Journal Title

XX(X):1-16

©The Author(s) 0000

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

®SAGE

Learning Manipulation Skills from
a Single Demonstration

Peter Englert and Marc Toussaint

Abstract

We consider the scenario where a robot is demonstrated a manipulation skill once and should then use only few own
trials to learn to reproduce, optimize and generalize that same skill. A manipulation skill is generally a high-dimensional
policy. To achieve the desired sample-efficiency we need to exploit inherent structure in this problem. With our approach
we propose to decompose the problem into analytically known objectives, such as motion smoothness, and black-box
objectives, such as trial success or reward depending on the interaction with the environment. The decomposition
allows us to leverage and combine (i) constrained optimization methods to address analytic objectives, (ii) constrained
Bayesian optimization to explore black-box objectives, and (iii) inverse optimal control methods to eventually extract a
generalizable skill representation. The algorithm is evaluated on a synthetic benchmark experiment and compared to

state-of-the-art learning methods. We also demonstrate the performance on real robot experiments with a PR2.

Keywords

Combined Optimization and Learning, Reinforcement Learning, Imitation Learning, Manipulation Skills

1 Introduction

Manipulation skills share the common goal to control
external degrees of freedom of the environment into a desired
state. Coding a policy that controls the internal degrees of
freedom of a robot for such manipulations is non-trivial. A
main issue is that the external degrees of freedom can only
be manipulated through contacts, which are difficult to plan
since a precise and detailed physical interaction model is
often not available. This issue motivates the use of learning
methods for manipulation skills that allow robots to learn
how to manipulate the unknown environment. In the last
decade, many impressive applications of learning methods
in robotics could be accomplished (e.g., aerobatic helicopter
flight (Abbeel et al. 2007), robot table tennis (Muelling et al.
2013) and quadruped locomotion (Theodorou et al. 2010)).
In this work, we investigate how such learning methods can
improve manipulation skills to achieve a higher performance
and wider generalization abilities.

We propose a combination of optimal control, episodic
reinforcement learning and inverse optimal control tech-
niques to eventually learn a cost function representation of
manipulation skills starting from a single demonstration.
The initial demonstration is a trajectory for a particular
skill scenario, which is used as a starting point for different
learning methods. We design the learning methods in such a
way that they exploit the common structure of manipulation
skills. A key element of this structure is that external degrees
of freedom are manipulated through contacts. These contacts
play an essential role for the success of manipulation skills.
We use this structure in our learning methods by defining
a low-dimensional projection of the interaction with the
environment, which is the part of the skill that is most
difficult to model. We use episodic reinforcement learning
for the parts of the skill that are defined by the projection.

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

For the remaining parts we use analytic motion optimization
methods and keep the projection fixed. We finally use the
data we collect with rollouts in an inverse optimal control
method to acquire a higher-level skill representation that
generalizes to different scenarios.

1.1 Assumptions and Overview

Learning manipulation skills is in general a very difficult
problem. One reason is that models about the environment
are only partially known. The geometric shape of the
environment can usually be obtained from different sensors.
However, it is more difficult to estimate the precise kinematic
structure of the environment and how to manipulate it
through contacts. Another reason is that it can be dangerous
to apply learning methods when contacts are involved, since
they could damage the robot or the environment.

One way to reduce these difficulties is by exploiting the
problem structure and by putting prior knowledge into the
learning process. We provide a demonstration of the skill
as initialization of our method, which is used as a starting
point for improving and generalizing the skill. We also
restrict our problem class by making the assumption that the
environment only consists of rigid bodies that are connected
by joints. Another assumption we make is that the success
of a skill only depends on a low-dimensional projection of
the full motion. We define this projection as the interaction
(e.g., contact points, external degrees of freedom) with the

Machine Learning & Robotics Lab
University of Stuttgart, Germany

Corresponding author:
Peter Englert, UniversitatsstraBe 38, 70569 Stuttgart, Germany
Email: peter.englert@ipvs.uni-stuttgart.de

Journal Title XX(X)

Inputs
w)
[«
=i
)
=
72}
=1
2
=2
=

Improve skill with combined optimization and
reinforcement learning (CORL, see Section 4)

l

Learn cost function representation with inverse
optimal control (IKKT, see Section 3.2)

Costrained optimization problem \
(KOMO, see Section 3.1) '

Figure 1: Overview of our skill learning approach.

environment and use data-efficient and safe learning methods
on the low-dimensional projection.

Figure 1 shows an overview of our approach. The inputs
are a demonstration and different objectives that should
be optimized. Our goal is to get an output in form of a
constrained optimization problem that can be optimized to
generate motions for different skill scenarios. We use KOMO
(K-Order Markov Optimization) to represent the skill in
form of a cost function and constraints that are defined in
environment dependent feature spaces. We use two learning
methods to acquire this abstract skill representation.

In the first part, we propose the structured reinforcement
learning method CORL (Combined Optimization and
Reinforcement Learning) to improve the skill. This method
allows us to use analytic and black-box objectives and
improves them in a safe and data-efficient manner. To do this
CORL uses a low-dimensional projection of the skill that
parametrizes an equality constraint. The skill improvement
is done with a combination of analytic optimization on
the full motion and episodic reinforcement learning on the
low-dimensional projection. During this learning method we
interact with the system and collect data of the performance
of different motions.

In the second part, we use this data to learn a cost function
representation of the skill with inverse optimal control.
We use the method Inverse KKT (IKKT) that allows us
to extract the cost function of a constrained optimization
problem. It uses the Karush-Kuhn-Tucker conditions of the
optimization problem to learn the cost function such that
the demonstrations fulfill these conditions. We use a set of
generic features and constraints that allows us to generalize
the skill w.r.t. different environments. The generalization
abilities we want to achieve are different initial states of
the robot and different final states of the external degrees of
freedom of the environment.

A concrete skill that we consider in the experimental
section is to open a cabinet with a PR2 robot (see Figure 2).
We initialize the learning with a single demonstration via
kinesthetic teaching. We then use a combination of optimal
control and reinforcement learning to improve the skill

Prepared using sagej.cls

Figure 2: Cabinet experiment (see Section 6.2).

with respect to smoothness and force efficiency. The low-
dimensional projection is here defined as the force during the
opening and the rotation angle of the door knob. Afterwards,
we use the acquired trajectory data to learn a cost function
that allows the robot to generalize the skill to different initial
robot states (see Figure 6(d)) and desired door states (see
Figure 6(e)).

1.2 Contributions and Structure

The goal of our skill learning approach is to find a policy
that has a high performance and generalizes to a wide range
of different scenarios. The main contributions of this paper
are:

1. A structured learning method, CORL, that combines
analytic optimization and episodic reinforcement
learning.

2. Defining a low-dimensional projection for the interac-
tion parts of manipulation skills that allows us to use
safe and data-efficient algorithms.

3. Learning a skill from a single demonstration by
bootstrapping it with CORL and generalizing it with
inverse optimal control.

This work extends previous work of ours on robot skill
learning. In (Englert and Toussaint 2016) we proposed the
combined optimization and reinforcement learning method
CORL. In this work, we modify the algorithm by merging the
two separate policy improvement parts into a more efficient
hierarchical variant. Previously, each part had its own
learning loop that was executed until convergence before
continuing with the next part. We modify it into a single
learning loop that combines both policy improvements. This
reduces the amount of hyperparameters and interactions with
the system. This work also integrates prior work on inverse
optimal control (Englert and Toussaint 2015). Instead of
using it directly on demonstration data, we integrate this
method in a skill learning algorithm where we use it on data
that was collected with a reinforcement learning method.
The structure of this paper is as follows. In Section 2,
we present related work in the area of skill learning in
robotics. Afterwards, we present in Section 3 background
on trajectory optimization and inverse optimal control.
In Section 4, we present the combined optimization and
reinforcement learning method CORL. In Section 5, we
combine the different parts into an algorithm that allows us
to learn manipulation skills from a single demonstration. In

Englert and Toussaint

Section 6, we evaluate our approach on different synthetic
and real-robot problems and compare it to state of the art
learning methods.

2 Related Work

In Reinforcement Learning (RL) an agent learns a policy by
interacting with its environment (Sutton and Barto 1998). In
this section, we will cover related work on different learning
approaches with a special focus on robot manipulation skills.

