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Abstract
Inverse Optimal Control (IOC) assumes that demonstrations are the solution to an optimal control problem with
unknown underlying costs, and extracts parameters of these underlying costs. We propose the framework of Inverse
KKT, which assumes that the demonstrations fulfill the Karush-Kuhn-Tucker conditions of an unknown underlying
constrained optimization problem, and extracts parameters of this underlying problem. Using this we can exploit the
latter to extract the relevant task spaces and parameters of a cost function for skills that involve contacts. For a typical
linear parameterization of cost functions this reduces to a quadratic program, ensuring guaranteed and very efficient
convergence, but we can deal also with arbitrary non-linear parameterizations of cost functions. We also present a
nonparametric variant of inverse KKT that represents the cost function as a functional in reproducing kernel Hilbert
spaces. The aim of our approach is to push learning from demonstration to more complex manipulation scenarios
that include the interaction with objects and therefore the realization of contacts/constraints within the motion. We
demonstrate the approach on manipulation tasks such as sliding a box, closing a drawer and opening a door.
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1 Introduction

Most tasks in real world scenarios require contacts with
the environment. For example, the task of opening a door
requires contact between the robot gripper and the door
handle. In this paper we address learning from demonstration
for the case of manipulation that incorporates contacts.
Specifically, we want to extract from demonstrations how to
represent and execute manipulations in such a way that the
robot can perform such tasks in a robust and general manner.

Cost functions are a powerful representation for robot
skills, since they are able to encode task knowledge in a
very abstract way. This property allows them to reach high
generalization to a wide range of problem configurations.
However, designing cost functions by hand can be hard
since the right features have to be chosen and combined
with each other. Therefore, inverse optimal control, also
known as inverse reinforcement learning (Ng and Russell
(2000)), tries to automate the design of cost functions by
extracting the important task spaces and cost parameters
from demonstrations. Many successful applications in
different areas have demonstrated the capabilities of this
idea, including the learning of quadruped locomotion (Kolter
et al. (2008)), helicopter acrobatics (Abbeel et al. (2010)) and
simulated car driving (Abbeel and Ng (2004); Levine and
Koltun (2012)).

There are two parts necessary for applying learning from
demonstration with IOC: 1) The inverse optimization method
for extracting the cost function from demonstrations; 2)
The motion optimization method that creates motions by
minimizing such cost functions. Both parts are coupled by
the cost function, which is the output of the first and input of
the second part, see Figure 2. Usually IOC algorithms try

Figure 1. This picture shows the door opening task that we use
to evaluate our approach by first learning a cost function from
demonstration and then generating motions by optimizing the
cost function for different scenarios (e.g., initial positions, door
angles). See Section 6.5 for more details.

to find a cost function such that the output of the motion
optimization method is similar to the input demonstrations
of the inverse problem. Therefore, the cost function is used
as a compact representation that encodes the demonstrated
behavior.
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Our approach finds a cost function, including the
identification of relevant task spaces, such that the
demonstrations fulfill the KKT conditions of an underlying
constrained optimization problem with this cost function.
Thereby we integrate constraints into the IOC method, which
allows us to learn from object manipulation demonstrations
that naturally involve contact constraints. Motion generation
for such cost functions (point 2 above) is a non-linear
constrained program which we solve using an augmented
Lagrangian method. However, for typical cost function
parameterizations, the IOC problem of inferring the cost
function parameters (point 1 above) becomes a quadratic
program, which can be solved very efficiently.

The structure of the paper is as follows. We would
like to defer the discussion of related work to after we
have introduced our method, in Section 5. In Section 2,
we introduce some background on constrained trajectory
optimization, which represents the counterpart to the IOC
approach. We develop our IOC algorithm in Section 3 by
deriving a cost function for the inverse problem based on
KKT conditions. In Section 4 we present a nonparametric
variant of inverse KKT that. In Section 6, we evaluate our
approach on simulated and real robot experiments.

The inverse KKT formulation was initially presented in
(Englert and Toussaint 2015). The main contribution is the
formulation of an IOC method for constrained motions
with equality and inequality constraints that is based on
the KKT conditions. This method allows to efficiently
extract task spaces and parameters of a cost function from
demonstrations.

2 Constrained Trajectory Optimization
A trajectory x0:T is a sequence of T + 1 robot configurations
xt ∈ Rn. The goal of trajectory optimization is to find
a trajectory x?

1:T , given an initial configuration x0, that
minimizes a certain objective function

f(x1:T ,y,w) =

T∑
t=1

ct(x̃t,y,wt) . (1)

This defines the objective as a sum over cost terms
ct(x̃t,y,wt), where each cost term depends on a k-
order tuple of consecutive states x̃t = (xt−k, . . . ,xt−1,xt),
containing the current and k previous robot configurations
(Toussaint (2017)). This allows us to specify costs on the
level of positions, velocities or accelerations (for k = 2) in
configuration space as well as any task spaces. In addition to
the robot configuration state x̃t we use external parameters of
the environment y to contain information that are important
for planning the motion (parameters of the environment’s
configuration, e.g. object positions). These y usually vary
between different problem instances, which is used to
generalize the skill to different environment configurations.

We typically assume that the cost terms in Equation (1) are
a weighted sum of squared features,

ct(x̃t,y,wt) = w>t φ
2
t (x̃t,y) , (2)

where φt(x̃t,y) are the features and wt is the weighting
vector at time t. A simple example for a feature is the
robot’s end-effector position at the end of the motion T

relative to the position of an object. In this example the
featureφT (x̃t,y) would compute the difference between the
forward kinematics mapping and object position (given by
y). More complex tasks define body orientations or relative
positions between robot and an object. Transition costs are
a special type of features, which could be squared torques,
squared accelerations or a combination of those, or velocities
or accelerations in any task space.

