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Abstract— Modeling biomechanical musculoskeletal systems
reveals that the mapping from muscle stimulations to movement
dynamics is highly nonlinear and complex, which makes it
difficult to control those systems with classical techniques. In
this work, we not only investigate whether machine learning
approaches are capable of learning a controller for such
systems. We are especially interested in the question if the
structure of the musculoskeletal apparatus exhibits properties
that are favorable for the learning task. In particular, we
consider learning a control policy from target positions to
muscle stimulations. To account for the high actuator redun-
dancy of biomechanical systems, our approach uses a learned
forward model represented by a neural network and sequential
quadratic programming to obtain the control policy, which also
enables us to alternate the co-contraction level and hence allows
to change the stiffness of the system and to include optimality
criteria like small muscle stimulations. Experiments on both a
simulated musculoskeletal model of a human arm and a real
biomimetic muscle-driven robot show that our approach is able
to learn an accurate controller despite high redundancy and
nonlinearity, while retaining sample efficiency.

I. INTRODUCTION

The musculoskeletal apparatus of biological organisms,
combined with their nervous systems, are able to perform
a huge variety of movements with remarkable adaptability.

A central scientific question is to understand how biolog-
ical systems generate and especially learn these movements,
both from a physiological and a neural control point of view.
Of particular interest is also the influence of the biological
structure on control and learnability.

To this end, modeling musculoskeletal systems reveals
that muscles incorporate complex contraction dynamics with
nonlinear characteristics [1], non-observable states, the me-
chanical setup is both kinematic and especially high ac-
tuation redundant [2] and the nervous system as well as
the excitation-contraction dynamics introduces delays [3].
From a technical feedback control perspective, these are
challenging and on the first sight even unfavorable system
properties, making the design and analysis of controllers for
such systems difficult.

In the field of machine learning in robotics, reinforcement
learning (RL) has shown to be able to learn control policies
for high-dimensional, nonlinear and nontrivial dynamical
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Fig. 1. Real robot model of a human arm consisting of two joints (shoulder
and elbow), which are articulated by five pneumatic muscle-spring units
(MSUs), allowing movements within the sagittal plane (2D). The two joints
are driven separately by two monoarticular MSUs each. Additionally, a fifth
MSU acts as a biarticular muscle over both joints, performing shoulder
anteversion and elbow flexion.

systems [4]. In model-free RL, the dynamical system that
should be controlled is usually treated as a black-box, making
it a very general approach. However, due to this generality,
RL often suffer from two main problems. One is sample effi-
ciency: especially recent approaches based on deep learning
[4] require a lot of interaction with the environment, which
often limits their applicability to simulated robots. The other
problem, which also restricts many approaches to simulation,
is safe exploration: taking explorative actions early in the
learning process often leads to unstable behavior that could
damage the system.

These considerations lead to our central research ques-
tions: Are machine learning methods able to efficiently learn
control policies for such complex musculoskeletal systems?
Since biological organism can learn versatile movements
despite their complex biomechanical system, does the mor-
phological structure exhibit properties that may simplify the
learning problem in terms of data efficiency or complexity?

To investigate these questions, we propose to combine
state of the art biomechanical models, which we realize in
simulation and on a real robot, with a learning approach
based on neural networks and sequential quadratic program-
ming. The goal is to learn a control policy which produces
muscle stimulations leading to desired target positions of
the system. Instead of treating the system as just another
complex robot for which machine learning methods are
applied, our learning approach explicitly exploits the self-
stabilizing natural dynamical properties of musculoskeletal
systems. Therefore, it is not necessary to learn stability
first, which not only simplifies the learning problem and



therefore enables us to safely sample from the (real) system
at all stages of the learning phase. The characteristics of
the musculoskeletal setup also allows to solve the position
control task by learning static open-loop muscle stimulations.

However, due to the high redundancy of biomechanical
setups, such an inverse controller cannot be learned directly
from data. To account for this, a forward model is learned
that maps control inputs to equilibrium locations, which is
used in an optimization problem to find control inputs that
produce desired target positions. This additionally allows
to integrate secondary objectives like minimizing muscle
stimulations while still reaching the target position and to
adjust the stiffness of the system by manipulating the co-
contraction level.

Our main contributions are summarized as follows:
• A learning-based approach to control musculoskeletal

systems with high actuator redundancy.
• We show that the dynamics induced by the muscu-

loskeletal structure exhibit properties which are favor-
able for the learning task, if treated properly.

• These properties allow to safely bootstrap the iteratively
learned controller to efficiently generate the training
data via goal-directed muscle babbling.