2.1

Policy search is a widely used technique to learn skills in
robotics (Kober et al. 2013). One approach proposed by
Kober and Peters (2008) uses dynamic movement primitives
as policy representation and the policy search method
PoWER to learn the shape and properties of the motion.
Another approach is proposed by Kalakrishnan et al. (2011)
that learns force control policies for manipulations. The
policy is initialized with position control via imitation and
afterwards augmented with a force profile that is learned
with the reinforcement learning method Policy Improvement
with Path Integrals (PI2) (Theodorou et al. 2010). They
use a single reward function that combines different terms
(e.g., smoothness, force, tracking errors). The difference to
our approach is that we perform learning on two policy
parameterizations. This allows us to use efficient Gauss-
Newton optimization routines for the parts of a motion where
an analytic cost function is available. Further, we combine it
with an inverse optimal control method that extracts a cost
function representation with higher generalization abilities
then dynamic movement primitives. In our experiments,
we compare to covariance matrix adaptation, which has
been shown to be closely related to PI? (see (Stulp and
Sigaud 2013)). Levine et al. (2016) proposed to learn a
deep convolutional neural network that maps raw images
directly to motor torques. The end-to-end training is done
with guided policy search (Levine and Koltun 2013) that
iterates between reinforcement learning to generate rollouts
and supervised learning to train the neural network. They
also add a pretraining step for the initial policy and the vision
system to reduce the amount of interaction time. Chebotar
et al. (2017) propose an extension of guided policy search
with the reinforcement learning method PI2. Fu et al. (2016)
present a model-based reinforcement learning approach for
manipulation skills. They use a neural network to represents
the object interaction dynamics. This model is used as
prior knowledge for new tasks and adapted during learning.
They evaluate the approach on different inserting, stacking
and assembling manipulations where they show that only a
small amount of data is required. Instead of using a neural
network as policy parametrization, we propose to use a
high-level constrained optimization problem that generalizes
to different skill scenarios. Further, we incorporate prior
knowledge in form of a low-dimensional projection to
achieve a directed ad sample-efficient learning behavior.

Learning Manipulation Skills

2.2 Episodic RL as Black-box Optimization

A restricted case of episodic reinforcement learning is
where only the total return of an episode is observed but

Prepared using sagej.cls

not the individual rewards at each timestep (Stulp et al.
2013). This property transforms the problem into a black-
box optimization problem that allows one to use standard
black-box optimization methods (e.g., Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) (Hansen and
Ostermeier 2001) or Bayesian optimization (Mockus et al.
1978)). These methods have previously been used to learn
parameters in robotics. For example, Bayesian optimization
was used to learn gait parameters for locomotion skills
(Lizotte et al. 2007; Calandra et al. 2015). Our approach
combines this type of reinforcement learning with non-linear
optimal control based on motion optimization. This allows
us to use the black-box optimization methods only on a
low-dimensional projection of the full policy, which leads to
faster convergence.

There exist different variants of additionally including
constraints in Bayesian optimization (Schonlau et al. 1998;
Gelbart et al. 2014; Gardner et al. 2014; Gramacy and
Lee 2011). We include a binary success constraint in our
formulation that measures if a rollouts was successful. We
use this constraint to achieve a secure learning process which
avoids sampling points that violate the constraint strongly. To
obtain this we propose a novel acquisition function that uses
the variance of the constraint to guide the exploration on the
decision boundary.

2.3 Safe Learning

An important aspect in learning manipulation skills is
the safety that the robot does not damage itself or
the environment. Schreiter et al. (2015) propose a safe
exploration strategy for a similar problem to ours. They
optimize a function in a safe manner where the feasible
region is unknown. To do this they assume to observe a
safety measure when samples are close to the boundary.
This information is integrated into a differential entropy
exploration criteria to select next candidates. They also
provide an upper bound for the probability of failure. This
approach would most likely lead to fewer failures during the
exploration, but it requires additional information about the
distance to the decision boundary in critical regions, which
is not available in our problem formulation. We compare
our approach to this strategy on a synthetic problem in
Section 6.1.

Another approach for a safe exploration is proposed
in Sui et al. (2015). The strategy SAFEOPT optimizes
an unknown function with Bayesian optimization that is
combined with a safety criterion of the form that the function
value should exceed a certain threshold. They use the concept
of reachability to categorize the search space in different sets
for safe exploration and exploitation. The next data point
is selected by sampling the most uncertain decision. This
approach is used to learn a stabilization task on a quadrotor
vehicle in Berkenkamp and Schoellig (2015).

Garcia Polo and Fernandez-Rebollo (2011) introduce a
safe reinforcement learning approach that improves demon-
strated behavior in a risk-sensitive manner. The behavior
is represented with case-based reasoning techniques. The
safety criterion is defined with the distance to the nearest
neighbor that is limited with a threshold. The exploration is
done by adding Gaussian noise to the current optimal actions.

Journal Title XX(X)

Their approach uses case-based reasoning techniques which
allows them to use multiple trajectories as demonstration.

Achiam et al. (2017) propose constrained policy opti-
mization that uses constrained markov decision processes
to achieve a safe learning. They derive a bound on the
difference between the rewards of two different policies
which is used to update a policy while guaranteeing to
improve the return and to satisfy a constraint. They show that
there method can be used to train high-dimensional neural
network policies for robotics tasks.

None of the above methods for safe or Bayesian
exploration would be sample-efficient when directly applied
on the high-dimensional non-stationary policy. However,
they could be used within our CORL framework, as
demonstrated for GP-UCB and SAL in the evaluations.

2.4 Combined Optimization and Learning

There exist multiple approaches that combine learning and
optimization methods. The advantage of this combination is
that models can be used in the optimization problems. This
usually leads to a lower dimensional space for the learning
part, which results in fewer rollouts until convergence. In
Riickert et al. (2013) a reinforcement learning algorithm for
planning movement primitives is introduced that uses a two-
layered learning formulation. In an outer loop the policy
search method CMA-ES optimizes an extrinsic cost function
that measures the task performance. This policy search is
over parameters that are used in the inner loop to define a cost
function for a trajectory optimization problem. This problem
is used to compute trajectories that are fed back as input to
the extrinsic cost function. A core difference to our approach
is that they directly couple the objective functions with each
other in a hierarchical way and only optimize the extrinsic
objective function. The intrinsic objective function is only
used to perform rollouts. In our formulation we optimize
both objectives. Additionally, we use a safety constraint to
guide the learning in a secure manner.

Kupcsik et al. (2013) proposed a policy search method that
combines model-free reinforcement learning with learned
forward models. They learn probabilistic forward models of
the robot and the skill which are used to generate artificial
samples in simulation. These samples are combined with
real-world rollouts to update the policy. The relative entropy
policy search method (Peters et al. 2010) is used to maximize
the reward and balance the exploration and experience loss
by staying close to the observed data. A main differences to
our approach is that we divide the problem in model-based
motion optimization that improves the motion efficiently and
reinforcement learning that improves the skill by exploring
a low-dimension representation. A further difference is that
they learn a model of the task that is used in internal
simulations, whereas we directly learn a model that maps
parameters to return.

Vuga et al. (2015) introduced an approach that combines
the reinforcement learning method PI? with the optimization
algorithm iterative learning control (Bristow et al. 2006). The
policy is represented with a dynamic movement primitive.
This approach uses iterative learning control as exploration
strategy in the first part of the learning. In the second part
random exploration is used to fine-tune the policy. They use
iterative learning control to adapt the trajectory and speed

Prepared using sagej.cls

profile. Our approach differs especially w.r.t. the two policy
parametrizations that allow us to use the reinforcement
learning method in a secure and data-efficient manner with
Bayesian optimization. Our analytic optimization method
also allows us to define cost functions in arbitrary feature
spaces.

2.5 Inverse Optimal Control

Inverse Optimal Control (IOC) is used to extract a cost
function from data (Ng and Russell 2000; Ziebart et al.
2008; Levine et al. 2011). Many successful applications
in different areas have demonstrated the capabilities of
this idea, including the learning of quadruped locomotion
(Kolter et al. (2008)), helicopter acrobatics (Abbeel et al.
(2010)) and simulated car driving (Abbeel and Ng (2004);
Levine and Koltun (2012)). For a broader overview on
IOC approaches we refer the reader to the survey paper
of Zhifei and Joo (2012) and for an overview on imitation
learning in robotics we recommend (Argall et al. 2009).
Kalakrishnan et al. (2013) use inverse optimal control on
manipulation skills. They introduce an inverse formulation
of the reinforcement learning method PI2. The cost function
consists of a control cost and a general state dependent
cost term at each time step. They maximize the trajectory
likelihood for all demonstrations by sampling trajectories
around the demonstrations. The method is evaluated on
grasping tasks.

Finn et al. (2016) propose to use a neural network to
represent the cost function. This allows one to use nonlinear
cost functions and does not require to define features by
hand. The network is trained in an inner loop of a policy
search method and evaluated on placement and pouring
tasks on a real robot. In our approach we focus on learning
a cost functions of a constrained optimization problem
similar to Puydupin-Jamin et al. (2012) where we also
use the KKT condition to define the inverse problem of
a constrained optimization problem. We do not directly
apply IOC on the input demonstrations. Instead of this, we
first apply a reinforcement learning method to improve the
demonstrations before we extract a cost function.