In addition to the task costs we also consider inequality
and equality constraints

∀t gt(x̃t,y) ≤ 0, ht(x̃t,y) = 0 (3)

which are analogous to features φt(x̃t,y) and can refer to
arbitrary task spaces. An example for an inequality constraint
is the distance to an obstacle, which should not be below
a certain threshold. In this example gt(x̃t,y) would be
the smallest difference between the distance of the robot
body to the obstacle and the allowed threshold. The equality
constraints are in our approach mostly used to represent
persistent contacts with the environment (e.g., ht describes
the distance between hand and object that should be exactly
0). The motivation for using equality constraints for contacts,
instead of using cost terms in the objective function as in
Equation (2), is the fact that minimizing costs does not
guarantee that they will become 0, which is essential for
establishing a contact.
For better readability we transform Equation (1) and
Equation (3) into vector notation by introducing the vectors
w, Φ, g and h that concatenate all elements over time. This
allows us to write the objective function of Equation (1) as

f(x1:T ,y,w) = w>Φ2(x1:T ,y) (4)

and the overall optimization problem as

x?
1:T = arg min

x1:T

f(x1:T ,y,w) (5)

s.t. g(x1:T ,y) ≤ 0

h(x1:T ,y) = 0

We solve such problems using the augmented Lagrangian
method (Nocedal and Wright (2006)). Therefore, addition-
ally to the solution x?

1:T we also get the Lagrange parameters
λ?
1:T , which provide information on when the constraints are

active during the motion. This knowledge can be used to
make the control of interactions with the environment more
robust (Toussaint et al. (2014)). We use a Gauss-Newton
optimization method to solve the unconstrained Lagrangian
problem in the inner loop of augmented Lagrangian. For this,
the gradient is

∇x1:T
f(x1:T ,y,w) = 2J(x1:T ,y)>diag(w)Φ(x1:T ,y)

(6)

and the Hessian is approximated as in Gauss-Newton as

∇2
x1:T

f(x1:T ,y,w) ≈ 2J(x1:T ,y)>diag(w)J(x1:T ,y),
(7)

where J = ∂Φ
∂x is the Jacobian of the features. Using a

gradient based trajectory optimization method restricts the
class of possible features Φ to functions that are continuous
with respect to x. However, we will show in the experimental
section that this restriction still allows to represent complex
behavior like opening a door or sliding a box on a table.
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Demonstrations
{x(d)

1:T ,y
(d)}Dd=1

Inverse Optimal Control
min
w

`(w, λ)

s.t. w ≥ 0∑
iwi = 1

Motion
x?
1:T ,λ

?
0:T

Optimal Control
min
x1:T

f(x1:T ,y,w)

s.t. g(x1:T ,y) ≤ 0
h(x1:T ,y) = 0

Cost Function
f(x1:T ,y,w) =

∑
t ct(xt,y,wt)

Features Φ
Constraints g,h

Figure 2. Concept of skill learning with inverse optimal control, where the cost function plays the central role of encoding the
demonstrated behavior. In this paper, we present our formulation of learning a cost function for a constrained trajectory optimization
problem.

3 Inverse KKT Motion Optimization
We now present the inverse KKT method (Englert and
Toussaint 2015), which is a way to solve the inverse problem
for the constrained trajectory optimization formulation
introduced in the previous section. We assume that D
demonstrations of a task are provided with the robot
body (e.g., through teleoperation or kinesthetic teaching)
and are given in the form (x̂

(d)
0:T , ŷ

(d))Dd=1, where x̂(d)
0:T is

the demonstrated trajectory and ŷ(d) is the environment
configuration (e.g., object position). Another assumption we
make is that the constraints g and h and a set of potential
features Φ are provided as input. Inverse KKT learns the
weight vector w of these features from the demonstrations.

3.1 Inverse KKT Objective
Our IOC objective is derived from the Lagrange function of
the problem in Equation (5)

L(x1:T ,y,λ,w) = f(x1:T ,y,w) + λ>
[
g(x1:T ,y)
h(x1:T ,y)

]
(8)

and the Karush-Kuhn-Tucker (KKT) conditions. The first
KKT condition says that for an optimal solution x?

1:T the
condition

∇x1:T
L(x?

1:T ,y,λ,w) = 0 (9)

has to be fulfilled. With Equation (6) this leads to

2J(x1:T ,y)>diag(w)Φ(x1:T ,y) + Jc(x1:T ,y)>λ = 0
(10)

where the matrix Jc is the Jacobian of all constraints. We
assume that the demonstrations are optimal and should fulfill
this condition. Therefore, the IOC problem can be viewed
as searching for a parameter w such that this condition is
fulfilled for all the demonstrations.

We express this idea in terms of the loss function

`(w,λ) =

D∑
d=1

`(d)(w,λ(d)) (11)

with

`(d)(w,λ(d))=
∣∣∣∣∣∣∇x1:T

L(x̂
(d)
0:T , ŷ

(d),λ(d),w)
∣∣∣∣∣∣2 , (12)

where we sum over D demonstrations of the scalar
product of the first KKT condition. In Equation (11), d
enumerates the demonstrations and λ(d) is the dual to the
demonstration x̂(d)

0:T under the problem defined by w. Note
that the dual demonstrations are initially unknown and, of
course, depend on the underlying cost function f . More
precisely, λ(d) = λ(d)(x̂

(d)
0:T , ŷ

(d),w) is a function of the
primal demonstration x̂(d)

0:T , the environment configuration of
that demonstration ŷ(d), and the underlying parameters w.
And `(d)(w,λ(d)(w)) = `(d)(w) becomes a function of the
parameters only (we think of x̂(d)

0:T and ŷ(d) as given, fixed
quantities, as in Equations (11-12)).

Given that we want to minimize `(d)(w) we can substitute
λ(d)(w) for each demonstration by choosing the dual
solution that analytically minimizes `(d)(w) subject to the
KKT’s complementarity condition

∇λ(d)`(d)(w,λ(d)) = 0 (13)

⇒ λ(d)(w) = −2(J̃cJ̃c
>

)−1J̃cJ
>diag(Φ)w . (14)

Note that here the matrix J̃c is a subset of the full Jacobian
of the constraints Jc that contains only the active constraints
during the demonstration, which we can evaluate as g and h
are independent ofw. This ensures that (14) is the minimizer
subject to the complementarity condition. The number of
active constraint at each time point has a limit. This limit
would be exceeded if more degrees of freedom of the system
are constrained than there are available.

