Gaussian distribution P (gJ (ξ)|D) =
N (gJ (ξ) |µ(ξ),V(ξ) ) around the mean model function
µ(ξ) and the model variance V(ξ). For the binary classifier
S(ξ) ∈ {0, 1}, the GP defines a discriminative function gS ,
representing class probabilities P (S(ξ) = 1). These GPs
are specified by a kernel and a prior mean function m. For
both the regression and classification GP, we use a Gaussian
kernel. We refer to Rasmussen et al. [15] for details about
GPs. Based upon the information encoded in these GPs about
the “true” cost function and success region, the parameter
that should be tested next is determined by maximizing an
acquisition function ξw+1 = argmaxξ∈P a(ξ, gJ , gS ,D).
Englert et al. [3] proposed a novel acquisition function

a(ξ) = [gS(ξ) ≥ 0] · PIgJ(ξ) + [gS(ξ) = 0] · VgS(ξ). (12)

The first term focuses on exploiting the inner region, where
success is expected. This is done by the probability of
improvement PIgJ (ξ), which is defined as the probability
that the costs are lower at a specific point ξ inside the learned
success region than the current best, successful point ξ∗ in
the dataset. The second term explores the success region
boundary at locations where the model has a high variance
VgS (ξ). This ensures a tradeoff between both exploitation
and exploration. The hyperparameters of this algorithm (e.g.
kernel widths) allow to control this tradeoff and to model
the uncertainty about the cost function/success region.

VII. EXPERIMENTS

We show the effectiveness of our approach in two experi-
ments on a real robot platform, the PR2. A typical benchmark
problem for interaction controllers is the task of establishing
and maintaining the contact while sliding on a surface. In
the first experiment, we focused on establishing the contact
between the end-effector of the robot and the surface of a
cabinet. The second experiment additionally included a slide,
after the contact has been established. For both experiments,
a force reference f ref = −2 N was specified. The parameter
learning was performed with a cost function that evaluates
the RMSE between the measured and the actual force and
the force peak fos at the moment of contact. The execution
was considered to be successful (S = 1), if the contact
was established and maintained during the execution. For
the prior mean function of gJ , we chose m = 2, which
corresponds to the costs of a virtual execution in which
the robot does not move at all. For gS the prior mean
function was m = −7, ensuring that regions that have
not been explored yet are considered to be unsuccessful.
The learned parameters were the ones of a 1D end-effector
position/force task, more specifically the velocity reference
ẏref towards the surface, the corresponding gain Kd and its
force control decay coefficient α. γ was fixed. Other tasks
were the orientation of the end-effector in the direction of
the constraint, position at a specific height and joint limits.
For the sliding, an additional position task orthogonal to the
end-effector orientation was set. Knowing the exact position
of the surface is not necessary, as the robot steers towards the
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Fig. 2. Measured force profiles of the contact establishment experiment.

surface to establish the contact and the limit force controller
regulates the force, if necessary. Neither switching between
control laws, nor inferring the contact was required.

A. Results: Contact establishment

The initial parameters were ẏref = 0.1 m/s, Kd = 9
and α = 0.001. These were specified by hand such that
the execution was successful. The discounting factor was
γ = 0.9995. The costs for these initial parameters were
J = 2.56. All in all, there were 10 failures out of 127
samples. The failures mainly occurred because the robot did
not touch the surface at all. This can be explained by the fact
that the dynamics model of the robot is not perfect, especially
friction was not modeled, hence it requires a minimal Kd to
actually move the robot. Fig. 2a compares the measured force
profiles of the initial sample with the best, successful sample
after 127 trials. This best sample had the parameters ẏref =
0.096 m/s, Kd = 6.74, α = 0.0078 with costs of J = 1.22.
The costs are low, because not only the force error was low,
but also the force peak at the moment of contact was low
as well. Compared to grid-search for a similar experiment,
we observed 25 failures out of 45 trials without significant
improvement of the costs. Furthermore, we evaluated the
samples with two other cost functions, the smoothness of
the force signal (11) and the dynamic compliance criteria,
see section V-A. In Fig. 2b, the (successful) sample with the
smoothest force signal (parameters Kd = 5.77, α = 0.006,
ẏref = 0.1 m/s) and with the highest dynamic compliance
(parameters Kd = 5.68, α = 0.0032, ẏref = 0.1 m/s)
are shown. Interestingly, the overall sample with the highest
compliance was a failure. This emphasizes the necessity for
the success constraint.