3 Background on Trajectory Optimization
and Inverse Optimal Control

In the following section, we describe background on how to
optimize a trajectory w.r.t. a cost function and constraints.
Afterwards, we describe the inverse problem on how to
extract a cost function from trajectories.

3.1 K-Order Markov Optimization (KOMO)

A trajectory I is a sequence of T'+ 1 robot configurations
x; € R? that lead to a total amount of n = Q(T + 1)
parameter. The goal of trajectory optimization is to find a
trajectory &, given an initial configuration x(, that minimizes
a certain objective function. In KOMO (Toussaint 2017) the
objective function is defined as

T

f@y,w) =Y w/éf (@, v) (1)
t=1

=w' P*(z,y).)

Englert and Toussaint

This defines the objective as a weighted sum over all time
steps, where the costs are defined in form of squared features
¢. Each cost term depends on a k-order tuple of consecutive
configurations &; = (x¢_g,...,T4_1, L), containing the
current and k previous robot configurations. In addition to
the robot configuration &, we use external parameters of the
environment y to contain information that are important for
planning the motion (e.g., object positions or goal states). In
addition to the task costs, we also consider inequality and
equality constraints

Vi 9:(Z1,y) <0, hi(z:,y) =0, 3)
which, as features ¢,(&;,y), can refer to arbitrary task
spaces. The resulting optimization problem is

z* = argmin f(Z,y, w) 4)
st. g(®,y)<0
h(z,y)=0

where g and h are vector functions that contain all inequality
and equality constraints. The equality constraints are in our
approach mostly used to represent persistent contacts with
the environment (e.g., h describes the distance between
hand and object that should be exactly 0). The motivation
for using equality constraints for contacts, instead of using
cost terms in the objective function as in Equation (1),
is the fact that minimizing costs does not guarantee that
they will become 0, which is essential for establishing a
contact. We incorporate the constraints with the augmented
Lagrangian method and solve the resulting problem with
Gauss-Newton optimization (Wright and Nocedal 1999).
Thereby, we exploit the structure of the gradient and Hessian
for efficient optimization (see (Toussaint 2017) for more
details). In addition to the solution &* we also get the
Lagrange parameters A*, which provide information on
when the constraints are active during the motion. This
knowledge can be used to make the control of interactions
with the environment more robust (see (Toussaint et al.
2014)).

In this paper we use the problem representation in
Equation (4) as output of our skill learning algorithm with
the goal to generalize to a wide range of environments y. We
also use KOMO within both learning steps of our algorithm
for improving and generalizing the skill w.r.t. analytic cost
functions.

3.2 Inverse Karush-Kuhn-Tucker (IKKT)

In this section, we describe the inverse optimal control
method IKKT (Englert and Toussaint 2015). The core
idea is to learn a cost function from data of the form
D ={z® y®}’_ . We make the assumption that D is
optimal and we aim to learn the weight vector w in
Equation (4) in such a way that the KKT optimality
conditions are fulfilled for D.

The IOC objective is derived from the Lagrange function
of the problem in Equation (4),

_ — tm 9(z,y)
L("vavkaw) - f(may7w) +)‘T |: T y):|) (5)

Prepared using sagej.cls

and the Karush-Kuhn-Tucker (KKT) conditions. The first
KKT condition states that for an optimal solution &* the
condition Vz L(Z*, y, A, w) = 0 has to be fulfilled. With the
gradient of Equation (1),

Vaf(@,y,w) = 2Jy(z,y) diag(w)®(z,y) (6)
this leads to
2J 4(z,y) " diag(w)®(z,y) + X' J.(2,y) =0, (7

where the matrix J. is the Jacobian of all constraints
and Jg is the Jacobian of the features ®. We assume
that the demonstrations are optimal and should fulfill these
conditions. Therefore, the IOC problem can be viewed as
searching for a parameter w such that this condition is
fulfilled for all the demonstrations.

We express this idea in terms of the loss function

p
Uw, A) = 1D (w, A1) ®)
1=1
with

. 2
(0w, A0) = [V L@,y A0 w)||", - ©

where we sum over p demonstrations of the scalar
product of the first KKT condition. In Equation (8) i
enumerates the demonstrations and A is the dual to
the demonstration Z(*) under the problem defined by w.
Note that the dual demonstrations are initially unknown
and, of course, depend on the underlying cost function
f. More precisely, A = A (2 4@ w) is a function
of the primal demonstration, the environment configuration
of that demonstration, and the underlying parameters w.
And () (w, A (w)) = £ (w) becomes a function of the
parameters only (we think of (Y and y(*) as given, fixed
quantities, as in Equations (8-9)).

Given that we want to minimize ¢() (w), we can substitute
A (w) for each demonstration by inserting Equation (7)
into (9) and choosing the dual solution that analytically
minimizes (V) (w) subject to the KKT’s complementarity
condition

a ; 3
(2) 1)y — 0
A (w) = —2(JeJd,) 1jc,]q5 diag(®)w . (11)

Note that here the matrix jc is a subset of the full Jacobian
of the constraints J . that contains only the active constraints
during the demonstration, which we can evaluate as g and h
are independent of w. This ensures that (11) is the minimizer
subject to the complementarity condition. The number of
active constraint at each time point has a limit. This limit
would be exceeded if more degrees of freedom of the system
are constrained than there are available.
By inserting Equation (11) into Equation (9) we get

T

)

(O w) = dw'diag(B) T (T - L. (o)) T [diag(®)w

A

which is the IOC cost per demonstration. Adding up the loss
functions for all demonstrations in Equation (8) gives the

Journal Title XX(X)

total Inverse KKT loss of

P
lw)=w'Aw with A=4) A0, (12)
i=1
The resulting optimization problem is
min w' Aw (13)

w

st. w>0

waizl.

Note that we constrain the parameters w to be positive.
This reflects that we want squared cost features to only
positively contribute to the overall cost in Equation (1).
Additionally, we use another constraint to regularize the
problem by requiring that the sum of all weights should
be 1. The latter constraint avoids the singular solution
w = 0 where zero costs are assigned to all demonstrations.
Equation (13) is a (convex) quadratic program (QP), for
which there exist efficient solvers. The gradient w ' A and
Hessian A are very structured and sparse, which we exploit
in our implementations.

In practice we usually use parametrizations on w. This
is useful since in the extreme case, when for each time
step a different parameter is used, this leads to a very
high dimensional parameter space (e.g., 10 tasks and 300
time steps lead to 3000 parameter). This space can be
reduced by using the same weight parameter over all
time steps or to activate a task only at some interesting
time points. The simplest variant is to use a linear
parametrization w(p) = Ap, where p are the parameters
that the IOC method learns. This parametrization allows a
flexible assignment of one parameter to multiple task costs.
Further linear parametrizations are radial basis function or
B-spline basis functions over time t to more compactly
describe smoothly varying cost parameters. For such linear
parametrization the problem in Equation (13) remains a QP
that can be solved very efficiently. It is also possible to use
nonlinear mappings of the form w(p) = A(p) to learn more
complex weight functions (see (Englert and Toussaint 2015)
for more details).

In our approach, we use IKKT to extract a cost
function representation of a skill that can generalize to
new environments y. Instead of directly applying IKKT
on demonstration data, we only start with a single
demonstration and first apply reinforcement learning to
collect data while exploring and improving the skill.

4 Combined Optimization and
Reinforcement Learning (CORL)

CORL is a structured reinforcement learning formulation
that combines optimization and episodic reinforcement
learning. CORL starts with a single demonstration and
improves the skill w.r.t. different objective functions. The
main idea of the algorithm is to use the benefits of a
transition model and analytic cost function when they
are available and the flexibility of black-box objectives
otherwise. We specifically aim to deal with cases where the
policy parameters are high-dimensional (n > 1000). But at

Prepared using sagej.cls

Figure 3: Projection of a two dimensional Z to a one
dimensional @ with a projection constraint h(Z,y,0) = 0.

the same time we aim for efficient skill learning from only
few (< 100) real-world rollouts. Clearly, for this to be a well-
posed problem we need to assume a certain structure in the
problem.

4.1

Our problem formulation consists of an analytically known
cost function

Problem Formulation

J: R" =+ R, (14)
a g-dimensional equality constraint
h(z,y,0) =0 (15)

that ties every policy parameter & and environment
configuration y to a low-dimensional projection 8 € R™
(see details below), a black-box return function

R: R" >R, (16)
and a black-box success constraint
S: R™—{0,1}. 17

With these four ingredients, we define the generalized
reinforcement learning problem

min J(z) — R(6) (18)
st. h(z,y,0)=0

That is, we want the best policy parameters (z*,0%)
(measured with J(Z) and R(0)) that fulfill a skill (measured
with S(0) = 1). In contrast to the standard optimal control
and reinforcement learning problems, that only optimize a
single objective function, our formulation splits the objective
in an analytic part J(Z), a black-box part R(6) and a black-
box success constraint S(6). The analytic cost function J(Z)
contains all the costs we know a priori in analytic form. The
black-box return function R(8) and success constraint S(6)
are a priori unknown and we can only observe noisy samples
by doing rollouts for a given input.