By inserting Equation (14) into Equation (12) we get

`(d)(w)=4w>diag(Φ)J
(
I−J̃>

c (J̃cJ̃
>
c )−1J̃c

)
J>diag(Φ)︸ ︷︷ ︸

Λ(d)

w

(15)

which is the IOC cost per demonstration (see appendix A for
a detailed derivation). Adding up the loss per demonstration
and plugging this into Equation (11) we get a total inverse
KKT loss of

`(w) = w>Λw with Λ = 4

D∑
d=1

Λ(d). (16)
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The resulting optimization problem is

min
w

w>Λw (17)

s.t. w ≥ 0

Note that we constrain the parameters w to be positive.
This reflects that we want squared cost features to only
positively contribute to the overall cost in Equation (4).
Our approach also works in the unconstrained case. In this
case the constraint term vanishes in Equation (10) and the
remaining part is the optimality condition of unconstrained
optimization, which says that the gradient of the cost
function should be equal to zero.

3.2 Regularization & Sparsity
The above formulation may lead to the singular solution
w = 0 where zero costs are assigned to all demonstrations,
trivially fulfilling the KKT conditions. This calls for a
regularization of the problem. In principle there are two ways
to regularize the problem to enforce a non-singular solution:
First, we can impose positive-definiteness of Equation (4) at
the demonstrations (cf. Levine and Koltun (2012)). Second,
as the absolute scaling of Equation (4) is arbitrary we may
additionally add the constraint

min
w

w>Λw (18)

s.t. w ≥ 0 ,
∑
i

wi = 1

to our problem formulation (17). We choose the latter option
in our experiments. Equation (18) is a (convex) quadratic
program (QP), for which there exist efficient solvers. The
gradientw>Λ and Hessian Λ are very structured and sparse,
which we exploit in our implementations.

There exist different ways to modify the problem in
Equation (18) such that the solutions become sparse. One
possibility is to subtract the regularization term w>w from
the IOC loss function in Equation (18). Another possibility to
achieve sparse solutions is to change the equality constraint
into

∑
iw

p
i = 1 with a p > 2. In this case the problem is not

convex anymore.

3.3 Linear & Nonlinear Weight Parametrization
In practice we usually use parametrizations on w. This
is useful since in the extreme case, when for each time
step a different parameter is used, this leads to a very
high dimensional parameter space (e.g., 10 tasks and 300
time steps lead to 3000 parameter). This space can be
reduced by using the same weight parameter over all time
steps or to activate a task only at some time points.
The simplest variant is to use a linear parametrization
w(ρ) = Aρ, where ρ are the parameters that the IOC
method learns. This parametrization allows a flexible
assignment of one parameter to multiple task costs. Further
linear parametrizations are radial basis function or B-
spline basis functions over time t to more compactly
describe smoothly varying cost parameters. For such linear
parametrization the problem in Equation (18) remains a QP
that can be solved very efficiently.

Another option we will consider in the evaluations is to
use a nonlinear mapping w(ρ) = A(ρ) to more compactly

represent all parameters. For instance, the parameters w can
be of a Gaussian shape (as a function of t), where the mean
and variance of the Gaussian is described by ρ. Such a
parametrization would allow us to learn directly the time
point when costs are active. In such a case, the problem
is not convex anymore. We address such problems using a
general non-linear programming method (again, augmented
Lagrangian) and multiple restarts are required with different
initializations of the parameter.

3.4 Feature & Constraint Design
Our IOC method requires equality constraints h, inequality
constraints g and a set of potential features Φ as inputs (see
Figure 2). Extracting the features and constraints from the
demonstrations is nontrivial. We propose to first define a set
of features Φ(x1:T ,y) that could be relevant for the task.
The subset of Φ that fulfill the condition

φ(x̂
(1)
t , ŷ(1)) = φ(x̂

(2)
t , ŷ(2)) = . . . = φ(x̂

(D)
t , ŷ(D)) .

(19)

are used as equality constraints h(x1:T ,y). The remaining
features are kept for the cost function. We used the following
feature types for the real robot experiments:

• Transition features: Represent the smoothness of the
motion (e.g., sum of squared acceleration or torques)
• Position features: Represent a body position relative

to another body.
• Orientation features: Represent orientation of a body

relative to another body.

A body is either a part of the robot or belongs to an object
in the environment. We define these features at different
time points that are extracted from the demonstration (e.g.,
zero velocity, contact release) or learned with a RBF
parametrization (see experiment in Section 6.2).

We use the equality constraints h mainly to describe
contacts between the robot and the environment since they
are crucial for task success. The inequality constraints g
are used to incorporate collision avoidance and to ensure
the robots joint limits. Additionally, we use the constraints
to define reasonable behavior on the interaction with the
environment. An equality constraint is used to fix external
degrees of freedom (e.g., a door) when they are not being
manipulated and an inequality is used to constraint the
movement direction of external objects (e.g., pushing in a
certain direction).

4 Nonparametric Inverse KKT
In this section, we propose a nonparametric variant of the
inverse KKT method. The advantage over the parametric
variant is that a kernel function can be used that measures
the similarity to the demonstrations and no features have to
be constructed by hand. In Section 3, the objective function
f(x) is represented as a weighted sum of squared features
(see Equation (1)). In the nonparametric inverse KKT we
represent the objective function as

f(x) =

T∑
t=1

ct(xt) (20)
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where each ct is a functional in a reproducing kernel Hilbert
space (RKHS)H with a reproducing kernel k. Similar to the
previous parametric formulation, we write c as

ct(x) =

n∑
i=1

w
(i)
t ψi(xt) = w>t ψ(xt) (21)

where ψi(xt) = φ2i (xt). According to the representer
theorem (Schölkopf and Smola (2002)), the parameter vector
wt can be represented with the demonstrations as

wt =

D∑
d=1

α
(d)
t ψ(x̂

(d)
t ) . (22)

