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Abstract— In this paper, we define the problem of human-
robot collaboration as a combined task and motion planning
problem which is extended to the multi-agent case (human and
robot). Our proposed approach allows us to explicitly take into
account ergonomic cost, synchrony and concurrency of behavior
in an optimization formulation. We show simulated results as
well as an experiment with a real robot combined with a user
study. Results show that optimizing over a sequence of actions
leads to more ergonomic situations.

I. INTRODUCTION

As progress is made in the field of Human-Robot Interac-
tion (HRI), the complexity and diversity of tasks humans
and robots can accomplish together increases. Within the
manufacturing field, efficiency, especially time efficiency, is
a crucial expectation. This creates a desire to form highly
effective human-robot teams that combines strengths and
abilities of both the robot and its human partner [1], [2],
while at the same time caring for the well-being of the people
working with robots. Compared to a fully automated assem-
bly line, a robot and human worker team offers flexibility
and adaptability to changing tasks [3], [4]. This last point is
particularly important for small assembly lines of customized
products.

“Musculoskeletal disorders” (MSDs) are the single largest
category of work-related diseases in many industrial coun-
tries [5]. If our goal is to bring human-robot cooperation
in industrial workplaces, it should not be at the expense of
increasing the MSD rate among industrial workers. Robotics
solutions can be deployed to assist people with already
diagnosed MSDs [6], but preventive measures need also to
be considered. Ergonomic research offers a large variety
of postural assessment techniques [7], that can be used
as indexes to evaluate and improve the ergonomics of the
interactions [8].

Task allocation and coordination between humans and
robots is an extensively studied topic in HRI [9], [10]. Some
research already includes ergonomic factors in their motion
planning algorithms [11], [12], while pre-defining the task
allocation beforehand. Planning ergonomic actions is often
limited to optimize individual actions [8], [13] rather than
performing the optimization over a full sequence. We believe

This work was supported by national funds through Fundação para
Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013 and
by the EU FP7-ICT project 3rdHand under grant agreement no 610878.

1FLOWERS Team an Inria BSO and ENSTA Paritech joint laboratory,
Talence, France. baptiste.busch@inria.fr

2Machine Learning and Robotics Lab, University of Stuttgart, Germany.
marc.toussaint@informatik.uni-stuttgart.de
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Fig. 1. Toolbox assembly with the help of Baxter robot. The robot hands
over parts of the toolbox and hold them for the human coworker to screw
them together.

that optimizing simultaneously task allocation and motion
while taking into account ergonomic aspects would improve
the efficiency of the team and their acceptance and adoption
in the real world. For example, if the goal is for the human
to grasp a screwdriver lying on a far table, the robot would
need to grasp it first and move it to a closer and accessible
table. Ergonomic reasoning would benefit the efficiency of
the team as it would assign burdening tasks to the robot,
releasing humans from excessive muscular overload.

In this paper, we take the approach that ergonomic reason-
ing can be framed as a combined task and motion planning
problem [14], [15], [16], which is extended to the multi-
agent case (human and robot) and allows us to integrate
an ergonomic objective in an optimization formulation. [9]
proposed an optimization-based extension for the multi-agent
setting. However, this approach requires all objectives and
constraints to be differentiable. The Rapid Entire Body As-
sessment technique (REBA) to score body postures [17] has
previously been applied to select between posture alternatives
in HRI [8] and is a widely accepted as a ergonomic measure.
However, REBA is a discrete and non-differentiable table of
scores (detailed in Section II).

We propose a differentiable surrogate of the REBA score
(dREBA) to be integrated in a combined task allocation and
motion planning problem. By means of simulated results
and a user study on a toolbox assembly collaborative task
illustrated in Fig. 1, we show that the introduced dREBA
can be used as an enabler to optimize for the original REBA
score. We also show that optimizing simultaneously for task
allocation and motion planning leads to more ergonomic
situations and safer human postures. In this study we have
limited the assembly task to the first steps of the assembly



process, i.e the robot hands over the assembly parts com-
posed of the handle and one side of the toolbox to the
human coworker for him or her to screw them together.
We argue that a longer assembly of the full toolbox would
not provide additionnal benefits and that this shorter task is
already enough to observe the effects of our method.