B. Results: Sliding on a surface while maintaining contact

The hyperparameter for α of the constrained Bayesian
optimization algorithm was chosen such that a broader range
of α values are explored earlier. Higher α allows faster
convergence of the force error, under the risk of loosing the
contact, as the end-effector can bump-off the surface for a
too high α, if the stiffness of the environment is unknown.
The initial sample had the parameters Kd = 9, α = 0.01,
ẏref = 0.09 m/s with costs of J = 1.2. It turned out that
a lower discounting factor of γ = 0.999 was favorable for
the sliding experiment. Fig. 3b compares the force profiles
of the initial with the best sample after 100 trials. The



(a) Samples (dots), failures (crosses)
and success region (pruple).
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Fig. 3. Results from the sliding experiment. First, the contact between the end-effector of the robot and the environment was established, then, the robot
slided along the surface, while maintaining contact and exerting a reference force of f ref = −2 N. (b), (c) and (d) show force profiles.

parameters Kd = 7.86, α = 0.031, ẏref = 0.083 m/s led
to the lowest costs of J = 0.79. The sampled successful
data points (dots), failures (red crosses) and the learned
success region (purple net) after 100 samples are shown
in Fig. 3a. Two of the 21 failures out of 100 samples in
total are shown in Fig. 3c. One of those lost the contact
during the slide, the other one at the moment the slide began.
The successful sample that had the lowest costs based on
the smoothness criteria was also the one with the lowest
dynamic compliance measure with parameters Kd = 4.98,
α = 0.016, ẏref = 0.095 m/s. Again, the importance of the
success constraint can be seen here, as a failure sample had
the lowest costs measured with the dynamic compliance or
smoothness criteria. As a last experiment, the generalization
capabilities of the best learned parameters were explored by
changing the angle of the surface, as visualized in Fig. 4a,
leading to additional movement in the x-direction (Fig. 4b),
while sliding. As can be seen in Fig. 4c, the force profile
of the generalization experiment was very similar to the one
during learning and also had low costs of J = 0.81.

VIII. CONCLUSION

In the present work, we have proposed to use constrained
Bayesian optimization to improve parameters of combined
interaction force/task space controllers in an active and sam-

(a) Left: Setup for learning. Right: Generalization (slanted)
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Fig. 4. Generalization of the learned parameters for the sliding experiment.

ple efficient manner, while ensuring manipulation success.
An important step here was to define proper criteria to
measure the performance of such controllers. We evaluated
our approach on a real robot platform for a task that consisted
of establishing and maintaining contact while sliding on a
surface. We have shown that constrained Bayesian optimiza-
tion is a suitable method to tune controller parameters for
such applications sample efficiently and successfully.

For future research we plan to investigate more complex,
sequential manipulation tasks, where each phase may require
different parameters to be optimized.

REFERENCES

[1] M. Toussaint, N. Ratliff, J. Bohg, L. Righetti, P. Englert, and S. Schaal,
“Dual execution of optimized contact interaction trajectories,” in Proc.
of the Int. Conf. on Intelligent Robots and Systems (IROS), 2014.

[2] R. Deimel, C. Eppner, J. lvarez Ruiz, M. Maertens, and O. Brock,
“Exploitation of environmental constraints in human and robotic
grasping,” in International Symposium on Robotics Research, 2013.

[3] P. Englert and M. Toussaint, “Combined Optimization and Reinforce-
ment Learning for Manipulations Skills,” in Proc. of Robotics: Science
and Systems, 2016.

[4] N. Hogan, “Impedance control: An approach to manipulation,” Journal
of Dynamic Systems, Measurement and Control, 1985.

[5] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal of
Robotics and Automation, vol. RA-3, no. 1, pp. 43–53, Feb. 1987.

[6] J. Peters, M. Mistry, F. E. Udwadia, R. Cory, J. Nakanishi, and
S. Schaal, “A unifying framework for the control of robotics systems,”
in Proc. of the Int. Conf. on Intelligent Robots and Systems, 2005.

[7] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits,
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