Hence, the function ct in RKHS can be defined as

ct(xt) =

D∑
d=1

α
(d)
t 〈ψ(x̂

(d)
t ),ψ(xt)〉 (23)

=

D∑
d=1

α
(d)
t k(x̂

(d)
t ,xt) (24)

with a kernel k. This means we can use any kernel to
represent our cost function and the search for ct is equal to
directly optimizing α. In the following we will use the RBF
kernel

k(x1,x2) = exp
(
−(x1 − x2)>Σ−1(x1 − x2)

)
. (25)

Similar to the derivation of the inverse KKT loss function
in Equations (11)–(15), we use the KKT conditions to
formulate the loss function in the nonparametric case. The
gradient of the objective function is

∇x1:T
f =

T∑
t=1

∇x1:T
ct(xt) (26)

=

[
∂c1(x1)

∂x1
, . . . ,

∂cT (xT )

∂xT

]>
(27)

with

ct(xt)

∂xt
= −

D∑
d=1

2α
(d)
t k(xt, x̂

(d)
t )(xt − x̂(d)

t )Σ−1 . (28)

The resulting loss function for a demonstration is

`(d)(α) = ∇f>x1:T

(
I−J>c (JcJ

>
c )−1Jc

)
∇fx1:T

(29)

= α>Ω(d)α (30)

where Ω(d) contains all the terms that are independent of α.
Similar to the previous section, we sum over all

demonstrations and add a regularization term that results in
the nonparametric IKKT optimization problem

min
α
α>Ωα with Ω =

D∑
d=1

Ω(d) (31)

s.t.
∑
i

αi = 1 . (32)

The problem can be optimized very efficiently and leads to
an unique solution. A difficulty in this nonparametric case

is to find a suitable kernel for the problem with a good
choice of hyperparameters (Σ in Equation (25)). In practice
crossvalidation on a test and training set, hyperparameter
learning or multiple kernel learning methods can be used to
solve this problem (Gönen and Alpaydın (2011)).

5 Related Work

In the recent years there has been extensive research
on imitation learning and inverse optimal control. In the
following section we will focus on the approaches and
methods that are most related to our work of learning cost
functions for manipulation tasks. For a broader overview
on IOC approaches we refer the reader to the survey paper
of Zhifei and Joo (2012) and for an overview on general
imitation learning we recommend Argall et al. (2009).

5.1 Max-Entropy and Lagrangian-Based IOC
Approaches

The work of Levine and Koltun (2012) is perhaps the closest
to our approach. They use a probabilistic formulation of
inverse optimal control that approximates the maximum
entropy model (MaxEnt) of Ziebart et al. (2008). Similar
to MaxEnt, other approaches such as maximum-margin
planning (MMP) and LEARCH (LEArning to seaRCH) of
Ratliff et al. (2006, 2009) use forward solvers or policy
optimization, e.g. value iteration or A∗, in the inner loop
which would i) require perfect knowledge of the environment
dynamics; and ii) hence consume more computation. In our
framework of trajectory optimization (cf. Section 2) this
translates to

min
w
∇xf>(∇2

xf)−1∇xf − log |∇2
xf |. (33)

The first term of this equation is similar to our loss in
Equation (11), where the objective is to get small gradients.
Additionally, they use the inverse Hessian as a weighting
of the gradient. The second term ensures the positive
definiteness of the Hessian and also acts as a regularizer
on the weights. The learning procedure is performed
by maximizing the log-likelihood of the approximated
reward function. Instead of enforcing a fully probabilistic
formulation, we focus on finite-horizon constrained motion
optimization formulation with the benefit that it can handle
constraints and leads to a fast QP formulation. Further,
our formulation also targets at efficiently extracting the
relevant task spaces. which deals better with sub-optimal
demonstration and noisy data than our formulation. Maxent
is like other Bayesian approaches (Ramachandran and Amir
2007) very robust. However, it is proposed to the simple case
of linear dynamics and quadratic rewards (LQR). This is
hardly the case of arbitrary trajectory optimization. On the
contrary, our formulation is based on constrained trajectory
optimization, which learns a cost function that fits well with
many trajectory optimization solvers and therefore can deal
with a wider range of optimal control problems.

Puydupin-Jamin et al. (2012) introduced an approach to
IOC that also handles linear constraints. It learns the weight
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parameter w and Lagrange parameter λ by solving a least-
squares optimization problem

min
w,λ

([
2J>diag(Φ) J>c

] [w
λ

]
+ J/w

)2

(34)

where /w denotes the part in the cost function that is
not weighted with w. The method only addresses equality
constraints (no complementarity condition for λ). Our main
concern with this formulation is that there are no constraints
that ensure that the weight parameter w do not become 0
or negative. If J/w is zero, as in our case, the solution
is identially zero (w,λ). Starting with the KKT condition,
they derive a linear residual function that they optimize
analytically as the unconstrained least squares. In the
experimental section they consider human locomotion with
a unicycle model, where they learn one weight parameter of
torques and multiple constraints that define the dynamics of
the unicycle model and the initial and target position. The
idea of using KKT conditions is similar to our approach.
However, our formulation allows for inequality constraints
and leads to a QP with boundary constraints that ensures that
the resulting parameters are feasible. Instead of optimizing
for λ, we eliminate λ from the inverse KKT optimization
using Equation (14).

The work of Albrecht et al. (2011) learns cost functions
for human reaching motions from demonstrations that are
a linear combination of different transition types (e.g., jerk,
torque). They transformed a bilevel optimization problem,
similar to Mombaur et al. (2010), into a constrained
optimization problem of the form

min
x1:T ,w,λ

(
φpos(xT )− φpos(x̂

(d)
T )
)2

(35)

s.t. ∇x1:T
L(x1:T ,y,λ,w) = 0 (36)

h(x1:T ) = 0
∑
i

wi = 1 w ≥ 0 (37)

The objective is the squared distance between optimal
and demonstrated final hand position. They optimize this
objective for the trajectory x1:T , the parameter w and
the Lagrange parameter λ with the constraints that the
KKT conditions of the trajectory x1:T are fulfilled. To
apply this approach demonstrations are first preprocessed
by extracting a characteristic movement with dynamic time
warping and a clustering step. Their results show that a
combination of different transition costs represent human
arm movements best and that they are able to generalize
to new hand positions. The advantage of their approach is
that they do not only get the parameter weights w, but
also an optimal trajectory x?