We present the approximation of the REBA cost in Sec-
tion II and apply the planning technique to two experiments,
one in a simulated environment including a Baxter robot and
a second one with the real robot as illustrated in Fig. 1.

Results and discussions of the simulated experiment and
with the real robot are detailed in Section III and IV
respectively and show that planning a full sequence of action
for ergonomics is more beneficial than optimizing actions
independently.

II. ERGONOMIC TASK ALLOCATION AND PATH
OPTIMIZATION

In this section we present the LGP formalism used to
simultaneously optimize for task allocation and motion plan-
ning. We also introduce the REBA assessment technique we
have considered as index for ergonomics and the proposed
dREBA surrogate.

A. LGP formulation and solver

A Logic-Geometric Program (LGP) is an optimization
problem over both, a symbolic sequence of actions and a
(piece-wise) smooth motion of a system [18]. The logic
(e.g., STRIPS-like rules) defines which sequence of actions is
feasible; and a sequence of actions defines which geometric
constraints the motion has to fulfill. Both are optimized
jointly with respect to a cost function, typically control costs
of the resulting motion. Formally, an LGP is of the form

min
x,s1:K

∫ T

0
c(x(t), ẋ(t), ẍ(t)) dt + fgoal(x(T ))

s.t. ∀t∈[0,T ] hpath(x(t), ẋ(t) | sk(t)) = 0

∀t∈[0,T ] gpath(x(t), ẋ(t) | sk(t))≤ 0

∀K
k=1 hswitch(x(tk) | sk,sk-1) = 0

∀K
k=1 gswitch(x(tk) | sk,sk-1)≤ 0
∀k=1:K sk ∈ succ(sk-1)

sK |= ggoal ,

where x(t) is the path, s1:K the symbolic state sequence,
t1:k the time points of symbolic state transitions, h∗,g∗ the
constraints on the motion given s1:K , and ggoal, fgoal define
goal constraints and objectives.

Solving an LGP is hard; most existing combined task and
motion planning solvers employ sampling-based methods
[14], [15], [16]. As we aim for the optimization w.r.t. an er-
gonomic measure we adopt the optimization-based LGP for-
mulation. In [9] a multi-bound tree search (MBTS) method is
proposed to approximate LGP solutions. MBTS uses several
bounds of the full LGP that are themselves optimization
problems but with less constraints or only over sub-paths and
therefore much faster to evaluate. These bounds are used to

prune subtrees when they are found infeasible and prioritize
search for symbolic sequences.

To apply the LGP framework to our problem we need to
formulate

1) the joint symbolic decision space for the specific
human-robot cooperation task,

2) the constraints on the human or robot pose depending
on such decisions,

3) the cost function for both, the human and the robot.
Concerning the symbolic decisions, we use STRIPS-like

operators to define the action space depending on the specific
task. For example, for the first task of our experiment section
we will define two possible actions, grasp and place:
• grasp(t,e,o)

* description: at time t, the end-effector e (robot or
agent) grasps the object o

* precondition: free(e) on table(o)

* effect: grasped(e,o) ¬free(e) ¬on table(o)

• place(t,e,o,p)

* description: at time t, the end-effector e (robot or
agent) places the object o on table p

* precondition: grasped(e,o)
* effect: placed(o,p) ¬grasped(e,o) free(e)

on table(o)

These operators define feasible symbolic successor states
succ(sk-1), where sk is a first-order logic state initialized as
placed(screwdriver, table left). Note that the variable e

refers to possible end-effectors—in this way these operators
define the decision space for all “agents” (end-effectors of
human and robot).

The decisions imply geometric constraints: A grasp im-
plies a kinematic switch of attaching the object o to the end-
effector e, with a respective equality constraint hswitch(...)
ensuring that the object does not jump. A place action
implies a kinematic switch of attaching the object o to the
table p, detaching from the end-effector e, both constrained
geometric by not having a jump in the object pose.

