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Abstract

How to run most effectively to catch a projectile, such as a baseball, that is flying in the air

for a long period of time? The question about the best solution to the ball catching problem

has been subject to intense scientific debate for almost 50 years. It turns out that this scien-

tific debate is not focused on the ball catching problem alone, but revolves around the

research question what constitutes the ingredients of intelligent decision making. Over time,

two opposing views have emerged: the generalist view regarding intelligence as the ability

to solve any task without knowing goal and environment in advance, based on optimal deci-

sion making using predictive models; and the specialist view which argues that intelligent

decision making does not have to be based on predictive models and not even optimal,

advocating simple and efficient rules of thumb (heuristics) as superior to enable accurate

decisions. We study two types of approaches to the ball catching problem, one for each

view, and investigate their properties using both a theoretical analysis and a broad set of

simulation experiments. Our study shows that neither of the two types of approaches can

be regarded as superior in solving all relevant variants of the ball catching problem: each

approach is optimal under a different realistic environmental condition. Therefore, predictive

models neither guarantee nor prevent success a priori, and we further show that the key dif-

ference between the generalist and the specialist approach to ball catching is the type of

input representation used to control the agent. From this finding, we conclude that the right

solution to a decision making or control problem is orthogonal to the generalist and specialist

approach, and thus requires a reconciliation of the two views in favor of a representation-

centric view.

1 Introduction

There is a long standing debate about what constitutes the ingredients of intelligent decision

making. Over time, two opposing views have emerged, both supported by a broad body of sci-

entific work. On the one hand, there is what we call the generalist view: it regards intelligence
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as the ability to solve any task without knowing goal and environment in advance [1, 2]. A key

feature of many generalist agents is an internal predictive model of the environment. The pre-

dictive model can either be learned from experience, or, as done in many practical applica-

tions, is defined manually and provided to the agent. In both cases, optimal decisions based on

the model are inferred in order to progress towards the goal.

On the other hand, there is the specialist view. It argues that intelligent decision making

does not have to be based on predictive models (“as-if models”, [3]) and not even optimal

[4]. Instead, simple and efficient rules of thumb enable accurate decisions: heuristics. Propo-

nents of this view argue that heuristics are better-suited for complex decision making

because the real world is too complex and exhibits too much uncertainty in order to be

modeled precisely.

In this paper, we study one of the most prominent examples in the debate between special-

ists and generalists: the outfielder ball catching problem [5]. This problem deals with the ques-

tion of how to run most effectively to intercept a moving target, such as a baseball that is flying

in the air for a long period of time. Despite the significance and ubiquity of this capability in

humans and animals, for example for intercepting prey, specialists and generalists still debate

about the biologically most plausible and the most effective strategy to solve this problem [6].

Therefore, understanding the computational principles behind ball interception may yield

important insights about which view, generalist or specialist, is better-suited to account for

many problems in intelligent decision making. Generalists argue that the problem is solved

most effectively by estimating the ball’s position and velocity, predicting the ball’s trajectory

and running towards the landing point. Specialists claim that the agent intercepts the ball most

effectively if it relies on a heuristic based on the angle between the ground plane and the ball as

seen by the agent [6–8]—ignoring all causal variables necessary to compute the trajectory of

the ball, such as the ball’s position and velocity.

The main finding of this paper is that (i) neither the generalist nor specialist approach is

superior in solving all relevant variants of the ball catching problem: each approach is opti-

mal under a different realistic environmental condition. From this finding, we conclude

that research on intelligent decision making should not dichotomize the generalist and special-

ist approaches, but study their individual strengths and investigate how to combine them. Our

paper identifies their strengths by providing a thorough mathematical treatment as well as an

extensive empirical evaluation in the context of ball catching, and thus makes an important

step towards unifying the two approaches for general intelligent decision making problems.

Our main finding that neither of the two approaches is superior, has a variety of important

implications on the study of the ball catching problem as well as on the study of decision mak-

ing problems in general:

(ii) Predictive models neither guarantee nor prevent success a priori.