• A concept to influence the stiffness of the system by
altering the co-contraction via Jacobian nullspaces.

Next, we discuss related work in Sec. II, followed by
the details of the musculoskeletal system, realized both in
simulation and on a physical robot (Sec. III). The learning
framework is presented in Sec. IV. Finally, we provide results
to our research question in the experimental Sec. V.

II. RELATED WORK

A. Control of Musculoskeletal Systems
Several works use optimal control techniques to obtain a

controller for complex musculoskeletal systems. For exam-
ple, Liu et al. [5] develop a hierarchical control methodology
for a 7 degree of freedom arm model. The authors of [6]
control up to 120 muscles for bipedal locomotion. However,
these works not only need access to the full musculoskeletal
dynamics model, but also to all (hidden) states. These strong
assumptions cannot be made to investigate our research
questions. Furthermore, compared to the present work, often
simplified biomechanical models are used, as also discussed
in [6], which neglect activation dynamics, linearize and
simplify muscle dynamics [6], [5], do not consider redundant
actuation (biarticular muscles) [5] etc.

B. Learning (Inverse) Models in Robotics
Obtaining inverse models plays a central role in robotics.

The non-uniqueness problem of learning inverse mappings
naturally arises in kinematics. Simple regression methods
average over configurations that correspond to the same task
space value and therefore could lead to invalid solutions [7].
Multiple approaches have been developed to cope with this.
In [8], the authors resolve the non-uniqueness by weighting
the samples according to their distance to a homing position.
The authors of [9] learn a joint probability distribution of
joint angles and end-effector positions to solve the inverse

kinematics problem directly on the position level. They
describe difficulties in choosing the right kernel/features
and especially how the data can be generated. The latter
is addressed in [10], where the iteratively learned inverse
kinematics model is bootstrapped to generate the relevant
data points in the vicinity of already sampled regions. A
weighted regression approach similar to [8] is used to learn
this function. Due to the efficient data generation methodol-
ogy, the approach scales up to hyper-redundant manipulators.

Another important instance of inverse models is learning
operational space control. Peters et al. [11] also resolve
redundancy by weighting. A key insight of their work is
to chose the weighting objective in accordance to the struc-
ture of torque controlled rigid body dynamics, making the
learning possible. Such information is not available a priori
for musculoskeletal systems, making the choice of a suitable
weighting objective unclear, which limits the applicability of
weighting approaches to our problem setting.

C. Tuning Feedback Controllers with Machine Learning

To account for the fact that learning on real systems
may lead to damage, one idea is not to learn a controller
directly, but to tune the parameters of prestructured feedback
controllers. Recently, it has been proposed to use Bayesian
optimization as a sample efficient black-box optimization
framework for this task [12], [13]. In [12], the focus is
on finding parameters for interaction control frameworks
that lead to task success in unknown environments with
constrained Bayesian optimization, whereas in [13] the focus
lies on safe exploration in order to avoid system failure.
However, simple prestructured feedback controllers have
difficulties in controlling complex musculoskeletal systems.

D. Learning to Control Muscle Driven Robots

Many approaches have been presented to learn controllers
for robots driven by pneumatic muscles. Hesselroth et al. [14]
propose to use Kohonen self-organizing feature maps to learn
pressures for the pneumatic actuators that realize a desired
pose of the end-effector. However, each joint is driven by
two muscles only, no biarticular ones and no serial elasticity
are considered. Furthermore, only one control signal for each
muscle pair is specified – the other one is calculated such
that both sum up to a constant. Therefore, the dimensionality
and redundancy of the control problem is greatly reduced, at
the cost of not being able to change the co-contraction and
hence the stiffness of the system or no optimality criteria (e.g.
small muscle stimulation) can be included without having to
relearn. In [15], an adaptive control strategy based on a neural
network is proposed for a single pneumatic muscle pair. As
in [14], only one control signal is used and no redundancy
has to be resolved. The authors of [16] apply local update
RL to control a two joint finger driven by four muscles.
However, their approach is just suitable to reach one single
target position after learning and not a general controller.

To summarize, existing approaches to learn control poli-
cies for musculoskeletal systems either include no optimality
criterion, consider simpler dynamical models that are not
as close to biology as we intend, do not exploit/resolve



the co-contraction or only learn a specific task. To the
best of our knowledge, no prior work has addressed the
question, whether the nonlinear and complex dynamics of
a biomechanical system feature an inherent structure that is
favorable for learning.