Englert and Toussaint

The low-dimensional projection 6 is used to parametrize
the interactions with the environment (for more details on
how we choose h in practice, see Section 5.1). An equality
constraint h(&,y, #) is incorporated to define the relation
between the high-dimensional and the environment y to
the lower dimensional 8. We assume that h is smooth and
that, for given & and y, h(x,y,0) = 0 identifies a unique
6(z,y) = 0. In that sense, 0 is a projection of Z and y (see
Figure 3 for an example in two dimensions). This projection
is formulated in terms of an equality constraint so that, for
given @ and environment y, the remaining problem on Z is a
standard constraint optimization problem.

4.2 Approach: Combining Optimization with
Reinforcement Learning

We solve the problem in Equation (18) by using optimal
control methods to improve the policy w.r.t. the high-
dimensional £ and black-box Bayesian optimization to
improve the policy w.r.t. the low-dimensional 8. We assume
to have an initial policy parameterization (z°,8°) as input
to our method that fulfills the skill (S(6") = 1). A summary
of the policy update steps of CORL can be found in the first
step of Algorithm 1.

The learning loop of CORL consists of two steps. The first
step is black-box Bayesian optimization over @ that aims at
improving R(@) and fulfilling the constraint S(0). We define
an acquisition function a(@) in such a way that it explores
the parameter space in a secure and data efficient manner
by finding a good tradeoff between making large steps that
potentially lead to risky policies and small steps that would
require many rollouts. To achieve this goal we learn a binary
classification model of S(0) to find the boundary between
policies that lead to success or failure. This classifier is used
to keep the exploration around the feasible region and reduce
the number of (negative) interactions with the system. For
our domain of manipulation skills we use the contacts during
the manipulations to define a low-dimensional representation
0 (e.g., the contact position). The projection constraints
h(z,y,60) can be computed with robot kinematics that
describes the relationship between the full trajectory & and
environment y to the low-dimensional 8. Optimizing 6 with
Bayesian optimization learns which interactions lead to a
success. For many cases this is reasonable, since the parts
of the motion where the robot is performing the contact are
difficult to fit into the analytic cost function J and they are
usually very important to achieve success.

The second step in CORL is constrained optimization and
acts on the high-dimensional Z to improve the analytic cost
function J(&). For this we use the constrained trajectory
optimization framework of Section 3.1. Thereby, the low
dimensional parameter 0 is kept fixed with the equality
constraint h(z,y,0) = 0. Fixing the low dimensional
parameter 8 means that the resulting policy fulfills a certain
property that is defined by h(z,y,0) = 0. We assume that
the success of a skill only depends on @, which implies that
all policy parameters & and environments y that fulfill the
constraint for a fixed 8 lead to the same outcome.

In the following two sections, first the Bayesian
optimization and afterwards the motion optimization are
described in detail.

Prepared using sagej.cls

4.3 Reinforcement Learning over 0 with
Unknown Success Constraints

We introduce an episodic reinforcement learning method
to improve the policy with respect to the low-dimensional
projection 6. The goal of this improvement strategy is
to optimize the black-box return function R(@) under the
success constraint S(6) so as to have a safe interaction with
the system. We use Bayesian optimization to learn a binary
classifier for the success constraint S(#) and a regression
model for the return function R(@). We propose a new
acquisition function a(8) that combines both models in such
a way that the next policy is selected in a secure and data-
efficient manner. We first introduce required background
on Gaussian processes and Bayesian optimization before
introducing our reinforcement learning strategy.

4.3.1 Background on Gaussian Processes

For both function approximations we use Gaussian processes
(GP). The advantage of GPs is that they can express a broad
range of different functions and that they provide probability
distributions over predictions. A GP defines a probability
distribution over functions (Rasmussen and Williams 2006).
We will first handle the regression and afterwards the
classification case.

A GP is fully specified by a mean function m (@) and a
covariance function k(8, 8"). In the regression case, we have
data of the form {8;,r; }¢_, withinputs §; € R™ and outputs
r; € R. Predictions for a test input 6, are given by mean and
variance

1w(0,) =m(6,) + k(0,)" (K +)" r
V(0,) = k(0,,0,) — k(0,) (K + ¢*I)"'x(6,)

19)
(20)

with £;(0,) = k(6;,0,), the Gram matrix K with K;; =
k(6;,0,), and training inputs 6 = [0, ...,04] with corre-
sponding targets » = [rq,..., 74 ".

In the binary classification case, the outputs are discrete
labels s € {0, 1} and we have data of the form {6;,s;}%_;.
Here we cannot directly use a GP to model the output.
Therefore, the GP models a discriminative function g(6)
which defines a class probability via the sigmoid function,

p(s = 116) = 0(9(0)) .

Since this likelihood is non-Gaussian the exact posterior over
g is not a Gaussian process—one instead uses a Laplace
approximation (Nickisch and Rasmussen 2008). For more
details regarding GPs we refer to Rasmussen and Williams
(2006).

21

4.3.2 Background on Bayesian Optimization

Bayesian optimization (Mockus et al. 1978) is a strategy to
find the maximum of an objective function R(6) with 0 €
R™, where the function R(6) is not known in closed-form
expression and only noisy observations 7 of the function
value can be made at sampled values 0. These samples are
collected in a dataset {6;,7;}¢ , that is used to build a
GP model of R. The next sample point 6,11 is chosen by
maximizing an acquisition function a(@). There are many
different ways to define this acquisition function (Brochu
et al. 2010). One widely used acquisition function is the
probability of improvement (Kushner 1964) that is defined

8 Journal Title XX(X)
as h(z,y,0")) = 0. This leads to the optimization problem
~(j) _ in J(3
_ + T argmin J(Z) (25)
PI(6) =P (R(6) > R(6™)) :@(”(‘Q)R(e)> (22) z
V() st. h(z,y,09)=0.
with 6% = argmax R(6),

0c{01,....04}

where @ is the normal cumulative distribution function. We
will make use of this probability of improvement in our
acquisition function and extend it for an exploration in a safe
manner.

4.3.3 Episodic Reinforcement Learning over 0
We want to improve the skill by optimizing the parameter 6
with respect to R(0) and fulfilling the constraint S(6). To
do this we collect data of the form D = {8, r() s(@D}d_
where @ are the parameters, r is the return and s is the skill
outcome. The data D is used to select the next sample oL+,
We use a GP gr to model the return function R(6) and a
classifier o(gs) with GP gs to model the success function
S(0). The regression GP contains only data points that are
feasible and lead to success. The classification GP describes
the feasible region of all @ that lead to skill success. This
region is incrementally explored with the goal to find the
maximum R(0) that leads to success.

For both GPs we use a squared exponential kernel function

k(0,0") =oZexp (—3(0-60)'="(0-0) ,

! (23)

where ¥ = diag([13,13,...,(2,]) is a matrix with squared
length scales and oy is the signal standard deviation. In the
regression model gr we use a constant prior mean function
of 0. For the classification model gg, we use a constant prior
mean function m(6) = ¢ to predict the unfeasible class in
regions where no data points are available yet. Therefore,
we select a constant ¢ smaller than 0 that allows us to keep
the exploration close to the region where data points are
available.

We use gr and gg to define the acquisition function

appu(8) = [g5(6) > 0] PL,,,(8) + [g5(8) = 0] V. (6)

24
that combines the probability of improvement with a
boundary uncertainty criteria (PIBU). In Equation (24) []
denotes the Iverson brackets. The first term describes the
probability of improvement (cf. Equation (22)) of gr in the
inner region of the classifier gg. The second term is the
predictive variance of the GP classifier gg on the decision
boundary. The first term focuses on exploiting improvement
inside the feasible region and the second term focuses on
exploring safely on the decision boundary. In each iteration
of CORL we optimize Equation (24) to find the next low-
dimensional parameter 6.

4.4 Motion Optimization for Constrained 6

After a next candidate of the low-dimensional policy
parameter 0 is selected, a backprojection to the full policy
representation /) is necessary to perform a rollout on
the actual system. We do this backprojection by selecting
the U) that optimizes .J(z) and fulfills the constraint

Prepared using sagej.cls

We utilize the KOMO framework (see Section 3.1) to
optimize this problem by defining the analytically known
cost function J as a weighted sum of squared features (see
Equation (1)) and h(zZ, y, ov)) = 0 as an equality constraint
(see Equation (3)) that is parametrized by 6Y). The resulting
policy parameter (H(j), z()) are executed on the real robot
and the observed objectives (R(z(?)), J(8'7), $(87)) are
added to the dataset. These steps are repeated until there is
no change in the policy parameters.

