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Abstract— Recent advances in deep learning for robotics
have demonstrated the possibility to learn a mapping from
raw visual input to control signals. For contact-rich real-world
manipulation tasks however, it is questionable whether purely
vision-guided control is sufficient. Aiming at a deep learning
framework for deep imitation or reinforcement learning for
manipulation from both visual and haptic feedback, we have
investigated a peg-in-hole task with sensory feedback from a
camera and a module providing both passive compliance and
sensor feedback about the end effector displacement. We have
trained a neural network that adjusts the end effector position
on a horizontal plane while the height of the end effector is
steadily decreased by a simple external controller. Preliminary
results demonstrate that network performance increases when
tactile feedback is available but leave several questions open
for discussion and future investigations.

I. INTRODUCTION AND RELATED WORK

Recent work in deep reinforcement or imitation learning
has demonstrated the possibility to train policies end-to-end
from raw images to control signals directly [1]. However, it
remains unclear whether policies as a function of visual input
scale to more complex contact-rich manipulations. In particu-
lar, optimal controllers for high-dimensional contact-seeking
behavior might be unknown. Therefore, most supervised
learning approaches are infeasible for these cases. In analogy
to human sensing behavior, it seems natural though to expect
haptics to play a crucial role in (learning) manipulation tasks.
While there is a large body of work explicitly modelling
object contacts for manipulation [2], only few have integrated
multimodal feedback into end-to-end learning systems for
manipulation [3]. Tactile sensing has also been indirectly
incorporated through force control [4].

As a stepping stone towards deep reinforcement learning
from both visual and haptic feedback, we here present
initial results on deep learning for an exemplary peg in
hole task with passive compliance using both end effector
displacement as well as camera images as feedback.

II. SYSTEM OVERVIEW

We are using a dual arm KAWADA Nextage robot (see
Figure 1) for all experiments. A custom passive compliance
module is mounted on one of the wrists. It provides full
6D feedback about the end effector’s current positional and
rotational displacement. The second arm provides the light
source and camera images from a static view point for our
experiments.
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Fig. 1. System overview (left) and network architecture (right).

III. METHOD

Assuming that the object position is known during train-
ing, we have uniformly sampled 10,000 positions from a
fixed space above the target object as well as 5,000 positions
with surface contact. The real robot was moved to each
position to collect an image as well as the compliance
element’s feedback at this point. For the contact samples, an
initial position from where to start moving to the points was
randomly chosen in order to enforce different contact angles.
Based on these images, we have trained a neural network as
shown in Figure 1 to map from an image and compliance
feedback to the offset in x and y direction from the center of
the target object. At test time, the height of the end effector
was automatically decreased by an open-loop controller.

The first convolutional layer of the neural network is
initialised with weights from GoogleLeNet trained on Im-
ageNet [5]. The part of our network that depends on visual
input only (black modules in Figure 1) serves both as a
baseline and pretraining step (dashed arrow). To incorporate
haptic feedback, the network is extended (gray modules) and
the additional parameters are trained while the pretrained
vision-based part of the network is frozen.

IV. RESULTS & OPEN QUESTIONS

For the network using camera input only, 77 out of 100
trials were successful. Using a closed-loop controller that
goes up whenever the end effector got stuck, the success
rate increases to 85%. The full network architecture trained
on visual and haptic feedback solves the task in all 100 trails.

Open questions for future investigations include (1) gen-
eralisation of this approach, e.g. to new target positions
and rotations; (2) generalisation to more complex, contact-
richer manipulation tasks for which we expect leveraging
information from negative samples to be crucial; and (3)
design choices about whether or not, and how to integrate
the height controller into the network policy.
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