III. REPRESENTATION OF A HUMAN ARM: PROPERTIES
OF MUSCULOSKELETAL SYSTEMS

Biological motion systems are articulated by so-called
muscle-tendon units (MTUs), which are hierarchical struc-
tures consisting of passive and active components with
complex nonlinear dynamics. Experiments reveal that MTUs
show a characteristic non-linear force-length and force-
velocity relation [1], which crucially depend on their ac-
tivation states (muscle fibers), but are also caused by the
purely passive tendons. Since muscles can only produce
forces in contraction direction, for each joint at least two
muscles in an antagonistic setup are required. Therefore, bi-
ological systems are highly actuator redundant [2]. For serial
robots, redundancy is usually referred to kinematics, where
(infinitely) many joint configurations can lead to the same
end-effector pose. In comparison, the redundancy of muscle
driven systems additionally refers to a scenario in which
(infinitely) many muscle stimulations can lead to the same
joint configuration. This redundant, antagonistic actuator
setup, together with the characteristic force-length relations,
have an important consequence. A vector of constant muscle
activations results in a specific static equilibrium state as
discussed in Fig. 3. Small perturbations are counteracted
by the passive visco-elastic properties of the MTU without
the need of any control [17]. Hence, the mechanical system
provides a certain static stability in each equilibrium state.
Therefore, this natural dynamics is favorable for control [18].

We suggest that a learning algorithm should not only
account for this fact, but especially should also exploit
these properties. In contrast, many standard RL test tasks
only consider stabilization of the system, which would not
primarily be necessary for musculoskeletal systems. In this
sense, the characteristics of the muscles and their mechanical
setup could simplify the learning problem if treated properly,
since then not a major part of the learning has to deal with
stability.

A. Simulation Model

The numerical model of a human arm (see Fig. 2) consists
of the upper and lower arm, connected with two joints
(elbow and shoulder), which are driven by m = 6 muscle-
tendon units (MTUs). Each joint is actuated by two MTUs
separately. Additionally, two biarticular MTUs drive both
joints. We use rigid-body dynamics for the bones. The
torques τ = R(q)FMTU applied to the joints are generated
through the MTU forces FMTU via non-linear moment arms
R(q) that depend on the joint angles q and muscle path
deflection. To calculate the MTU forces itself, we use the
model of Haeufle et al. [1], which is a Hill-type model
extended with a damping element. This muscle model is

PE
E

C
E

SE
E

SD
E

l M
T

U

l C
E

Fig. 2. Right: simulation model of a human arm with elbow and shoulder
joint. Red lines depict the two monoarticular shoulder muscles (ante- and
retroversion), orange lines the two biarticular ones and blue lines represent
the two monoarticular elbow muscles (flexor and extensor). Left: rheological
model of each muscle-tendon unit (MTU) with contractile (CE), serial,
parallel elastic (SEE, PEE) and damping (SDE) element according to [1].
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Fig. 3. Relation between static muscle activity a and equilibrium states
(green) for an exemplary model of one joint with two muscles. The flexor
muscle (dashed lines) generates a positive joint torque, which decreases with
q. Its antagonist (extensor) causes a negative torque which increases with q
(dotted lines). Those characteristic passive nonlinear force-length relations
of muscles depend on their (static) activations aflex, aext (different colors).
The sum of both is the total joint torque τtot (solid lines). In case of an
external perturbation, e.g. increasing the joint angle, those passive properties
of the MTUs generate a torque opposing the perturbation (with damping).
Therefore, for τtot = 0, an equilibrium point (green dots) is reached, whose
angle depends on the activations aflex, aext (orange, red, blue line). Further
increasing a in both muscles simultaneously (co-contraction) increases the
joint stiffness (compare slope at middle green point for orange and violet
line), but not the equilibrium angle. Therefore, through the MTU setup, the
entire joint behaves like a spring-damper system with tunable rest angle and
stiffness/damping by changing activity.

shown in Fig. 2 and follows the nonlinear dynamics

l̇CE = fCE(lMTU, l̇MTU, lCE, a) (1)

FMTU = fF (lMTU, l̇MTU, lCE, a) (2)

with internal state of the length lCE of the contractile element.
The transfer from neural muscle stimulations u ∈ [0, 1]6,
which are the control inputs, to muscle activity follows an
additional nonlinear dynamical system

ȧ = fa(a, lCE, u) (3)

that introduces delays and is modeled following the Hatze
approach [19]. Geometry and muscle parameters are based
on [20]. In total, this system with two degrees of freedom
has 16 states, of which 12 are unobservable (lCE and a for
each muscle), and 6 control inputs. Hand position is x ∈ R2.