The symbolic goal ggoal is grasped(human right hand,

screwdriver).
Concerning the cost function, we optimize for maximal

ergonomics in the side of the human, as described below.
Additionally we enforce smooth motions by optimizing for
the sum-of-squared accelerations of both, the robot and
human motion.

B. The REBA Score as Ergonomic Measure

The REBA assessment technique [17] was initially intro-
duced for pen and paper assessment of industrial workflows.
It describes ergonomic preferences with a table as follows.
First, a part table assigns a score to each parts of the body
(trunk, neck, upper arms, . . . ), based on their inclinations at
the time of the assessment, as illustrated in Fig. 2. Then,
an overall score is calculated from correspondence tables
that take into account the importance of the body segment.
Indeed, a score of 3 for the trunk represents a greater risk
than the same score for the upper arm. First, body segments



Fig. 2. Example of the REBA calculation for the trunk, neck, upper arm
and lower arms.

are divided into groups A (trunk, legs, and neck) and B
(upper arm, lower arm, and wrist) and a score is assigned to
each group. Finally, the REBA score is calculated from the
last table based on the score of both groups.

With our work we want to adopt such meaningful indus-
trial standards, but make them applicable in our optimization
framework. This requires us to propose a differentiable
version of the REBA cost function, as described in the
following.

C. Differentiable REBA (dREBA)

In its original formulation, the REBA score is a stepwise
linear function. We propose to fit a differentiable model to
the REBA score, dREBA, and use this as cost function in the
LGP formulation. We model dREBA as a sum of weighted
polynomial functions,

dREBA(q, t) = δpayload +
n

∑
i=1

wiQi(qi, t) , (1)

where n is the number of joints considered in the REBA
techniques and Qi(qi, t) is a 2nd order polynomial of the
joint i as a function of the joint value qi at time t. First,
the coefficients of each polynomial Qi(qi, t) are calculated
to minimize the squared error to the the part tables of
the original REBA score table, for each joint separately.
Then, the weights wi are learned from the total REBA score,
including the corresponding tables. For this, the squared
error of our surrogate and the original REBA score is
minimized on a set of sample body configuration: We define
a set of random poses, ensuring each class of the original
REBA cost (from 1 to 10) are evenly represented.

Computing the gradients of the fitted dREBA cost function
(1) is straightforward,

∇qi dREBA(q, t) = wi∇qi Qi(qi, t) . (2)

Table I shows the root mean-square error (RMSE, bottom
row) of the dREBA approximation for each of the 10 REBA
classes (upper row). As we can see, the RMSE is relatively
high for classes of high REBA cost but acceptable for those
of low REBA cost.

In our experiments, we use dREBA to enable optimization
in the LGP framework. However, as the original REBA score
is the accepted standard we will report all the scores w.r.t. the

TABLE I
RMSE FOR EACH REBA CLASSES

1 2 3 4 5 6 7 8 9 10
0.72 0.91 0.86 1.08 1.02 1.72 1.86 2.18 2.18 1.50

original REBA score; dREBA is only the enabler to optimize
for the REBA score.

D. Payload cost calculation

The term δpayload in (1) corresponds to the cost for
carrying an object. In the original method, it is calculated
using a decision tree as follow,

i f load < 5kg : δpayload = 0
i f load between 5 to 10kg : δpayload = 1

i f load > 10kg : δpayload = 2
, (3)

where load corresponds to the weight of the carried objects.
Although convenient for pen and paper assessment, as it
is simpler to work with integer values, the function of (3)
means that carrying objects lighter than 5kg is costless and
transitions are sharp. As we are working in the continuous
domain, we find it more suitable to also consider a contin-
uous function to represent the payload coast. Therefore, we
propose the following linear cost term for load,

δpayload =
load
ωload

, (4)

where ωload = 5kg. The function defined in (4) is strictly
equivalent to the original calculation in (3) at the boundaries
fixed by the REBA method but has the advantages to set a
cost even for light weight objects.