The optimization problem in Equation (25) allows
to include a wide variety of objectives and constraints
that are necessary for a task (e.g., smoothness, collision
avoidance). We now define two objectives for the problem
in Equation (25) that we use in our experiments for
manipulation skills.

4.4.1 Optimizing Smoothness of Unconstrained Motion

Our first objective criteria is smoothness in configuration
space while fixing the low-dimensional projection. In our
experiments we define configuration space acceleration
features

¢ (&) = (24 — 241 + mt—2)/A? (26)

that contribute to the KOMO objective in Equation (1)
(alternative smoothness criteria such as jerk/torque can also
be used). We use this feature to select the next policy
parameters Z/) by minimizing the problem defined in
Equation (25). This leads to a smoother motion of the
unconstrained part of the motion (e.g., the motion towards
the contact).

4.4.2 Optimizing the Interaction Phase Profile
The second objective is to achieve a smoother motion
also w.r.t. the time course of the constraints (e.g., when
contacts are established). To do this we additionally optimize
the phase of the trajectory and keep the geometry of the
trajectory fixed. Thereby, we assume that the trajectory &
can be evaluated at time ¢ by interpolating it with splines.
We optimize the phase profile p(t) : [0,7] — [0, 1] of this
trajectory w.r.t. transition costs. To do this we discretize
p(t) in K + 1 points p = [po, p1, - . . , pr] with the boundary
conditions pg = 0 and px = 1.
Again, we use the squared configuration space accelera-
tions as smoothness term that results in an overall cost
K
J(0) = 3" (@(piT) — 2&(pi1T) + &(pi-2T)) /A7)
i=0
+ (pi — 2pi1 + pi—2)’

The second term is a cost term directly on the acceleration
of the phase variable. The resulting phase profile p* defines
a new trajectory & that is executed on the real system.

27

5 Learning Manipulation Skills from
a Single Demonstration

Algorithm 1 shows our skill learning approach that connects
the different learning methods presented in the previous

Englert and Toussaint

sections. The inputs are a demonstration of the skill and
the objective functions. Additionally, a low-dimensional
projection 6 is defined with the projection constraint
h(z,y,) (see Section 5.1 for different ways to define h for
manipulations).

In the first step of the algorithm the structured rein-
forcement learning method CORL (see Section 4) is
applied. We initialize the dataset D with the input
demonstration (5:(0),0(0)) and its corresponding perfor-
mance (J(z®), R(0V), 5(8V)). Afterwards, we iterate
the CORL policy update, which first selects a new low-
dimensional projection 6\) by maximizing Equation (24)
that is then mapped on the full policy representation Z/)
by optimizing Equation (25). This policy is executed on the
real system and the observed .J (7)), R(8")) and S(6))
are added to the dataset D. This procedure is repeated until
there is no more change in the policy parameters. The result
of CORL provides us with a dataset D that contains all the
rollouts with their performance.

In the second step of Algorithm 1, we select the best b
successful data points of D to define a new dataset D*. This
dataset D* is used to learn a cost function of the skill with
the inverse optimal control method IKKT (see Section 3.2).
To do this we use a set of features and constraints that are
specific for manipulations skills, including the projection
constraint h(Z,y,0) =0 (see details in Section 5.2).
Afterwards, we learn the corresponding weights w with the
optimization problem in Equation (13) such that the resulting
cost function fulfills the KKT conditions of the dataset D*.

The resulting constrained optimization problem is the
output of our method, which allows us a wide range of
generalization abilities to intrinsic or extrinsic changes.
Extrinsic changes are in our case different environments v,
which are different initial configurations of the environment
(e.g., different object positions) or different target states (e.g.,
different final door angle). The generalizations to intrinsic
changes means the ability that a robot can perform a skill
in multiple ways (e.g., a door can be opened with many
different contacts). During the learning with CORL we
collected a dataset that contains many parameters € that
allow to control the skill in different ways.

5.1 Low-dimensional Projection 0 as

Interaction Parameters in Manipulations

In the application domain of robot manipulation skills,
we design the low-dimensional projection @ as interaction
parameters with the environment. This follows our assump-
tion that the interactions are the most important parts of
the skill and difficult to model. Essentially our framework
assumes that this interaction parameter space is much lower
dimensional than the full robot motion. The projections can
be split in two different types: 1) Parameter of the contacts
with the environment, where 6 should capture essential
parameters of the interaction with the objects, e.g., where
and how to establish contact and where to release contact. 2)
Parameter of the degrees of freedom of the environment. For
example, how far to rotate a door handle until it unlocks the
door joint. In our experiments on the PR2, we show different
combinations of these two projection types.

Prepared using sagej.cls

Algorithm 1

Inputs:
Demonstration (z°, 8, y)
Objectives and constraints: J, R, S, h

1. Improve skill with CORL (Section 4)
Init D = (2,0, R(z©), .7(0), S(6))
repeat:
Reinforcement Learning of R(0) and S(6):
6" = argmax a(6, D)
Motion Opgmization for constrained 6:

z0) = argmin J(z) st h(z,y,09)=0
z

Perform rollout with policy parameter)
Add (29,09 J(29), R(OYV),5(8Y))) to D
until no change in policy parameter

2. Learn cost function with IKKT (Section 3.2)
Define a dataset D* with the best b candidates of D
Generate features and constraints from D*
Optimize feature weights

w” = arg min {(w)

w
s.t. w >0, Zwi21
i

Qutput:
Constrained optimization problem:

min w* ' ®%(z, y)
xT

st. g(@z,y) <0, h(z,y)=0

A concrete constraint that we use in the door opening
experiment in Section 6.3 defines the contact points on the
door handle. If ¢cp(&:.) is the forward kinematics of the
robot’s contact points at the time of contact ¢, and 0 is
the point where the robot is grasping the door handle, the
projection constraint can be defined as

h(:ﬁ, Y, 0) = ¢CP("itc) -6. (28)
This concept is transferable to multiple manipulation skills
where the contact points are crucial for performance and
success.

5.2 Inverse KKT Features for Manipulations

Manipulating external degrees of freedom shares a common
structure that we want to extract in a generic set of features
and constraints. Our Inverse KKT formulation includes
several cost features and hard constraints. In the real robot
experiments we use the following kind of features:

e Transition features: Represent the smoothness of the
motion (e.g., sum of squared acceleration or torques)

e Position features: Represent a body position relative
to another body (e.g., between robot gripper and door
handle).

e Orientation features: Represent orientation of a body
relative to another body.

10 Journal Title XX(X)
Method Global optimum | Max distance | Number of
found to safe region failures
PIBU 99/100 0.64 +0.40 5.27 £ 0.68
PoWER 88/100 1.124+0.44 6.95 +4.45
& UCB 95/100 148 +£0.11 14.53 +1.08
CMA-ES 85/100 1.20+0.38 7.19+4.50
CORL + PIBU 100/100 0.10 £ 0.04 2.05+0.26
CORL + UCB 100 /100 1.26 +0.69 1.38 £0.98
. CORL + CMA-ES 95/100 0.97+£0.53 3.73+2.53
;’l : : CORL + SAL 96,/100 0.06+0.12 | 1.57+3.38

Figure 4: Contours of J(Z) — R(0).

These features are defined at different timesteps (e.g.,
before/after contact change) and for different bodies. We
define these features relative to the manipulated objects, such
that they can be transferred more easily to different scenarios.
Concerning the constraints, we always adopt the projection
constraint h(Z,y,0) = 0 of CORL (e.g., contact points) as
an equality constraint into IKKT. Further constraints are:

e Inequality constraints to avoid collisions with the
environment.

e Inequality constraints to stay inside the robot joint
limits.

e Equality constraint to fix external degrees of freedom
that are not being manipulated.

e Equality constraint to ensure the final state of external
degrees of freedom are reached (e.g., final door state).

Equation (13) is used to compute optimal weights w. The
features that receive a weight larger than 0 are extracted and
used in the resulting policy.

6 Experiments

We evaluate our approach on synthetic optimization problem
and multiple robot manipulation experiments. In both cases,
we compare the performance to alternative learning methods.
We address different manipulations with a PR2 where for
the part of the motion where the robot is moving freely,
good models are available, but for the part where the robot
interacts with objects it is hard to obtain good models.
This results from the fact that the environment is usually
not completely known (e.g., position of objects, kinematic
structure, physical entities) and that information about how
this environment can be manipulated into a certain goal state
is not available.