B. Bio-Inspired Robot Model of a Human Arm
Our developed physical model is a bio-inspired robot arm

(Fig. 1) with two joints that are actuated by five pneumatic
muscles of different lengths and thicknesses, representing the
respective biological archetype with a nonlinear force-length
and force-velocity relation, making them suited for biology-
like actuation [21]. For further enhancing the biomimetic
characteristics, elastic springs are added in series. That way,
these muscle-spring units (MSU) have similar characteristics
in their active, passive, static and dynamic behavior as the
biological counterpart, the MTU. This means that also on
the real robot we can exploit the intrinsic stability of muscu-
loskeletal systems for the learning methodology. The MSU
pressure is controlled via digital valves. The stimulation input
u ∈ [0, 1]5 corresponds to pressure values of 0 to 5 bar.
Unlike the biological muscle, which is able to contract to
40% and to be stretched up to 170% based on its rest length,
the used pneumatic actuators can only contract to 75% of
their rest length, limiting the range of motion of our current
prototype to 14◦ in the elbow and 60◦ in the shoulder joint.

IV. LEARNING CONTROL METHODOLOGY

The goal of the present work is to learn a control policy
as the function π : Rd → [0, 1]m, which maps a desired
hand position xref ∈ Rd to normalized muscles stimulations
u ∈ [0, 1]m that drive the system to this reference. Due to
the structure of the biological system (see Sec. III), each
constant muscle stimulation u shifts the equilibrium to a
new position. The attractor properties of this equilibrium,
e.g. its stiffness/damping, are dependent on the amount of co-
contraction. Therefore, the parameterization as π(xref) = u
is sufficient for the reaching control task, no state dependency
and no full dynamics model is needed. This allows to sample
data from the system of the form D = {(ui,xi)}ni=1,
consisting of muscle stimulations ui that have led to the
position xi of the hand in equilibrium. As discussed in Sec.
III, due to the actuator redundancy, learning such an inverse
model π directly on the data set, e.g. by minimizing the
squared error on a predefined function class, is problematic.

Instead, our approach iteratively learns the forward model
φ : [0, 1]m → Rd, φ(u) = x, from the growing dataset
D during exploration, i.e. a function which predicts the
position of the hand in equilibrium for a given muscle
signal. In absence of external load, φ is an unique mapping,
hence directly learnable from data using common function
approximators. In our case, φ is represented as a feedforward
neural network. In order to actually obtain the control policy
π from the learned forward mapping φ, the idea is to
minimize the muscle stimulations under which φ predicts
the desired position xref .

These considerations lead to the nonlinear program

u∗ = π(xref) = argmin
u∈Rm

‖u‖2W + λ ‖u− u0‖22 (4a)

s.t. φ(u) = xref (4b)
0 ≤ u ≤ 1. (4c)

The most important is the equality constraint (4b) to ensure
that the desired position is reached. The muscle stimulation

u is (component-wise) bound between 0 and 1 for minimal
and full stimulation, respectively. The first term in the
objective (4a) represents the goal of minimizing the muscle
stimulations (weighted by the positive definite matrix W).
The second one in (4a) regularizes the optimization problem
such that it stays close to an initial stimulation u0. Since the
optimization is performed based on an iteratively learned
model φ, especially in the beginning of the exploration
procedure, the forward model cannot generalize over a large
space of desired positions. Without the second term, the
optimization problem does not account for this fact. The
parameter λ ∈ R allows to balance the influence of the
regularization term.

The forward model and the control policy actually repre-
sent three components of the dynamical system: Kinematics,
gravity compensation and the role of the co-contraction
(including biarticular muscles). The muscles itself act as a
stabilizing (physical feedback) controller. This indicates that
the learning problem is simplified through the biological
structure, in the sense that morphology re-represents the
control problem to another one, which can be learned more
efficiently. On the other hand, the learning algorithm has to
cope with high actuator redundancy.

A. Optimization via Sequential Quadratic Programming
To evaluate the control policy π for a desired xref , the

optimization problem (4) has to be solved. The quadratic
objective (4a) is convex, as well as the box constraint (4c).
Unfortunately, the most important part, the constraint (4b),
is, in general, non-convex. However, since we are mainly
interested in finding a muscle stimulation u that fulfills the
constraint (4b) and is close to an initial stimulation u0 (as
discussed above), converging to a local optimum is sufficient.
Therefore, sequential quadratic programming is well suited
for this optimization problem. We use the algorithm from
[22]. The initial starting point for the optimization algorithm
is the same u0 used for the regularization specified above.