III. SIMULATION EXPERIMENT

We apply the method detailed in Section II in a simulation
experiment where the robot has to place the screwdriver on
a table for the human to grasp as illustrated in Fig. 3. There
are three tables of random heights ranging from 0.6 to 1.6
meters located in front of the human. In the LGP framework,
agents and objects positions are variables to be optimized.
The environement is, however, considered fixed but can be
used for certain actions, e.g. the planner can choose a table
to put the screwdriver on.

Our hypothesis is that depending whether the ergonomic
cost function introduced in Section II is turned on or off,
the choice of table for placing the screwdriver will differ
and the overall ergonomic cost will be reduced even if it
increases locally. Moreover, the choice of table should impact
the human posture cost.

The actions available to the human and robot are grasp

and place as described in Sec. II-A. The MBTS solver return
a sequences of actions, optimal in terms of the provided cost
functions as in the example given in Fig. 4.



Fig. 3. Simulated view of the experiment. The robot places the screwdriver
on one of the three tables for the human to grasp it. Tables heights are
randomly set at each run of the experiment.

A. Experimental setup and hypotheses

To validate the benefits of including the ergonomic cost
function in the LGP framework, we have considered three
experimental conditions,

1) the non-ergonomic condition with ergonomic costs
turned off,

2) the ergonomic condition with ergonomic costs on,
3) and re-optimized condition where the path is optimized

with ergonomic cost turned on, but the symbolic action
sequence s1:K is fixed to the choice found with non-
ergonomic optimizing.

Our main hypothesis is that by optimizing for the dREBA
surrogate, the choice of actions and motions will lead the
human model to postures that are more ergonomic in terms
of REBA score. Therefore, we use the REBA score of
the model posture as a measure to validate this effect.
Another hypothesis is that optimizing the path along the full
sequences of actions will lead to more ergonomic postures
compared to stepwise optimization. The objective of the re-
optimized condition is then to serve as another baseline that
results from methods that have a separation between the
high-level task planner and the low-level motion planning.
By improving over this baseline we show that it is worth to
pay the cost of using the more computationally expensive
simultaneous optimization of task and motion planning that
is proposed in this work. For example, in this first experiment
s1:K refers to the categorical choice of table, which may be
chosen sub-optimally with the non-ergonomic optimizer.

In the non-ergonomic condition, the planned trajectory
of the agent to grasp the screwdriver might not be natural
and lead to non-ergonomic postures like an over bending
of the spine. Clearly, this will lead to non-favorable REBA
scores. In the re-optimized condition, re-optimizing such a

Fig. 4. Example of a tree search made by the MBTS solver to find the
optimal sequence of actions under the given constraints. The path in plain
lines corresponds to the optimal sequence. A state is declared as infeasible
a constraint is broken. In the example case given, the screwdriver is too
far away from the human agent which renders it impossible to grasp. The
written cost are given for illustrative purposes and do not correspond to real
values returned by the solver.

path with ergonomic costs, but fixing s1:K , allows us an
easier comparison with the full ergonomic condition, which
highlights the effects of the choice of the symbolic sequence
s1:K .

We fix a random height for the three tables and test the
three conditions keeping the same table height. The process
is repeated 100 times and for each run we collect the table
chosen for placing the screwdriver and the human posture at
grasping time. We also force the human to be right handed
to remove the effects of changing hands to reduce the costs.
The initial body posture is set to be at rest according to the
REBA assessment (posture of minimal REBA score).

B. Results

As we observe in the results of Fig. 5 and 7, re-optimizing
the path for ergonomics leads, as expected, to a smaller
posture score. Still, the best posture scores are obtained in the
ergonomic condition. Statistical differences are noted directly
on the figure and verified with Anova statistical test.

TABLE II
TABLE CHOICE RATIO (%)

non-ergonomic ergonomic
left 89 26

center 7 40
right 4 34

In terms of table heights, the average height of the
chosen table in the non-ergonomic condition is 1.08±0.22.
It is slightly below the average height of the three tables
(1.1±0.3m). The average height of the chosen table in the
ergonomic condition is 0.95±0.15m.