1:T out of the inverse problem
in Equations (35)–(37). The use of the KKT conditions
differs from our approach in two ways. First, they use the
KKT conditions in the constraint part of the formulation
in Equation (36), whereas we use them directly as scalar
product in the cost function. Second, they use them on
the optimization variables x1:T , whereas we use them on
the demonstrations x̂(d) (see Equation (11)). Instead of
minimizing a function directly of the final end-effector
position and only learning weights of transition costs, we
present a more general solution to imitation learning that

can learn transition and task costs in arbitrary feature spaces.
Our approach also handles multiple demonstrations directly
without preprocessing them to a characteristic movement.

5.2 Black-box Inverse Optimal Control
Black-box optimization approaches are another category of
methods for IOC. There, usually an optimization procedure
with two layers is used, where in the outer loop black box
optimization methods are used to find suitable parameter of
the inner motion problem. For this usually no gradients of
the outer loop cost function are required.

Mombaur et al. (2010) use such a two-layered approach,
where they use in the outer loop a derivative free trust region
optimization technique and in the inner loop a direct multiple
shooting technique. The fitness function of their outer loop
is the squared distance between inner loop solution and
demonstrations. They apply it on human locomotion task
where they record demonstration of human locomotion and
learn a cost function that they transfer to a humanoid
robot. Rückert et al. (2013) uses a similar idea to learn
movements. They use covariance matrix adaptation (Hansen
and Ostermeier (2001)) in the outer loop to learn policy
parameters of a planned movement primitive represented as
a cost function. Doerr et al. (2015) propose to do policy
search on a reward function that measures similarity do
demonstrations. They also use covariance matrix adaptation
to learn parameters of a trajectory optimization problem that
is similar to our formulation in Equation (5). The advantage
of their method is that they can use any parameter in the
optimization problem as search parameter and define black-
box objectives. However, such methods usually have high
computational costs for higher-dimensional spaces since
the black box optimizer needs many evaluations. Their
experimental evaluation for pointing tasks show that they
require between 2000 and 4000 evaluations of the forward
problem. One also needs to find a cost function for the
outer loop that leads to reasonable behavior. In our problem
formulation we do not require any evaluations of the forward
problem and the inverse cost function is given by the KKT
conditions. A hierarchical combination of analytic IOC and
black-box IOC could also be worth studying, where the
analytic method optimizes the linear parameter and the
black-box method optimizes the nonlinear parameters of the
cost function.

5.3 Task Space Extraction
Jetchev and Toussaint (2014) discover task relevant features
by training a specific kind of value function, assuming that
demonstrations can be modelled as down-hill walks of this
function. Similar to our approach, the function is modelled
as linear in several potential task spaces, allowing to extract
the one most consistent with demonstrations. In Muhlig et al.
(2009) they automatically select relevant task spaces from
demonstrations. Therefore, the demonstrations are mapped
on a set of predefined task spaces, which is then searched for
the task spaces that best represent the movement. In contrast
to these methods, our approach more rigorously extracts
task dimensions in the inverse KKT motion optimization
framework, including motions that involve contacts.
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5.4 Model-free Imitation Learning
Another approach is the widely used framework of direct
imitation learning with movement primitives (Schaal et al.
(2003); Paraschos et al. (2013); Pastor et al. (2011)). They
belong to a more direct approach of imitation learning
that does not try to estimate the cost function of the
demonstration. Instead they represent the demonstrations in a
parametrized form that is used to generalize to new situations
(e.g., changing duration of motion, adapting the target).
Many extensions with different parametrization exist that
try to generalize to more complex scenarios (Calinon et al.
(2013); Stulp et al. (2013)). They are very efficient to learn
from demonstrations and have been used for manipulation
tasks (e.g., manipulating a box).

There also exist IOC methods that are model-free
(Boularias et al. 2011; Kalakrishnan et al. 2013; Finn
et al. 2016). Kalakrishnan et al. (2013) introduce an inverse
formulation of the path integral reinforcement learning
method PI2 (Theodorou et al. (2010)) to learn objective
functions for manipulation. The cost function consists of
a control cost and a general state dependent cost term at
each time step. They maximize the trajectory likelihood of
demonstrations p(x̂0:T |w) for all demonstrations by creating
sampled trajectories around the demonstrations. Further, they
L1 regularize w to only select a subset of the weights.
The method is evaluated on grasping tasks. Finn et al.
(2016) propose to learn a cost function in an inner loop
of a policy search method. They formulate a sample-based
approximation for nonlinear maximum entropy IOC. As
cost function representation a neural network is used and
regularization is achieved by penalizing an acceleration term
and preferring strict monotonically decrease in the costs
of the demonstration. They evaluate their method on robot
manipulation tasks that include autoencoder features from
camera images.

The major difference of such kind of approaches to our
method is that they do not need an internal model of
the environment, which is sometimes difficult to obtain.
However, if such a model is available it can be used
to learn a cost function that provide better generalization
abilities than movement primitives. This is the case since
cost functions are a more abstract representation of task
knowledge. Examples of such generalization abilities are
demonstrated in Section 6 with a box sliding task where
we generalized to different box positions and with the door
opening task where we generalized to different door angles.

5.5 Nonparametric Imitation Learning
Marinho et al. (2016) represent trajectories as vectors in
reproducing kernel Hilbert spaces (RKHS). They propose a
functional gradient motion planning algorithm based where
trajectories are represented as a linear combination of
kernels. The motion planning objective is to minimize a cost
functional that maps each trajectory in RKHS to a scalar
cost. The cost functional consists of a smoothness term and
an obstacle avoidance term. The optimization is done by
computing the functional gradient. There approach is similar
to our nonparametric variant. Whereas they represent the
trajectory in RKHS and define a cost over these trajectories,
we represent the cost function at each time step as a

functional in a RKHS. Using functional gradient techniques
for imitation learning was proposed by Ratliff et al. (2009),
which extends maximum margin planning methods to non-
linear cost functions.