B. Jacobian w.r.t. Muscle Stimulations
Given the learned forward model φ, its derivative with

respect to the muscle stimulations

J(u) =
∂φ

∂u
(u) ∈ Rd×m (5)

locally describes how the position of the system changes
for a small change δu in the muscle stimulation as a linear
dependency δx = J(u)δu.

Utilizing this Jacobian, the optimization problem can fur-
ther be analyzed. Assume that the inequality constraints are
not active and that J(u) has full row rank. After linearization
of the constraint (4b) around ũ, the quadratic program

min
u∈Rm

‖u‖2W + λ ‖u− u0‖22 (6a)

s.t. φ(ũ) + J(ũ) (u− ũ) = xref (6b)

can be solved analytically

u∗ = ũ + PW,λ(ũ) (xref − φ(ũ))
+ (I−PW,λ(ũ)J(ũ))

(
W−1

λ λu0 − ũ
)

(7)



with PW,λ(ũ) = W−1
λ J(ũ)T

(
J(ũ)W−1

λ J(ũ)T
)−1

and
Wλ = W + λI.

1) Feedback: If we linearize φ at the current measured
position x̃ for the current stimulation ũ, then (7) can be used
to close the loop. For example, by setting u0 = ũ, W = 0
and introducing a stepsize α < 1, we obtain

uclosed = ũ + α · J(ũ)T
(
J(ũ)J(ũ)T

)−1
(xref − x̃) , (8)

which in the kinematics case is known as Jacobian pseudoin-
verse motion rate control. This closed-loop controller based
on the muscle Jacobian (5) can be combined with the static
policy π obtained from the optimization problem. If the goal
is to reach a certain target position xref , first ustatic = π(xref)
calculates a static muscle stimulation for the majority of the
movement, which is executed in a self-stabilizing manner
through the musculoskeletal system. In the vicinity of the
goal, the feedback can be used to generate fine movements.

2) Influencing the Stiffness of the System by Exploiting the
Nullspace of the Muscle Jacobian: Adjusting end-effector
stiffness is important for the interaction with the environment
[23]. In our setup, the nullspace of the forward model φ

Nmuscle(xref) = {u ∈ [0, 1]m|φ(u) = xref} (9)

is the set of all muscle stimulations that lead to the same
position xref in equilibrium. Again using linearization around
ũ, this muscle nullspace can locally be obtained through the
nullspace projector of the muscle Jacobian (5). Projecting
small perturbations δa ∈ Rm into the nullspace of this
Jacobian, changes in the muscle stimulation of

δu =
(
I− J(ũ)T

(
J(ũ)J(ũ)T

)−1
J(ũ)

)
δa (10)

do not alter the position of the system, but the co-contraction.
Therefore, in contrast to kinematics where the nullspace rep-
resents the set of all joint configurations corresponding to the
same task value, this muscle Jacobian nullspace (9) allows
to influence the stiffness of the biological system, due to the
nonlinear force-length relations of MTUs, via different co-
contraction levels (cf. Sec. III). If, for example, δa contains a
positive entry for one muscle, then the nullspace projector in
(10) has to increase the stimulation for other muscles as well
to ensure that the position does not change. This resulting
static u changes the stiffness based on the passive properties
of the muscles for a static activation, no control is needed.

C. Data Generation via Goal-Directed Muscle Babbling

One key problem in learning the forward model φ is
the data generation. In our case, the 6D space of mus-
cle stimulations makes systematic sampling impossible. To
overcome this, we adapt the idea of Rolf et al. [10], who
proposed to bootstrap iteratively learned models to efficiently
generate relevant data. Starting with an initial u leading to
x, the model φ is trained on this single data point. Then the
optimization problem (4) based on this currently learned φ is
used to predict the stimulation for a new goal position, which
is close to the previous one, since in the vicinity of already
sampled data points it is expected that the model is not too
far off. The outcome is stored in the dataset, φ is trained

again and procedure is repeated. This goal-directed sampling
enables to efficiently explore the relevant stimulation space.

In this context, the importance of the regularizing term in
the objective (4a) is emphasized, since the data generation
process relies on staying close to the samples in the dataset.