By looking at the optimal choices, summarized in table II,
we observe that in the ergonomic condition, the most cho-
sen table is the centered one. This makes sense from an
ergonomic point of view as deviating the arm on the side
is more costly. Nevertheless, this choice also depends on



Fig. 5. Average REBA score and standard error of the mean for the three
conditions. The lower the score, the safer is the posture. Significance are
verified using Anova statistical test and noted according to the standard
defined by the APA(American Psychological Association).

the table height as suggested by the number of times the
left of right table were chosen. On the other side, in the
non-ergonomic condition, the most chosen table is the one
located on the agent’s left side. This choice seems to be
almost independent from the table height.

This effect arises from the base cost function of the LGP
formalism which minimize by default the sum-of-square
accelerations of the joints for both the robot and the human.
As the time to perform an action is fixed, this leads to select
the shortest trajectory for both agents. By extension, placing
the screwdriver on the left table often corresponds to the
shortest path.

Minimizing the joints acceleration also means that the
initial human posture must impact the optimization. To study
this effect, we have performed a new experiment, keeping
the same experimental setup and reusing the previously
generated table heights. The only difference comes from the
initial human body posture which is set randomly.

As we observe in Fig. 6 this strongly impacts the posture
score of the non-ergonomic condition. As the human body
possesses a large number of degrees of freedom, some joints
are not necessary to move to fulfill the task. Therefore the
shortest path is to keep them at their initial value. The left
image of Fig. 8 shows an example of a grasping posture
impacted by the initial body configuration. In the ergonomic
and re-optimized conditions however, the first human motion
is to move back to an ergonomic posture as illustrated in
the right image of Fig. 8 and especially in the cost profile
of Fig. 7. This action limits the impact of the initial body
configuration. As table III suggests, choices of tables is not
impacted in the ergonomic condition. For the non-ergonomic

Fig. 6. As Fig. 5, but with the initial body pose randomized.

Fig. 7. Evolution of the averaged REBA score during all the phases of the
interaction. Plain lines) Initial posture optimal in terms of REBA score. The
human starts moving only to grasp the screwdriver which explain the flat
score until the last phase. Dashed lines) Initial posutre chosen as random.
In the ergonomic and re-optimized the human moves after the initial phase
to get back to an ergonomic posture.

condition, the impact is significant. As the random posture
is often bended, such as the one presented in the left image
of Fig. 6, the shortest path might be a table of lower height.
This point is confirmed by the average height of the chosen
tables, 1.02± 0.2m which is 6cm less than in the normal
configuration.

By choosing tables of lower heights, the posture score of
the non-ergonomic condition slightly gets better. Still, the
best REBA scores are obtained in the ergonomic condition.

C. Discussion

From the results of this simulated experiment we conclude
that optimizing the sequence of actions for ergonomics leads
indeed to safer body posture than only optimizing actions



Fig. 8. Left) An example of a grasping posture impacted by the initial
body posture in the non-ergonomic condition. Without posture correction the
shortest path leads to this wrong final posture. Right) The same grasping
but in the re-optimized condition which counteracts the effects of the initial
body posture.

TABLE III
TABLE CHOICE RATIO IN THE RANDOM BODY CONFIGURATION (%)

non-ergonomic ergonomic
left 66 26

center 23 40
right 11 34

independently. We can also conclude that optimizing the task
allocation and motion planning for dREBA induces lower
REBA score as expected.

Another interesting result is that considering an ergonomic
cost for the body posture allows to remove the effects of the
initial body configuration chosen prior to the optimization.

In next section, we introduce a more complex scenario
with a longer sequence of actions. As a proof of concept we
also implement the generated path and actions on a Baxter
humanoid robot.