Grubb and Bagnell (2010) and Bradley (2009) propose
approaches that rely on deep modular systems to learn non-
linear cost functions. Functional backpropagation (Grubb
and Bagnell 2010) combines functional gradient descent
with backpropagation mechanics in Euclidean function
space. It allows the use of a greater class of learning
algorithms than standard backpropagation. A key aspect of
their work is a modular system that separates the structural
aspects of the network from the learning in individual
modules. Their results show that the functional gradient
variant is more robust to local minima than the parameterized
gradient.

Levine et al. (2011) use a Gaussian process to learn the
reward as a nonlinear function. Additionally to learning
the reward they also learn the kernel hyperparameter to
recover the structure of the reward function. To do this they
maximize the likelihood of the reward under the observed
expert demonstrations.

There also has been some research on using Bayesian
nonparametric methods for inverse optimal control. Choi and
Kim (2013) present for example a Bayesian nonparametric
approach to constructing features for the cost function using
the Indian buffet process. Michini and How (2012) propose
a Bayesian nonparametric inverse reinforcement learning
approach that partitions the demonstrations into sets of
smaller sub-demonstrations. For each sub-demonstration a
simple reward function is learned. The partition process
is automated by using a Chinese restaurant process
prior as a generative model over partitions. This makes
it not necessary to specify the number of partitions
by hand. Both formulations are well formulated and
very powerful. However, these Bayesian nonparametric
inference approaches suffer from the problems of expensive
computation and local approximation.

6 Experiments

In the following experimental evaluations we demonstrate
the learning properties and the practical applicability of our
approach and compare it to alternative methods.

First, we compare our proposed IKKT method on a 2d
problem to a state-of-the-art IOC method that does not
incorporate constraints. Second, we show on a simple task
the ability to reestimate weight functions from optimal
demonstrations with different weight parametrizations.
Afterwards, we present more complex tasks like sliding a
box, opening a door and closing a drawer.

6.1 IOC on a 2d Problem with Constraints
In this evaluation we compare different IOC algorithms on a
2d problem task. We will compare:

• Inverse KKT with a set of features (see Section 3)
• Inverse KKT with a kernel (see Section 4)
• Continuous Inverse Optimal Control (CIOC) that was

proposed by Levine and Koltun (2012)
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Figure 3. These images show the 2d toy task of the experiment in Section 6.1. The task is to go from a start state (green dot) to a
goal state (blue dot). During the motion a contact with the magenta line should be established. The four images on the top row are
used as training data and the eight other images are used for testing.

method error (train set) error (test set) constraint violation (train set) constraint violation (test set)

IKKT (feature) 0.027475 0.46944 1.1102e-15 1.6653e-15

IKKT (kernel) 0.94625 66.065 4.4409e-16 8.2469e-16

CIOC 0.014732 0.64592 0.00058039 0.001128

Figure 4. The results from the 2d toy task. The error is the sum of absolute difference between the resulting motion with the
learned weights w and the reference motion. The constraint violation is the distance to the magenta line.

The task is a two dimensional trajectory optimization
problem of a point mass. The trajectory consists of 6 time
steps that lead to a trajectory x0:T ∈ R12. The goal of the
task is to go from a start state to a goal state. At time step
3 and 4 of the trajectory the robot should be in contact with
a line. During this contact phase the robot should move 1
unit in the vertical direction downwards. The state of the
environment y contains the initial position, goal position and
line parametrization. The domain is visualized in Figure 3.

We use transition features and a set of linear features
around 4 points in the 2d world for both methods. In the two
IKKT algorithms we represent the contact in form of equality
constraints h(x0:T ,y). Since the CIOC formulation does not
incorporate constraints, we add the contacts directly into the
cost features Φ(x0:T ,y). Initially, we create 12 motions for
different scenarios y (see Figure 3). In the IKKT with kernel
variant we augment the state and add the y to the input of
the RBF kernel. We split this data in a training and test set. 4
motions are used to train the IOC methods and 8 motions are
used for the evaluation.

To evaluate the methods, we first use the training data
as input to the IOC methods and learn a weight vector
w. Afterwards, we use the learned weight vector in the
optimal control problem to generate motions for the test
scenarios. The resulting motions are compared to the
reference motions of the test scenarios. We compare the
error of the trajectories and the violation of the constraints

on the training and test set. The results are shown in the
table in Figure 4. We also visualize the resulting motions
of all three variants in Figure 5 for a training scenario
(top) and a test scenario (bottom). The results confirm
that CIOC and IKKT (feature) reach for the same feature
set a similar performance (see discussion in Section 5.1).
The nonparametric variant of IKKT achieves a much lower
performance. It manages to reach a reasonable training error.
However, the generalization abilities are very limited, which
is due to the simple RBF kernel at each time step. In order to
improve the performance multiple kernel learning methods
would be necessary. In the following experiments we will
therefore focus on the parametric variant of IKKT. In this
evaluation CIOC reached a lower training error and IKKT
reached a lower test error. Also the constraint violation of
CIOC is higher than for the two IKKT methods since it has to
weight the contact features with the other features and IKKT
can incorporate them separately as constraints.

6.2 Different Weight Parametrizations in a
Benchmark Scenario

The goal of our work is to learn cost functions for finite
horizon optimal control problems, including when and how
long the costs should be active. In this experiment we test
our approach on a simple benchmark scenario. Therefore, we
create synthetic demonstrations by optimizing the forward
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Figure 5. Evaluation of the learned parameter of the 2d point
task ( Section 6.1). top image shows the performance on a
training scenario and the bottom image shows the performance
on a test scenario.
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Figure 6. Learned time profiles of different weight
parameterizations. For more details see Section 6.2

problem with a known ground truth parameter set wGT and
test if it is possible to reestimate these parameters from the
demonstrations. We create three demonstrations with 50 time
steps, where we define that in the time steps 25 to 30 of these
demonstrations the robot end-effector is close to a target
position. For this experiments we use a simple robot arm
with 7 degree of freedom and the target is a sphere object.
We compare the three parametrizations

• Direct parametrization: A different parameter is
used at each time step (i.e., w = θ) which results in
θ ∈ R50.
• Radial basis function: The basis functions are equally

distributed over the time horizon. We use 30 Gaussian
basis functions with standard deviation 0.8. This
results in θ ∈ R30.