D. Exploration Noise

Especially in the beginning of the learning procedure,
exploration in the space of muscle stimulations is neces-
sary, otherwise, no solution for a specific region of the
workspace can be found at all or no good one in terms of
secondary objectives. Using the control policy to generate the
data as described in the last paragraph already introduces
exploration, since the forward model is not perfect in the
beginning. However, we found empirically that randomness
to some extend is favorable. On the other hand, too much
exploration noise would counteract the advantages of goal-
directed muscle babbling. Therefore, we add Gaussian noise
to the muscle stimulations

unoise = β(n) · N (0,Σ) ∈ Rm, (11)

centered around zero, multiplied with the scalar term β(n)
which decreases the exploration noise with the number of
sampled data points n. The covariance of the Gaussian dis-
tribution is a block diagonal matrix Σ = diag (C, . . . ,C) ∈
Rm×m with blocks

C = V

(
σ2
1

σ2
2

)
V−1 ∈ R2×2, V =

(
−1 1
1 1

)
(12)

acting on each pair of antagonistic muscles. The eigenvectors
of C are chosen such that for σ1 > σ2 it is more likely to
sample stimulation pairs where one muscle is activated more
while its antagonist less (and the other way round).

E. Other Methods for Learning Redundant Inverse Models

In this paragraph, we show how two other approaches
for learning inverse models can be applied to our problem
setting. In Sec. V, those are evaluated against our approach.

1) Learning with a Distal Teacher: The distal teacher
framework [7] resolves the non-uniqueness problem in learn-
ing inverse models by obtaining an identity mapping across
the concatenation of a learned inverse and forward model.
The unique forward mapping φ is iteratively trained to
predict the hand position x for a given static muscle stimu-
lation u as in our method (see Sec. IV). The actual inverse
model π is then trained to approximate the identity mapping
φ(π(x)) = x on the dataset, while keeping the forward
model fixed. In our case where the forward model is a
many-to-one mapping, this approach is able to resolve the
ambiguity and learns one particular inverse model. However,
which of the infinitely many inverse models is learned can
hardly be controlled. Both π and φ are neural networks here.
To account for u ∈ [0, 1]m, π has a sigmoid output layer.

2) Direct Learning of the Inverse via Weighting: As
briefly described in Sec. II, one way to cope with the
non-uniqueness of inverse models is to weight the samples
according to an objective. This has been used for learning
inverse kinematics and operational space control [8], [10],



[11]. To adapt this idea to our setting, it is necessary to
define a reasonable weighting objective, which is not clear
for musculoskeletal systems. In this case, we train the inverse
model π, which is a neural network with a sigmoid output
layer to account for u ∈ [0, 1]m, to minimize the loss

n∑
i=1

exp
(
−‖ui‖22

)
‖π(xi)− ui‖22 , (13)

which is a standard squared error weighted by the muscle
stimulations ui from the dataset. If ui has a high mag-
nitude, then this sample is weighted down. This way, the
neural network is biased towards small muscle simulations,
especially for redundant samples. Since this still lead to
(weighted) averaging, the performance is expected to be
worse compared to the hard constraint in our optimization
problem. Furthermore, there are certain targets x for which
muscle stimulations intrinsically need to be higher than for
others. Those also get weighted down, which is unfavorable.

V. EXPERIMENTS

We demonstrate our approach both in simulation and on
the real robot for the task of reaching desired hand positions.
In simulation, we compare our methodology to related work
that deals with learning inverse models. Furthermore, we
show how the stiffness of the system can be changed using
our approach. Please also refer to the video attachment.

The learning procedure for all experiments is performed as
follows. An initial muscle stimulation u0 is specified man-
ually such that the hand of the arm is located in the middle
of a desired 2D workspace. This u0 is also used for the
regularization in (4a). Each training execution starts from the
same rest position where the muscles have zero stimulation.
After a data point (u,x) consisting of the muscle stimulation
u leading to the position x in equilibrium is sampled, the
neural network is trained with stochastic gradient descent
for 20 epochs with a batch-size of 32 on the whole dataset,
initialized with the weights of the previous iteration. Then,
the next target position is chosen according to section IV-C
close to the last target (1 cm away). Afterwards, this desired
target is fed into the optimization problem (4) which is solved
quickly with SQP to estimate the next u. After returning
to the rest configuration with u = 0, the procedure starts
again. The neural network architecture for all experiments is
build from two hidden layers with 300 units each and relu
activation functions. To test the generalization capabilities,
we evaluate the performance by reaching motions on a grid,
whose points have not been part of the training.