6.1

In this evaluation we compare different algorithms on a
synthetic benchmark problem. To allow for reproducible
quantitative comparison, we define a generalized RL
problem in the form of Equation (18) with parameters €
R? and projection § € R. The problem is defined with an
analytic cost

Evaluation on a Synthetic Benchmark

J(®) = (2] + x5 — 1), (29)

Prepared using sagej.cls

Figure 5: Results of the synthetic benchmark experiment (see Section 6.1).

a black-box return

R(0) = —0.50% + cos(30) , (30)
and a black-box success
S(0)=]-15<6<25]. (€20
The projection is defined with the constraint
h(z,0) = 6 — atan <;;) . (32)

The total objective we want to minimize is J(Z) — R(0)
under the constraint that S(0) =1 (see Equation (18)).
We limit the search space to the region & € [—1.5,1.5] x
[—1.5,1.5]. This problem has multiple local optima and a
global optimum at z* = (1,0) with a value of —1. The
contours of J(&) — R(0) are visualized in Figure 4, where
the red area denotes the infeasible region and the green cross
the optima. We compare two different type of algorithms
with each other. The first type uses the CORL framework we
proposed in this paper with different reinforcement learning
algorithms (noted as CORL + <method>). The second type
are standard reinforcement learning methods that optimize &
and ignore the specific problem structure. Here is a summary
of all evaluated algorithm configurations:

e PIBU: Bayesian optimization with the acquisition
function PIBU (see Equation (24)).

e PoWER: Policy learning by weighting exploration
with the returns (Kober and Peters 2008).

e UCB: Bayesian optimization with the acquisition
function upper confidence bound (Brochu et al. 2010).

e CMA-ES: Covariance matrix adaptation evolution

strategy (Hansen and Ostermeier 2001).

CORL + PIBU: CORL algorithm with PIBU.

CORL + UCB: CORL algorithm with UCB.

CORL + CMA-ES: CORL algorithm with CMA-ES.

CORL + SAL: CORL algorithm with safe active

learning (Schreiter et al. 2015).

Only the PIBU and SAL variants aim for a safe exploration
during the optimization process. Note that SAL assumes to
observe the distance to the feasibility boundary in critical
(but feasible) regions, which all other methods do not
observe.

Englert and Toussaint 11

F

u ”

- [=]
< 6 v g
7 ARTSITIITS 5
/_|\ "I 8 0 6 "
>< .- . I v - - N
i :_ - ﬁ ' \\\‘“*’*\,""’y’:‘,,

U ” - \'-'~'~,
E .' . § 0 4 hln o ‘I"“\r""vw\/"l"‘w
2 b gy
= RESESY $ o ‘. 3 [H CORL + PIBU (1=0.3)
S ! i 2 02 0 b CORL + PIBU (1= 0.15)
i G I S CORL + CMA-ES (o = 0.3)
R - - = CORL + CMA-ES (¢ =0.1)
. . . \ ! 0 ! I I I I
20 40 60 80 100 120 20 40 60 80 100 120
iterations iterations
(b) Best candidate (c¢) Success rate

(d) Generalization to different initial positions

(e) Generalization to different final door angles

Figure 6: Cabinet experiment (see Section 6.2). Figure (a) shows the classification boundary in the projection space 6,
which classifies the successful parameters (dots) from the failures (red crosses). The graph in (b) shows the best candidate
over iterations. The graph in (c) shows the success rate over iterations that measures how many failures were executed on
the system compared to the number of iterations so far. The images (d) and (e) show the generalization of the constrained
optimization problem to different initial positions and final door angles.

To enable testing those methods that cannot cope with
different objectives and success constraints (i.e., CMA-ES,
UCB and PoWER), we defined the combined objective
function

o(®)=[S(0)=1](J(x) — R(8)) + [S(0) =0]15. (33)
The return and cost function can only be observed for
parameters that lead to success, such that it is consistent
with our method. Failures receive a constant cost of 15. The
optimization step in CORL is done with a Newton method.
The acquisition function used for the regression GP gr uses
the hyperparameter | = 0.4, o,y = 10 and o = 0.11. The
classification GP gg uses [= 0.4, o,y = 10 and a constant
prior mean of —7. We executed all algorithms on this
problem from 100 different initial parameters &, which are
samples uniformly in the feasible search region. The CMA-
ES algorithm uses a population size of 6 and the number of
offspring is 3. The table in Figure 5 shows the results of this
experiment. We compare the metrics:

e Global optimum found: This metric describes how

many times the algorithm found the global optimum
T*.

e Max distance to safe region: The maximum distance
of all failure samples to the safety region. All values
are given by mean and standard deviation over the 100
trials.

e Number of failures: The number of failure samples
S(0) =0 that were selected by the algorithm until
convergence. All values are given by the mean and
standard deviation over the 100 trials.

Prepared using sagej.cls

The best two algorithms of each metric are marked bold
in the table in Figure 5. The CORL + SAL method is as
expected the safest method with a mean of 1.57 failure
samples—but recall that it assumes it can observe the
distance to the boundary in critical regions, which ours does
not. Our proposed methods CORL + PIBU find the global
optimum very often and exhibit a very low number of near-
boundary failures even without observing critical distance.
The methods that do not take safety into account reach higher
number of failure samples (between 5 and 10) that are also
located far away from the safety region.

6.2 Cabinet

We apply Algorithm 1 in this experiment on the manipulation
skill of opening a cabinet with a PR2. The experimental
setup is visualized in Figure 2. The skill consists of grasping
the knob, rotating the knob until it unlocks the door joint
and opening the door. The full policy parametrization is a
trajectory & that consists of 200 timesteps and 11 degrees
of freedom (9 belong to the robot and 2 to the cabinet).
The trajectory is executed with a duration of 15 seconds. We
recorded a single demonstration with kinesthetic teaching as
initialization.

We define the low-dimensional 6 as described in
Section 5.1. We select a three dimensional space of the
interaction with the cabinet. The first parameter is the
opening angle of the cabinet at the end of the skill. The
second parameter is the reference gripper opening, which
corresponds to the amount of force that is used while
grasping the knob. The third parameter is the final angle of
the knob, which corresponds to whether the cabinet door

12

Journal Title XX(X)

(a) Setup

(d) Different initial positions

(e) Different final door angles

Method Highest return | Failure rate | Max distance to safe region
CORL + PIBU 0.45 +0.032 0.350 £ 0.025 0.0146 £+ 0.006
CORL + CMA-ES 0.41 £0.017 0.397 £0.131 0.0358 £+ 0.030

(f) Evaluation PIBU / CMA-ES

Figure 7: Door experiment (see Section 6.3). The image in (a) shows the setup of the PR2 opening a door. The figure in
(b) shows the learned return function R(6) with Bayesian optimization. Blue points denote successful rollouts, red points
denote failures and the magenta star is the best parameter found. The red line denotes the decision boundary of the
classifier. The images in (c) show four different grasps that were tried during learning. These images in (d) and (e) show the
generalization abilities of our approach regarding to different initial positions of the robot and different final door angles.
After learning the weight parameter w* with Inverse KKT it was possible to generalize to all these scenarios of the door

opening skill.

can be manipulated. All parameters are defined relative
to the initial demonstration. The analytic cost function J
measures the sum of squared accelerations over the complete
trajectory. The black-box return R is the negative amount
of force used during the opening, which is measured with
a force/torque sensor in the wrist of the robot. The black-
box success S is the binary signal if the door was opened
successful to a certain degree.

In the first part of Algorithm 1 we use CORL to improve
the skill w.r.t. our defined objectives. We compare four
different algorithm configurations of CORL on this problem:

1. CORL + PIBU (I = 0.3): Bayesian optimization with
the acquisition function PIBU and a wide kernel length
scale [. The hyperparameter are o,y = 0.5 and 0 =
0.01 for the regression GP gr and o,y = 6 for the
classification GP gg.

2. CORL + PIBU (I = 0.15): PIBU with a narrow kernel
length scale [. The other hyperparmeter are identical to
configuration 1.

3. CORL + CMA-ES (o = 0.3): CMA-ES with a high
initial variance o2, a population size of 7 and 3 parents.

Prepared using sagej.cls

4. CORL + CMA-ES (¢ = 0.1): CMA-ES with a small
initial variance 2. The other parameter are identical
to configuration 3.

In CORL + PIBU we use two different hyperparmeters [
for the kernel in Equation (23), that corresponds how far
a datapoint extrapolates its value. In the CMA-ES case,
we use a configuration with a small initial variance and a
configuration with a wide initial variance of the samples.
The results of the experiment are visualized in Figure 6.
Figure 6(a) shows the three dimensional projection space 6
for the configuration CORL + PIBU (I = 0.3). The success
region gg(@) = 0 is visualized as gray surface and all the
points inside lead to success and the points outside to failure.
The successful samples are visualized as dots and the color
denotes the return value. Blue dots have the lowest and red
dots have the highest return value. The failures are visualized
as crosses. The best candidate is visualized with a green
circle around it.