1e-07 1e-06 1e-05 0.0001 0.001
0

0.1

0.2

noise level σ

|w
G
T
−
w
|

Figure 7. Error in estimating the ground truth parameter for
different noise levels.

• Nonlinear Gaussian: A single unnormalized Gaus-
sian weight profile where we have θ ∈ R3 with the
weight as linear parameter and the nonlinear param-
eters are the mean and standard deviation. In this case
the mean directly corresponds to the time where the
activation is highest.

The demonstrations are used as input to our inverse KKT
method (see Section 3) and the weights are initialized
randomly. A comparison of the learned parameters and
the ground truth parameter is shown in Figure 6. The
green line represents the ground truth knowledge used for
creating the demonstrations. The black dots show the learned
parameters of the direct parametrization. The red line shows
the learned Gaussian activation and the blue line shows the
RBF network. As it can be seen all parametrization detect
the right activation region between the time steps 25 to
30 and approximate the ground truth profile. The Gaussian
and RBF parametrization also give some weight to the
region outside the actual cost region, which is reasonable
since in the demonstrations the robot is still close to the
target position. After learning with these parametrizations,
we conclude that the linear RBF network are best suited to
learn time profiles of cost functions. The main reason for
this is the linearity of the parametrization that makes the
inverse KKT problem convex and the versatility of the RBF
network to take on more complex forms. Directly learning
the time with the nonlinear Gaussian-shaped parametrization
was more difficult and required multiple restarts with
different initialization. This demonstrates that the framework
of constrained trajectory optimization and its counterpart
inverse KKT works quite well for reestimating cost functions
of optimal demonstrations.

6.3 IKKT with Noisy Demonstrations
A core assumption of IKKT is that the demonstrations are
optimal. In this experiment, we want to investigate what
happens if this is not the case. Therefore, we create scenarios
with non-optimal demonstrations and evaluate if IKKT is
still able to estimate the underlying cost parameters. We use
the same scenario as in the previous experiment where the
robot has to reach a target position with the end-effector.

In this scenario we add different levels of Gaussian noise
to the optimal demonstrations. We want to test if IKKT is
still able to extract the true parameter wGT that was used
to create the noise-free demonstrations. In Figure 7 the
absolute error is visualized for different standard deviations
σ. The values are averaged over 100 different random seeds.
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Figure 8. These images show the box sliding motion of Section 6.4 where the goal of the task is to slide the blue box on the table
to the green target region.

Figure 9. Each image shows a different instance of the box sliding task. We were able to generalize to different initial box states
(blue box) and to different final box targets (green area).

Figure 10. The resulting parameters w of the extracted relevant features plotted over time. task is depicted in this slideshow.

Black box IOC:
repeat

Resample parameters {w(n)}Nn=1 with CMA
for all w(n) do

Optimize cost function with parameter w(n)

Compute fitness f (n) =
∑

d(x(n) − x̂(d))2

Update CMA distribution with fitness values
until

Method (x(n) − x̂)2 comp. time

inverse KKT 0.00021 49.29 sec

black box IOC 0.00542 7116.74 sec

Figure 11. On the left side is the black box IOC algorithm we used for comparison in Section 6.4. On the right side are the results
of the evaluation that show that our method is superior in terms of squared error between the trajectories and computation time.

The values where the task could still be performed are
visualized with green circles and failues are visualized with
red crosses. We defined a successful run when the target was
reached inside a 1 cm tolerance. The results show that the
estimation error increases continously with the noise level
and if σ is above 2e−05 then the task fails. This demonstrates
the requirements to use Inverse KKT only with optimal
demonstrations.

6.4 Sliding a Box on a Table
In this experiment we use our approach to learn a cost
function for sliding a box on a table. This task is depicted
in Figure 8. The goal is to move the blue box on the table to
the green marked target position and orientation. The robot
consist of a fixed base and a hand with 2 fingers. In total the
robot has 10 degrees of freedom. Additionally to these degree

of freedom we model the box as part of the configuration
state, which adds 3 more degrees of freedom (2 translational
+ 1 rotational). The final box position and orientation is
provided as input to our approach and part of the external
parameters y. We used three synthetic demonstrations of the
task and created a set of features with the approach described
in Section 3.4 that led to θ ∈ R537 parameters. The relevant
features extracted from our algorithm are

• transition: Squared acceleration at each time step in
joint space

• posBox: Relative position between the box and the
target.

• vecBox: Relative orientation between the box and the
target.

• posFinger1/2: Relative position between the robots
fingertips and the box.
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(a) (b)

Figure 12. These images show the generalization abilities of our approach. The pictures in (a) show different initial positions of the
robot and the pictures in (b) show different final door angle positions. After learning the weight parameter w? with inverse KKT it
was possible to generalize to all these instances of the door opening task.

• posHand: Relative position between robot hand and
box.
• vecHand: Relative orientation between robot hand

and box.

The contacts between the fingers and the box during the
sliding are modeled with equality constraints. They ensure
that during the sliding the contact is maintained. For
achieving realistic motions, we use an inequality constraint
that restrict the movement direction during contact into the
direction in which the contact is applied. This ensures that
no unrealistic motions like sliding backwards or sidewards
are created. For clarity we would like to note that we are
not doing a physical simulation of the sliding behavior in
these experiments. Our goal was more to learn a policy that
executes a geometric realistic trajectory from an initial to
a final box position. Figure 8 shows one of the resulting
motion after learning. We were able to generalize to a wide
range of different start and goal position of the box (see
Figure 9). Videos of the resulting motions can be found in
the supplementary material.