A. Simulation

The initial muscle stimulation was set to u0 =
(0.23, 0.1, 0.1, 0.1, 0.2, 0.1), corresponding to elbow flexor,
extensor (EF, EE), biarticular flexor, extensor (BiF, BiE) and
shoulder muscles (SF, SE). As visualized in Fig. 5a, we
sampled 1200 data points in four batches with the same 300
target positions with center at x0 of u0. The noise scheduling
β(n) was chosen such that for the first 100 iterations β(n) =
1, afterwards it decreases exponentially until n = 300, where
β(n) ≈ 0, such that 300 data points include noise, the
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Fig. 4. Simulated experiments: Evaluation of accuracy for point reaching
movements (a), error 1.6 ± 1.1 mm. Reaching order randomly selected,
started from the previous point. Blue is the reference, orange the measured
value. (b) Trajectory following accuracy 0.8 mm for 5 s execution time.
Blue dots in (b) denote the 50 target points of the reference.
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Fig. 5. Visualization of data point sampling and arm configuration.
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Method Mean
stimulation Error [mm]

Our approach 0.082 1.6 ± 1.1
Weighting 0.154 9.7 ± 13.4

Distal teacher 0.308 11.7 ± 6.3
Random + SQP 0.083 87.8 ± 48.3

λ = 0 0.055 12.0 ± 9.7

(b) Comparison after 1200 data points.
Fig. 6. Comparison of different control policy learning methods for the
simulated point reaching experiment. Our method outperformed related
approaches both in terms of accuracy and small muscle stimulation. All
relevant hyperparameters were the same.

other 900 were sampled only using the model. The noise
parameters were σ1 = 1

15 , σ2 = 1
30 . The regularization

parameter in (4a) was λ = 1. In Fig. 5b, the stimulations
of the elbow flexor and extensor in the dataset are plotted
against each other. One can see that the learning algorithm
has revealed the anti-correlated antagonistic property, which
is favorable for energy efficiency.

Fig. 4a shows the accuracy of the learned control policy
with our proposed approach after a total of 1200 sampled
data points for the task of reaching desired locations. The
reaching order was randomly selected and started from the
previous point after the equilibrium had been reached. The
averaged error was 1.6 ± 1.1 mm. Although only trained
for point reaching motions, the learned control policy is also
capable of following slow trajectories, as can be seen in Fig.
4b, in which a circle was followed in 5 s with an error of 8
mm. 50 target points have been used for the circle reference.

In Fig. 6, we compare our approach to related ones
mentioned in IV-E. Both in terms of accuracy and minimal
muscle stimulation, our approach outperforms the others. The
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weighted regression method used twice as much stimulations
in average and was about 6 times less accurate than our
approach. The distal teacher required about four times higher
muscle activations. The error of our method after only 300
data points was even lower than for the others after 1200.

1) Importance of Goal-Directed Muscle Babbling: To
support our claim that bootstrapping the incrementally
learned control policy to generate the data is essential,
we uniformly sampled the 6D u space and applied those
stimulations on the system (1200 data points as before).
Based on this dataset, we trained the same forward model φ
and used the optimization problem (4) to obtain the policy.
With an evaluation error of 87.8 ± 48.3mm (Fig. 6) in the
end, it turned out that 1200 random points in a 6D space are
not enough to learn generalizable models for this problem.

2) Influence of λ: As can be seen in Fig. 6, the perfor-
mance of our approach without the regularization, i.e. λ = 0
in (4a), is, with an evaluation error of 12 mm, much worse
than with λ = 1 (error 1.6 mm) and in the range of the other
methods. This can be explained by the fact that 1200 points
in a 6D space are very sparse, but the optimization problem
treats φ as perfect everywhere in the u space. Therefore, the
error is higher for λ = 0. By introducing the regularization
term with λ > 0, this is prevented since then the optimizer
searches in regions close to the data samples. For example,
out of the 36 evaluation points, 30 points had at least one
zero value in a stimulation component for λ = 0, which is
physiologically unreasonable. λ = 0 also yielded the lowest
mean stimulation. In comparison, for λ = 1, not a single one
showed zero stimulations. In the training dataset, from the
1200 points, 910 for λ = 0 showed this behavior, whereas
only 133 for λ = 1.

3) Stiffness Adjustment via Muscle Jacobian Nullspace:
As developed in Sec. IV-B.2, the nullspace of the Jacobian
(5) of the learned model φ can be used to increase the co-
contraction and hence the stiffness without changing the
position. Since neither the linearization nor the learned
Jacobian are perfect, we use our proposed local feedback
(sec. IV-B.1) to stay at the same position more precisely, i.e.
after being initialized with u = π(xref), u is updated with

u← u + 0.5 · J(u)T
(
J(u)J(u)T

)−1
(xref − x)

+ 0.01·
(
I− J(u)T

(
J(u)J(u)T

)−1
J(u)

)
δa, (14)

where x is the current position after each update. Fig. 7b
shows increasing muscle stimulations and forces for δa =(
0.1, 0.0, 0.1, 0.0, 0.1, 0.0

)
and xref = (0.5, 0), while the

hand has moved only 1 mm in x and 2 mm in y. Without
the feedback, it moved 8 mm in x and 20 mm in y. This
increased co-contraction influences the stiffness ellipsoid at
xref , which was measured and is visualized in Fig. 7a. This
stiffness purely relies on the properties of the muscles for
static stimulation and therefore requires no external control.