IV. TOOLBOX ASSEMBLY EXPERIMENT

The second experiment we consider is the assembly of a
toolbox as illustrated in Fig. 9. We limit the assembly to
screwing the handle (/toolbox/handle) and one side of the
toolbox (/toolbox/side left) together. We extend the set of
possible actions defined in Section II-A with the following
decisions:
• handover(t,e1,o,e2)

* description: : at time t, the end-effector e1 (robot)
hands over object o to the end-effector e2 (agent)

* precondition: grasped(e1,o) free(t,e2)

* effect: ¬grasped(e1,o) free(e1) grasped(e2,o)

¬free(e2)

• hold(t,e,o)

* description: : at time t, the end-effector e (robot or
agent) holds object o

* precondition: on table(o) free(e)

* effect: held(o) ¬free(e)
• screw(t,e,o1,o2)

* description: : at time t, the end-effector e (agent)
screws objects o1 and o2 together

* precondition: on table(o1) on table(o2)

free(e) held(o1)

* effect: screwed(o1,o2) ¬held(o1)

Fig. 9. Picture of the experimental setup of the toolbox assembly annotated
using the same convention as Fig. 3.

Initially the place action can be accomplished by both
the robot and the agent. However, in our setup the robot is
equipped with a vacuum gripper on its left end-effector. This
type of gripper is convenient to grasp the toolbox parts but
cannot be used to precisely place them vertically on the table.
Therefore, we limit the place decision to only the agent.

To each of those logic decisions we associate a ge-
ometric equivalent that defines constraints between ob-
jects as kinematic switches. We set the desired goal to
screwed(/toolbox/handle, /toolbox/side left) and per-
form the path optimization. The following is an example of
a decision sequence found by the MBTS solver that leads
toward the set goal.

grasp(1,baxterL,toolbox/handle)

handover(2,baxterL,toolbox/handle,handR)

grasp(3,baxterL,toolbox/side left)

place(4,handR,toolbox/handle,tableC)

handover(5,baxterL,toolbox/side left,handR)

place(6,handR,toolbox/side left,tableC)

hold(7,baxterR,toolbox/handle)

screw(8,handR,toolbox/side left,toolbox/handle)

The solver also returns a path for both the robot and the
agent in terms of joint trajectories and a simulated view of
the scenario.

A. Sequence visualization

In human-robot interaction, communication between the
robot and the agent is crucial. For the setup we have
considered, the communication is limited to inform the agent
about the steps to perform the whole task. If one step is
awaiting for an agent’s action, it should also detail how this
action is performed.

To visualize the planned sequence of actions we generate a
webpage with a human readable description of each actions
and a simulated view of the last frame of the action path
as illustrated in Fig. 10. This webpage is based on reveal.js
presentation framework [19]. By clicking on the image, the
agent launches a video of the full action path. The webpage
is accessible offline for the agent to navigate through the
sequence of actions or can be seen online to display the
current action. We use the reveal.js api to automatically



Fig. 10. A representation of an action generated by the solver and displayed
on a webpage to simplify the visualization. The agent can click on the image
to start a video of the action. Arrows on the right corner are also clickable
to navigate between the previous and the next actions.

switch to the current action when the previous action is
finished. With this web based approach, we can display
this interface on mobile devices (tablets or smartphones) or
computer screens.

B. Real robot application

After planning the sequence of actions for the toolbox
assembly we convert it into actions to be performed on our
Baxter torso humanoid robot. The system also uses a set of
predicates to recognize when an action is finished prior to
start the next one. Predicates and actions were reused from
previous work [20].

At the moment, the system supposes that the agent is do
not have the capacity to move freely in the environement,
i.e. he or she cannot walk during the execution to avoid re-
planning. As in the simulation experiment, the solver planify
the motion of both the robot and human agents. However
we cannot predict exactly how the real human coworker will
act. Therefore, some actions like grasping or handing over
toolbox parts are converted directly from the geometric part
of the simulation, i.e trajectory of the robot arm to hand over
an object are calculated by the solver. For actions following
an agent intervention, such as holding a part placed on the
table by the agent, we cannot rely on this approach. As
the agent might decide to put the object on the table at
a different location than the one planned, the trajectory to
hold the object might differ. Therefore we track the objects
parts using Optitrack motion capture system and generate a
new trajectory of the robot arm to the current location of the
object. With this approach we do not need to re-plan the full
sequence of actions every time the geometry of the scene
slightly varies. This greedy approach might, however, be
sub-optimal in some cases. Indeed variation of the geometry
could lead to changes in the sequence of actions when a full
re-planning is performed.