Figure 6(b) shows the best candidate and Figure 6(c)
shows the success rate over iterations. All methods lead to a
similar best policy and the learning behavior depends on the

Englert and Toussaint 13

S

& 8
S S
= 2
[} [0}
2 3t
5] =}
2 @
N ‘ ‘ 0

0 20 40 60
iterations

(a) Sliding skill

(c) Objective function and success rate

Figure 8: Lockbox experiments (see Section 6.4). The image in (a) shows the sliding skill that we want to learn. The
image in (b) shows the success constraint motion that checks if the sliding was successful, which means that the next joint
can be manipulated. The figure in (c) shows the best objective (black solid line) and the success rate (red dashed line) over

iterations.

hyperparameter of each method. The best policy receives an
objective of 4.33 where the analytic cost J (&) is 0.96 and the
black-box return R(0) is —3.37. The configuration CORL
+ PIBU (I = 0.30) already finds its best solution after 20
iterations, but requires more iterations until convergence to
explore the whole success region. The configuration CORL
+ PIBU (I = 0.15) leads to the highest success rate of 0.8,
but also requires more iterations until convergence then other
variants. This result shows the tradeoff that has to be done
between convergence speed and safe exploration.

In the second part of Algorithm 1 we use the collected
data to learn a higher-level cost function representation of the
skill. We use three successful trajectories from the dataset D
and applied the IKKT algorithm with the features described
in Section 5.2. The resulting cost function was able to
generalize to different initial positions and door angles of the
cabinet (see Figure 6(d)—(e)).

6.3 Door

In this experiment, we apply Algorithm 1 on opening a door
(see Figure 7(a)). The motion also includes the unlocking
of the door by turning the handle first. We define two
parameters in the contact space of the door handle as low-
dimensional parameter 6. The first parameter is the finger
position on the handle relative to the demonstration. The
second parameter is the finger opening widths. Different
grasps of such a projection are shown in Figure 7(c). We
use the same objectives J(&), R(#) and S(0#) as in the
previous experiment. To achieve an autonomous learning we
used markers on the door to measure if it opened successful
and added a simple motion that closes the door after each
trial. This allowed the robot to perform the learning on
its own without human intervention. The parameters of the
regression GP gr we used are [= 0.042, 0,5 = 0.168 and
o = 0.012. we set [= 0.02, o5¢ = 10 and a constant prior
mean of —7 for the classification GP gg.

We compared to a CORL + CMA-ES variant, where
both CMA-ES and PIBU operate on the low-dimensional
projection 8 exploiting the combination with the analytic
motion optimization. The resulting return and success
function are shown in Figure 7(b). Our method converged
in this run after 40 rollouts. From these 40 rollouts 26 were
successes and 14 were failures. The blue dots are successful

Prepared using sagej.cls

rollouts, the red dots are failures and the magenta star
shows the best parameter. The red line denotes the classifier
boundary.

The results are shown in the table in Figure 7(f). We use
as performance measure the highest objective, the failure
rate with the system and the maximum distance to the
safety region. All values are reported as mean and standard
deviation over four runs. It can be seen that CORL +
PIBU reaches a lower failure rate with a very low standard
deviation. The failures of PIBU are also closer to the safety
region than CMA-ES. This results from the fact that the
boundary is explored with our acquisition function (see
Equation (24)). CORL + CMA-ES also finds a slightly
worse policy than CORL. We tried alternative approaches
that do not rely on this low-dimensional projection and
the combination with an analytic motion optimizer: We
performed experiments with dynamic movement primitives
and PoWER similar to Kober and Peters (2008). For this
we parameterized the shape and goal of the DMP, leading
to a 96 dimensional parameter space. However, we could
not achieve a noticeable learning performance after 150
iterations. We assume that the black-box return function
that combines the amount of forces with path smoothness
is not informative enough for this large parameter space.
This reinforces the motivation for our general approach of
dissecting objectives into high-dimensional analytical and
low-dimensional black-box parts.

In a previous experiment (Englert and Toussaint 2015),
we applied IKKT on the same skill from multiple
demonstrations. We were able to robustly generate motions
with these parameters that generalize to different initial
positions and different final door angles (see Figure 7(d)—
(e)). The demonstration, learning behavior and resulting
motions are shown in a video'.

6.4 Lockbox

A further experiment we conducted is the manipulation of a
linear joint of a lockbox (see Figure 8(a)). The lockbox was
designed to research different physical exploration strategies
(Baum et al. 2017) and consists of multiple rotational and

Ihttps://youtu.be/sGO1B_GcTJQ

14

Journal Title XX(X)

translational degrees of freedom that lock each other. In this
experiment, we focus on a translational joint that we want to
open with a sliding motion. The low-dimensional projection
is the vertical location of the contact point and the sliding
velocity. The goal is to manipulate the translational joint,
such that the next joint is unlocked. We evaluate the success
constraint by executing another motion that checks if the
next joint can be manipulated (see Figure 8(b)). Further, we
also added a motion that closes both joints again, which
allowed the robot to achieve a complete autonomous learning
without human supervision (see video'). We used the
same GP hyperparameter and objectives as in the previous
section. CORL + PIBU converged after 59 iterations with
48 successes and 11 failures. The total interaction time of
the robot was 61 minutes. In Figure 8(c) the learning curve
(black line) and success rate (red dashed line) are visualized.

7 Conclusion

In this work, we presented an approach to learn manipulation
skills from a single demonstration with the goal to achieve
wide generalization abilities and a high performance.
We incorporated the structure of manipulation skills in
our approach by using a low-dimensional projection of
the motion that parametrizes the interaction with the
environment. We used analytic motion optimization to
improve the full motion and episodic reinforcement learning
to improve the interactions. The advantage of this separation
is that it was not required to specify models for the
interactions, which is very difficult in practice. Our approach
requires as input a single demonstration of the skill that is
bootstrapped with reinforcement to become more robust and
efficient before inverse optimal control is used to learn a
constrained optimization problem. This design allowed us
to reduce the required input and supervision of the human.
Using a constrained motion optimization representation
allowed us to generalize the skill w.r.t. different initial states
and to control the skill w.r.t. desired states of the external
degrees of freedom.

We evaluated our algorithm on a synthetic benchmark
function where we compared it to alternative learning
methods. The results indicate that the combination of
optimization and learning leads to a faster convergence. They
also denote that the integration of a success constraint results
in a safer learning by avoiding very bad samples outside
the feasible region. We also demonstrated our algorithm on
multiple real-robot experiments. Thereby we used a variety
of different low-dimensional projections to parametrize the
interaction with the environment. Our algorithm improved
all three skills w.r.t. the objectives and learned a constrained
optimization problem that generalized the skill to new
scenarios.

In future work it is important to investigate generalization
abilities regarding the skill transfer to different environments
(e.g., different geometrical/physical entitites) that avoids a
learning from scratch for each environment. An interesting
questions is which kind of representation is most suitable
for the transfer between different environments. Such a
transfer would further improve the abilities of robots in our
world and focus the learning on the fine-tuning for the new
environments. Another goal of future research should be

Prepared using sagej.cls

towards a more integrated learning algorithm that makes
efficient use of the collected data to further improve the skill
and knowledge of the world. For example, the data we collect
during learning can be used to update the limits, unlocking
mechanisms and location of external degrees of freedom
(Kulick et al. 2015; Sturm et al. 2011). A further goal of us
is to use the learned skills in higher-level symbolic planning
methods. We think that the constrained optimization problem
is a suitable representation since it allows to use the skill
inside a symbolic planning problem for a wide range of
scenarios.

Acknowledgements

This work was supported by the DFG under grant TO 409/9-1.

References

Abbeel P, Coates A and Ng AY (2010) Autonomous helicopter
aerobatics through apprenticeship learning. The International
Journal of Robotics Research .

Abbeel P, Coates A, Quigley M and Ng AY (2007) An Application
of Reinforcement Learning to Aerobatic Helicopter Flight. In:
Advances in Neural Information Processing Systems.

Abbeel P and Ng AY (2004) Apprenticeship learning via inverse
reinforcement learning. In: Proceedings of the twenty-first
international conference on Machine learning. ACM, p. 1.

Achiam J, Held D, Tamar A and Abbeel P (2017) Constrained
policy optimization. In: International Conference on Machine
Learning.

Argall BD, Chernova S, Veloso M and Browning B (2009) A
survey of robot learning from demonstration. Robotics and
Autonomous Systems 57(5): 469-483.

Baum M, Bernstein M, Martin-Martin R, Hofer S, Kulick J,
Toussaint M, Kacelnik A and Brock O (2017) Opening a
lockbox through physical exploration. In: Proc. of the IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids 2017).