We compare our method to a black-box optimization
approach similar to (Mombaur et al. (2010); Rückert et al.
(2013)). We implemented this approach with the black-box
method Covariance Matrix Adaptation (CMA) by Hansen
and Ostermeier (2001) in the outer loop and our constrained
trajectory optimization method (see Section 2) in the inner
loop. The resulting algorithm is described in Figure 11.
As fitness function for CMA we used the squared distance
between the current solution x(n) and the demonstrations
x̂(d). We compare this method with our inverse KKT
approach by computing the error between the solution and
demonstrations and the computational time, which are shown
in the table in Figure 11. The black-box method took around
4900 iterations of the outer loop of the above algorithm
until it converged to a solution. This comparison shows that
using structure and optimality conditions of the solution can
enormously improve the learning speed. Further difficulties
with black box methods like CMA is that they cannot
naturally deal with constraints (in our case w > 0) and that
the initialization is non-trivial.

6.5 Opening a Door with a PR2
In this experiment we apply the introduced inverse KKT
approach from Section 3 on a skill with the goal to open a

door with a real PR2 robot. The problem setup is visualized
in Figure 1. We use a model of the door for our planning
approach and track the door angle with AR marker. We use
the left arm of the robot that consists of 7 rotational joints
and also include the door angle as configuration state into x.
This allows us to define cost functions directly on the door
angle. The gripper joint is fixed during the whole motion. For
our IOC algorithm we recorded 2 demonstrations of opening
the door from different initial positions with kinesthetic
teaching. The motions also include the unlocking of the door
by turning the handle first. During the demonstrations we
also recorded the door position with the attached markers.
We created a feature set similar to the box sliding motion
from the previous experiment. Our inverse KKT algorithm
extracted the features:

• Relative position & orientation between gripper and
handle before and after unlocking the handle.
• end-effector orientation during the whole opening

motion.
• Position of the final door state.

We use equality constraints, similar to the box sliding
experiment to keep the contact between end-effector and
door. Furthermore, we use inequality constraints to avoid
contacts with the rest of the robot body. We are able
to robustly generate motions with these parameters that
generalize to different initial positions and different target
door angles (see Figure 12). Videos of all these motions can
be found in the supplementary material.

6.6 Closing Drawers with PR2
In this experiment we applied the introduced IOC approach
from Section 3 on a skill with the goal to close a drawer
with a real PR2 robot. The problem setup is visualized
in Figure 13. The shelf we focus on in this experiments
has four drawers at different positions. The drawer position
was part of the external parameters y that allows us to
adapt the motion to different drawers. We used the right
arm of the robot that consists of 7 rotational joints. As
demonstrations we provided 2 trajectories for 2 different
drawers by kinesthetic teaching. During the demonstrations
we also recorded the positions of the drawer by using AR
markers. For our IOC algorithm we provided 9 different
features and 2 constraints, which are similar to the ones of
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Figure 13. Resulting motions of the drawer closing experiments with the PR2 (see Section 6.6). We used two demonstrations for
different drawers as input for our inverse KKT method. Each row shows a resulting motion after optimizing the cost function for a
different drawer of the shelf.

the door task. We were able to generate motions with these
parameters that generalized to all four drawers. The resulting
motions are visualized in Figure 13.

7 Conclusion

In this paper we introduced inverse KKT motion optimiza-
tion, an inverse optimal control method for learning cost
functions for constrained motion optimization problems. Our
formulation is focused on finite horizon optimal control
problems for tasks that include contact with the environment.
The resulting method is based on the KKT conditions that
the demonstrations should fulfill. We proposed a formulation
that uses a weighted sum of squared features as cost function
and a formulation that represents the cost function as a func-
tional in a reproducing kernel Hilbert space. For a typical lin-
ear parameterization of cost functions this leads to a convex
problem; in the general case it is implemented as a 2nd order
optimization problem, which leads to a fast convergence rate.
We demonstrated the method in a real robot experiment of
opening a door that involved contact with the environment. In
our future research we plan to further automate and simplify
the skill acquisition process. Thereby, one goal is to extend
the proposed method to be able to handle demonstrations
that are not recorded on the robot body. Another goal is to
couple it with reinforcement learning methods to improve
the performance over the demonstrated behavior.
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A Derivation of IKKT Loss
The loss of a single demonstration is according to
Equation (12) given by

`(d)(w,λ(d)) =
∣∣∣∣∣∣∇x1:T

L(x̂
(d)
0:T , ŷ

(d),λ(d),w)
∣∣∣∣∣∣2

= (2J>diag(w)Φ+J>c λ
(d))>(2J>diag(w)Φ+J>c λ

(d))

= 4Φ>diag(w)JJ>diag(w)Φ + λ(d)JcJ
>
c λ

(d)

+ 2Φ>diag(w)JJ>c λ
(d) + 2λ(d)>JcJ

>diag(w)Φ .

Inserting λ(d) from Equation (14) into this loss function
and rearranging the terms results in the IOC cost per
demonstration given in Equation (15):

`(d)(w) = 4w>diag(Φ)JJ>diag(Φ)w + 4w>diag(Φ)

JJ̃c
>

(J̃cJ̃c
>

)−1(J̃cJ̃c
>

)(J̃cJ̃c
>

)−1J̃cJ
>diag(Φ)w

− 4w>diag(Φ)JJ̃c
>

(J̃cJ̃c
>

)−1J̃cJ
>diag(Φ)w

− 4w>diag(Φ)JJ̃c
>

(J̃cJ̃c
>

)−1J̃cJ
>diag(Φ)w

=4w>diag(Φ)JJ>diag(Φ)w

− 4w>diag(Φ)JJ̃c
>

(J̃cJ̃c
>

)−1J̃cJ
>diag(Φ)w

=4w>diag(Φ)J
(
I − J̃c

>
(J̃cJ̃c

>
)−1J̃c

)
J>diag(Φ)w.

Prepared using sagej.cls