As in the simulation experiment, we calculate the plan in
the ergonomic and non-ergonomic conditions. In this case,
we do not consider the re-optimized condition as it produces
the same sequence of actions as the non-ergonomic one.
Between the two tested conditions, not only the trajectory of
the handing over is affected but also the planned sequence of

Fig. 11. Average REBA score and standard error of the mean for the two
conditions recorded from subjects of the user study.

actions. Changes appear on the first four actions. In the non-
ergonomic condition the agent is asked to place the handle
on the table only after the robot has grasped the next part:

grasp(1,baxterL,toolbox/handle)

handover(2,baxterL,toolbox/handle,handR)

grasp(3,baxterL,toolbox/side left)

place(4,handR,toolbox/handle,tableC)

This creates an uncomfortable situation where the agent
holds the handle and is unnecessary waiting for his or
her next action. Most likely he or she will place it on
the table without being told to do so which might create
some confusion. In the ergonomic condition the sequence is
smoother as a hand over is immediately followed by a place
action:

grasp(1,baxterL,toolbox/handle)

handover(2,baxterL,toolbox/handle,handR)

place(3,handR,toolbox/handle,tableC)

grasp(4,baxterL,toolbox/side left)

This change of the sequence of action is due to the weight
of the object being comprised in the calculation of the cost
function (1). When holding an object, the cost is slightly
higher. Therefore, as the solver minimizes costs over time,
placing the object earlier on the table leads to a smaller
cost. The rest of the sequence of actions is similar in both
conditions. A video of the experiment is available on our
Vimeo channel. 1

C. User study

We apply the calculated plans in a user study with 10
participants. Each subject has performed the assembly in the
two conditions and we have recorded his or her posture as

1https://vimeo.com/232348427

https://vimeo.com/232348427


in [8]. Postures score are then calculated and averaged over
all subjects and over all the timesteps of the interaction.

In this user study we make the hypothesis that the optimal
sequences of actions planned by our system will lead the user
toward postures that present a lower REBA score.

Results are presented in Fig. 11 and show that the er-
gonomic condition induces indeed a lower REBA score
on average over all the participants. This reduced score is
partially explained by the lower weight score as objects
were held by the subjects for a shorter amount of time.
Nevertheless, the impact on the shoulder and elbow is also
significant which indicates that the objects were handed over
at a better position.

D. Discussion

The results of this experiment confirm the two points made
with the simulation results. First, optimizing for dREBA
correctly leads to lower REBA score, even in a real robot
application. Second, in order to generate ergonomic human-
robot interaction, considering single actions optimized with
ergonomic measures, e.g. ergonomically planning a hand
over, is not sufficient. Reasoning in term of sequence of
actions leads to more ergonomic situations and improves the
overall human comfort.

V. CONCLUSION

In this work we have presented a new approach to simulta-
neously plan task and motion in a collaborative human-robot
task while incorporating ergonomic considerations. From the
ergonomic field, we took the REBA assessment technique
[17] as an index to evaluate the risk induced by the posture
of the human in a given situation. Using this index as a cost
function we optimize the plan task and the robot motion for
maximum ergonomics on the human side.

To accomplish this we had to introduce a differentiable
surrogate of the REBA measure (dREBA) suitable to be
used in a planning system. Although not strictly equivalent
to the original measure, this approximation is an enabler to
optimize for the REBA score.

We discuss simulated results, a real human-robot collabo-
rative task and an user study. Results showed that optimizing
for the introduced dREBA leads indeed to better human
postures according to the original REBA score. They also
show that a simultaneous optimization of motion and task is
needed to fully minimize ergonomic cost. With this work we
aimed to contribute towards safer human-robot collaboration
in terms of physical ergonomics.
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