Berkenkamp F and Schoellig AP (2015) Safe and Robust Learning
Control with Gaussian Processes. In: Proceedings of European
Control Conference.

Bristow DA, Tharayil M and Alleyne AG (2006) A survey of
iterative learning control. IEEE Control Systems 26(3): 96—
114.

Brochu E, Cora VM and De Freitas N (2010) A Tutorial
on Bayesian Optimization of Expensive Cost Functions,
with Application to Active User Modeling and Hierarchical
Reinforcement Learning. arXiv:1012.2599 [cs.LG] .

Calandra R, Seyfarth A, Peters J and Deisenroth M (2015) Bayesian
optimization for learning gaits under uncertainty. Annals of
Mathematics and Artificial Intelligence 76(1): 5-23.

Chebotar Y, Kalakrishnan M, Yahya A, Li A, Schaal S and Levine
S (2017) Path integral guided policy search. In: Proceedings of
the International Conference on Robotics and Automation.

Englert P and Toussaint M (2015) Inverse KKT - Learning
Cost Functions of Manipulation Tasks from Demonstrations.
In: Proceedings of the International Symposium of Robotics
Research.

Englert P and Toussaint M (2016) Combined Optimization
and Reinforcement Learning for Manipulations Skills. In:
Proceedings of Robotics: Science and Systems.

Englert and Toussaint

15

Finn C, Levine S and Abbeel P (2016) Guided cost learning:
Deep inverse optimal control via policy optimization. In:
International Conference on Machine Learning.

Fu J, Levine S and Abbeel P (2016) One-shot learning of
manipulation skills with online dynamics adaptation and neural
network priors. In: Proceedings of International Conference on
Intelligent Robots and Systems.

Garcia Polo FJ and Fernandez-Rebollo F (2011) Safe reinforcement
learning in high-risk tasks through policy improvement.
In: Symposium on Adaptive Dynamic Programming And
Reinforcement Learning.

Gardner J, Kusner M, Xu Z, Weinberger K and Cunningham
J (2014) Bayesian Optimization with Inequality Constraints.
In: Proceedings of International Conference on Machine
Learning.

Gelbart MA, Snoek J and Adams RP (2014) Bayesian Optimization
with Unknown Constraints. In: Uncertainty in Artificial
Intelligence.

Gramacy RB and Lee HKH (2011) Optimization under unknown
constraints. In: Bayesian Statistics 9. Oxford University Press.

Hansen N and Ostermeier A (2001) Completely Derandomized
Self-Adaptation in Evolution. Strategies.
Computation 9(2): 159-195.

Kalakrishnan M, Pastor P, Righetti L and Schaal S (2013) Learning
Objective Functions for Manipulation. In: Proceedings of the

Evolutionary

International Conference on Robotics and Automation.

Kalakrishnan M, Righetti L, Pastor P and Schaal S (2011)
Learning force control policies for compliant manipulation. In:
International Conference on Intelligent Robots and Systems.

Kober J, Bagnell JA and Peters J (2013) Reinforcement Learning
in Robotics: A Survey. International Journal of Robotics
Research 32(11): 1238-1274.

Kober J and Peters J (2008) Policy Search for Motor Primitives
in Robotics. In: Advances in Neural Information Processing
Systems.

Kolter JZ, Abbeel P and Ng AY (2008) Hierarchical apprenticeship
learning with application to quadruped locomotion. Neural
Information Processing Systems .

Kulick J, Otte S and Toussaint M (2015) Active Exploration of
Joint Dependency Structures. In: International Conference on
Robotics and Automation.

Kupcsik AG, Deisenroth MP, Peters J and Neumann G (2013)
Data-Efficient Generalization of Robot Skills with Contextual
Policy Search. In: Proceedings of the National Conference on
Artificial Intelligence.

Kushner HJ (1964) A New Method of Locating the Maximum Point
of an Arbitrary Multipeak Curve in the Presence of Noise.
Journal of Fluids Engineering 86(1): 97-106.

Levine S, Finn C, Darrell T and Abbeel P (2016) End-to-End
Training of Deep Visuomotor Policies 17(39): 1-40.

Levine S and Koltun V (2012) Continuous inverse Optimal Control
with Locally Optimal Examples.
International Conference on Machine Learning.

Levine S and Koltun V (2013) Guided policy search. In:
International Conference on Machine Learning.

In: Proceedings of the

Levine S, Popovic Z and Koltun V (2011) Nonlinear inverse
reinforcement learning with gaussian processes. In: Neural

Information Processing Systems.

Prepared using sagej.cls

Lizotte DJ, Wang T, Bowling MH and Schuurmans D (2007) Auto-
matic Gait Optimization with Gaussian Process Regression. In:
International Joint Conference on Artificial Intelligence.

Mockus J, Tiesis V and Zilinskas A (1978) The application of
Bayesian methods for seeking the extremum. Towards Global
Optimization 2(117-129).

Muelling K, Kober J, Kroemer O and Peters J (2013) Learning
to Select and Generalize Striking Movements in Robot Table
Tennis. International Journal of Robotics Research (3): 263—
279.

Ng AY and Russell S (2000) Algorithms for Inverse Reinforcement
Learning. In: Proceedings of the International Conference on
Machine Learning.

Nickisch H and Rasmussen CE (2008) Approximations for Binary
Gaussian Process Classification. Journal of Machine Learning
Research 9(10): 2035-2078.

Peters J, Miilling K and Altun Y (2010) Relative Entropy Policy
Search. In: Proceedings of the Conference on Artificial
Intelligence.

Puydupin-Jamin AS, Johnson M and Bretl T (2012) A Convex
Approach to Inverse Optimal Control and its. Application
to Modeling Human Locomotion. In: Proceedings of the
International Conference on Robotics and Automation.

Rasmussen CE and Williams CKI (2006) Gaussian Processes for
Machine Learning. MIT Press.

Riickert EA, Neumann G, Toussaint M and Maass W (2013)
Learned graphical models for probabilistic planning provide a
new class of movement primitives. Frontiers in Computational
Neuroscience 6(138).

Schonlau M, Welch WJ and Jones DR (1998) Global Versus Local
Search in Constrained Optimization of Computer Models.
Lecture Notes-Monograph Series 34: 11-25.

Schreiter J, Nguyen-Tuong D, Eberts M, Bischoff B, Markert H
and Toussaint M (2015) Safe Exploration for Active Learning
with Gaussian Processes. In: Proceedings of the European
Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases.

Stulp F and Sigaud O (2013) Robot Skill Learning: From
Reinforcement Learning to Evolution Strategies.
Journal of Behavioral Robotics 4(1): 49-61.

Stulp F, Sigaud O and Others (2013) Policy Improvement Methods:
Between Black-box optimization and Episodic Reinforcement

Paladyn,

Learning. Journées Francophones Planification, Décision, et
Apprentissage pour la conduite de systemes .

Sturm J, Stachniss C and Burgard W (2011) A Probabilistic
Framework for Learning Kinematic Models of Articulated
Objects. Journal of Artificial Intelligence Research 41: 477—
526.

Sui Y, Gotovos A, Burdick JW and Krause A (2015) Safe
Exploration for Optimization with Gaussian Processes.
In: Proceedings of International Conference on Machine
Learning.

Sutton RS and Barto AG (1998) Reinforcement Learning: An
Introduction. MIT Press.

Theodorou E, Buchli J and Schaal S (2010) A Generalized Path
Integral Control Approach to Reinforcement Learning. Journal
of Machine Learning Research 11: 3137-3181.

Toussaint M (2017) A tutorial on Newton methods for
constrained trajectory optimization and relations to SLAM,

16

Journal Title XX(X)

Gaussian Process smoothing, optimal control, and probabilistic
inference. In: Laumond JP (ed.) Geometric and Numerical
Foundations of Movements. Springer.

Toussaint M, Ratliff N, Bohg J, Righetti L, Englert P and Schaal
S (2014) Dual Execution of Optimized Contact Interaction
Trajectories. In: Proceedings of the International Conference
on Robotics and Automation.

Vuga R, Nemec B and Ude A (2015) Enhanced Policy Adaptation
Through Directed Explorative Learning. International Journal
of Humanoid Robotics 12(3).

Wright SJ and Nocedal J (1999) Numerical Optimization, volume 2.
Springer New York.

Zhifei S and Joo EM (2012) A survey of inverse reinforcement
learning techniques. International Journal of Intelligent
Computing and Cybernetics 5(3): 293-311.

Ziebart BD, Maas A, Bagnell JA and Dey AK (2008) Maximum
Entropy Inverse Reinforcement Learning. In Proceedings of
the AAAI Conference on Artificial Intelligence .

Prepared using sagej.cls