Our study shows that the generalist, model-based approach is superior in coping with high-

frequency perturbations of the ball trajectory, such as perceptual or motor noise. However, it

fails when the model’s assumptions are systematically violated, for example, when air resis-

tance affects the ball trajectory but the model neglects it. In contrast, the specialist, model-free

approach is able cope better with such model violations, but cannot cope with high-frequency

noise.

Our finding is well-supported by previous work on reinforcement learning [9] where both

model-free and model-based approaches are common, and both are known to each have their

strengths and weaknesses. Therefore, we should refrain from favoring or rejecting model-

based approaches a priori for solving decision making problems.

(iii) The specialist’s ball catching heuristic is an optimal solution under certain environ-

mental conditions.
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Despite advocating task-specificity, the specialist view should not be misinterpreted as

regarding heuristics to be opposed to optimization. On the contrary, proponents of the special-

ist view have shown that heuristics are optimal solutions in single decision making problems

(classification/regression) with low amounts of training data and high-uncertainty [10, 11].

Our study shows that the same result holds true for ball catching, and thus for sequential deci-

sion making problems: we show that the generalist approach to ball catching can be viewed as

optimal in the presence of high-frequency Gaussian noise, and the specialist approach as opti-

mal in the absence of such noise. Therefore, optimality is not a criterion that distinguishes gen-

eralist and specialist approaches for decision making.

(iv) The key difference between the generalist and the specialist approach to ball catch-

ing is the type of input representation used to control the agent.

Our results raise the question why the two approaches perform different under varying

environmental conditions, and whether this difference is due to the use of a predictive model.

To answer this question, we investigate whether the specialist, heuristic approach can be

turned into a model-based approach. We prove that this is not the case: the input representa-

tion used by the heuristic is not amenable to predictive modeling as it does not fulfill the

Markov assumption required by most model-based approaches. Therefore, we conclude that

the input representation used to control the agent is the key factor for the applicability of a

model-free or model-based approach, and thus performance under different environmental

conditions.

Given these findings, we argue that the generalist and specialist approach form two extreme

ends of a spectrum. We conjecture that combining the two approaches by moving along that

spectrum will help us to find better representations, and thus better solutions for both the ball

catching problem under all realistic environmental conditions as well as other decision making

problems.

1.1 Outline

The outline of this paper is the following. We begin by formalizing the ball catching problem

in Section 2. We introduce the generalist and specialist approaches to this problem, highlight-

ing that the generalist strategies rely on a Cartesian representation whereas the heuristic strate-

gies are based on an angular representation of the ball position with respect to the agent. For

both approaches we discuss prior work (Section 3), derive suitable control implementations

for controllers suggested in previous literature as well as novel ones, study their mathematical

properties (Section 4.1 and Section 4.2) and evaluate them in a extensive set of empirical simu-

lation experiments (Section 4.4). We then present the main results of our work, namely that

certain environmental conditions affect the specialist more severely than the generalist strate-

gies—and vice versa. All of our findings are both, derived theoretically and confirmed by

simulation experiments. To draw further conclusions from our main result, we investigate the

role of optimality and predictive models for distinguishing between generalist and specialist

approaches for ball catching. First, we show that the angular representation is not amenable to

similar types of predictive modeling as the Cartesian representation (Section 4.3). Second, we

show that the specialist, heuristic solution to ball catching results from applying model-free

reinforcement learning under the heuristic’s preferred environmental conditions (Section 5).

Section 6 discusses the implications of our findings for future research on ball catching in par-

ticular and decision making in general in. Section 7 concludes the paper.

1.2 Technical contributions

In the following, we detail our work’s technical contributions:
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1.2.1 Theoretical results.

1. We formally show that different implementations of Chapman’s strategy [5], one of the

main heuristic strategies for the simplified two-dimensional ball catching problem, all form

a unified mathematical framework. They only differ with respect to the type of derivative of

the angular representation used as a control signal (Section 4.2).

2. We prove that Chapman’s strategy generates an agent reference trajectory that, if attained

by a controller, guarantees interception for both ideal flight trajectories and systematically
perturbed trajectories. This includes perturbations that resemble air resistance (Section 4.2).

3. We further show that Chapman’s strategy does not require computation of the angle’s acceler-
ation (the second derivative) but only of its velocity. This insight allows us to develop two
robust variants of angle-based controllers: COV-IO and COV-OAC (Section 4.3).