B. Real Robot

For the real robot, an initial muscle stimulation (nor-
malized pressures applied to the pneumatic actuators), of
u0 =

(
1
5 ,

2
5 ,

1
5 ,

1
5 ,

1
5

)
was specified. Full muscle stimulation

of one corresponds to a pressure of 5 bar. The 700 collected
data points in total are visualized in Fig. 8a. 200 of them in-
cluded exploration noise (without any scheduling) with noise
parameters σ1 = 0.3, σ2 = 0.14. As mentioned in Sec. III-B,
the elbow joint of our current robot prototype has a range of
motion of only 14◦. Therefore, although small, the evaluation
covers the major range of motion also in x-direction. Fig.
8b shows the precision of the controller to reach the desired
target positions during training, after each batch of 100 data
points (excluding the 200 samples generated with noise).
Evaluating the performance after training on a grid of 32
target points not part of the training data yielded an error
of 8 ± 4 mm and is visualized in Fig. 8d. Note that due
to hysteresis effects of the pneumatic muscles, the reaching
motion always started from the rest position with u = 0,
as in training. When we tuned muscle stimulations by hand,
we hardly used the biarticular muscle, since then the joint
angles can be adjusted independently. Interestingly, as can be
seen in Fig. 8c, the learned control policy assigns the highest
pressure in average to this biarticular muscle. A possible
explanation is that the middle of the considered workspace
can be reached energy efficiently by using the biarticular
muscle alone, which our methodology could discover.

VI. CONCLUSION

In the present work, we presented a methodology to learn
control policies for musculoskeletal systems, which explicitly
exploits the benefits of muscle-driven systems.

Compared to existing methods, our approach allows to
use the actuation redundancy to modulate the stiffness of
the system at a desired position by different co-contraction
levels and to pursue additional objectives like small muscle
stimulations.

It was important to include a regularizing term to prevent
the optimization algorithm to search for physiologically
unreasonable solutions at the boundary of the feasible set
or in unexplored parameter regions, especially if the dataset
consists of few samples only.

Without bootstrapping the iteratively learned model, rel-
evant data could not have been generated efficiently in the
high dimensional stimulation space.

The complex biological structure indeed simplifies the
learning problem, since the dynamical properties of the
muscles and their redundant antagonistic setup provides a
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Fig. 8. Real robot experiments. (a) shows the target star for training, the
actual sampled data points (700 in total, 200 with noise) and the evaluation
range (black rectangle) for (d). (b) shows the mean reaching precision
during training. (c) shows the mean muscle stimulations. (d) shows the point
reaching evaluation after training for 32 targets not part of the training set.
Each point is reached starting from the rest position with zero stimulation.

certain intrinsic stability to the system. Therefore, a learning
algorithm does not necessarily have to learn a stabilizing
feedback loop. This induces that first an open-loop control
policy that generates a static muscle stimulation for a desired
position is sufficient to realize our goal of reaching control.
This greatly reduces the dimensionality of the learning
problem, because no complete dynamic model as for a torque
controlled robot has to be learned. Secondly, the iteratively
learned model can safely be bootstrapped to generate relevant
training data efficiently, even in the beginning of the learning
phase where the model is inaccurate, which would also not
directly be possible with a torque driven robot without an
already available controller or the risk of damage.

Nevertheless, due to the high redundancy, learning such a
mapping is still a nontrivial problem and existing methods
known from the inverse kinematics literature were empiri-
cally shown to perform inferior, not only in terms of accu-
racy, but also with respect to minimal muscle stimulations.
Furthermore, existing methods also have not considered how
the stiffness of a musculoskeletal system can be modulated
with a learning approach.

The main limitation of our approach on the real robot is
that due to friction, hysteresis and temperature effects, the
forward mapping φ is not state- and history-independent (in
contrast to the simulation), which means that the control
accuracy on the real robot could only be reached when
starting the movement from the rest position as in training.

We belief that with this work we showed that it is worth
to investigate the interaction between the properties of the
physical structure and the learning algorithm.
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