4. We show that the angular representation employed by Chapman’s strategy results in a sta-
tionary control problem and can be implemented with bang-bang control (Section 4.3).

5. Our analysis shows that this simplified control scheme comes at the cost of intractable

dynamics: none of the angular representations used for control is Markov (Section 4.3.8),

and thus no closed-form description of the dynamics based on the angular representation

exists.

6. In contrast, we show that a Cartesian representation of agent and ball results in simpler
dynamics (linear for ideal parabolic flight, locally linear for air resistance). This comes at the

expense of non-stationary PD-control required to catch accurately (Section 4.1).

1.2.2 Empirical results.

1. An evaluation of a wide variety of systematic and random perturbations shows that Chap-
man’s strategy generalizes over systematic perturbations of the ball trajectory, such as air
resistance, whereas strategies based on the Cartesian representation generalize better over per-
turbations induced by Gaussian noise, both in two and three dimensions (Section 4.4).

2. When formulating ball catching in two dimensions as a model-free reinforcement learning

problem, searching for a policy that directly maps from camera sensor input to control out-

put, a generic black-box optimization with regularization learns a policy equivalent to Chap-
man’s strategy (Sec. 5).

2 Formal statement of the ball catching problem

In this section, we formalize the ball catching problem and sketch the solution approaches sug-

gested by the generalist and specialist camps.

The task of ball catching, and more generally projectile interception, is arguably one of the

most studied problems in psychology and control (see Section 3). Interception involves a

variety of different sub-skills, such as visually perceiving the target, fixating it, running

towards it, as well as moving arm and hand in a suitable manner. In this work, we focus on

the question of how to run towards a target in order to intercept it; the problem is therefore

reduced to finding the motion of an agent on the two-dimensional (ground) plane. More-

over, we confine ourselves to a passive projectile, for example a baseball (rather than a rocket

or bird). In an idealized setting, the trajectory of a ball can be fully predicted from its initial

position and velocity; however, empirical studies have shown that, due to various aerody-

namic effects, predictions solely based on initial position and velocity are largely inaccurate

No free lunch in ball catching: A comparison of Cartesian and angular representations for control
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[12]. This circumstance makes the problem difficult and raises the question on how humans,

such as trained baseball players, solve it, and which computational strategies are best-suited

for solving it.

In this work, we are most interested in the computational aspect of the ball catching prob-

lem. We thus begin with a rigorous mathematical formalization of the problem and outline

basic solution strategies later in this section. We present solution strategies brought forward by

the generalist and the specialist camp: the generalist approaches are based on a Cartesian repre-
sentation of the task, and we will therefore term them Cartesian control strategies. The specialist

approaches are based on an angular representation of the task, leading to a set of angular con-
trol strategies.

2.1 Ball

We assume a ball with mass m, radius r, denote the three-dimensional ball position by

b = [bx, by, bz]T, its velocity by _b and its acceleration by €b. The dynamics of the ball trajectory

in an ideal environment are parabolic and given by the following differential equation:

€b ¼
0
� g
0

0

B
@

1

C
A; ð1Þ

assuming given initial conditions for position b(0) and velocity _bð0Þ. In our formalization,

the y-axis corresponds to the vertical direction (“up”) and g = 9.81 denotes the average mag-

nitude of gravity on earth. We assume the ball is launched at t = 0 and denote the ball impact

time by t = T, thus by(0) = by(T) = 0.

In a more realistic setting the parabolic flight trajectory is affected by drag [12]. The drag

force acts on the ball in the opposite of its tangential velocity and induces the following dynam-

ics:

€b ¼

0
� g
0

0

B
@

1

C
A �

1
2

rcd
A
m

_b2; ð2Þ

where ρ is the air density, A = πr2 the ball’s cross-section and cd the drag coefficient which var-

ies for different types of balls.

2.2 Agent and controller

We denote the agent by a = [ax, az]T and assume that it moves on the horizontal plane. We

assume that we can directly control the agent’s acceleration using control input u = [ux, uz]T,

and assume the agent’s absolute velocity and acceleration to be constrained by _amax and €amax:

€a ¼ u: ð3Þ

Additionally, we introduce notation to specify important relationships between agent and

ball: the ground distance dðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaxðtÞ � bxðtÞÞ
2
þ ðazðtÞ � bzðtÞÞ

2
q

and agent-to-impact

distance DðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaxðtÞ � bxðTÞÞ
2
þ ðazðtÞ � bzðTÞÞ

2
q

, depicted in Fig 1A, and the initial
agent-to-impact distance D(0) = D0, depicted in Fig 1B. Note that d(t) and D(t) vary over time

whereas D0 is a fixed initial parameter.
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2.2.1 Cartesian representation. The agent and ball positions and velocities a; _a; b; _b cor-

respond to the Cartesian representation of the ball catching scenario. It will form the basis of

the Cartesian control strategies, the strategies brought forward by the generalist approach.

These try to estimate a; _a; b; _b from the agent’s sensors and assume a dynamic model of ball

and agent that closely matches the real dynamics given in Eqs (1), (2) and (3) to be available to

the agent. In practice, it is not possible for the agent to get a perfect estimate of all quantities.

In particular, the agent’s distance to the ball is difficult to estimate using monocular vision

[13]. We will see later how these approaches perform with imperfect estimates or when their

dynamic model does not match the real dynamics.

2.3 Task

The task of the agent is to arrive at the impact point of the ball at the same time as the ball

while respecting the agent’s motion constraints:

minimize
a

kbðTÞ � aðTÞk2; ð4Þ

subject to k _aðtÞk � _amax; ð5Þ

k€aðtÞk � €amax: ð6Þ

for 0� t� T, where T denotes the ball’s impact time. We refer to Eq (4) as the terminal dis-
tance objective and denote it by Lterminal distance.

We will see later how the Cartesian and angular strategies approach this problem.

2.4 Vertical viewing angle

The specialist approaches do not attempt to estimate the agent and ball coordinates. Instead,

they operate on two relative angles between agent and ball. The first one is the vertical viewing
angle α between the ground plane and the ball, as seen from the agent’s perspective. It is shown

Fig 1. Illustration of the outfielder ball catching problem and all involved quantities. (A) Configuration at time t. World frame orientation depicted at the bottom

left. (B) Initial configuration at time t = 0.

https://doi.org/10.1371/journal.pone.0197803.g001

No free lunch in ball catching: A comparison of Cartesian and angular representations for control

PLOS ONE | https://doi.org/10.1371/journal.pone.0197803 June 14, 2018 6 / 48

https://doi.org/10.1371/journal.pone.0197803.g001
https://doi.org/10.1371/journal.pone.0197803


in Fig 1A and is computed as:

aðtÞ ¼ arctan
byðtÞ
dðtÞ

; ð7Þ

where d(t) denotes the ground distance defined above.

Of particular interest is the tangent of the vertical viewing angle:

yðtÞ ≜ tanaðtÞ ¼
byðtÞ
dðtÞ

: ð8Þ

An important property of θ is that it can be directly perceived using a monocular visual sen-

sor, such as a camera; as we will see, angular control strategies only require an estimate of θ up

to a constant scaling factor. This clearly distinguishes θ from the Cartesian representation

which requires estimating the agent’s distance to the ball.

Some angular strategies require the estimation of derivatives of θ(t). We assume that these

are computed using finite differences:

_yðtÞ ¼
yðtÞ � yðt � DtÞ

Dt
; €yðtÞ ¼

_yðtÞ � _yðt � DtÞ
Dt

; ð9Þ

given time step Δt> 0.

2.5 Bearing angle

In addition to the vertical angle, we define the bearing angle β. It lies on the horizontal plane

(see Fig 1A) and computes as the angle between two lines: a line connecting the agent and the

ball’s projection on the ground plane Dt; and an arbitrary exocentric (that means: defined in

global frame) reference line, indicated by the gray dashed line in Fig 1A. To simplify notation,

we assume that the exocentric reference line is always orthogonal to the ball’s flight trajectory.

Then β can be computed from the difference in the agent’s and ball’s coordinates as follows:

bðtÞ ¼ arctan
axðtÞ � bxðtÞ
azðtÞ � bzðtÞ

: ð10Þ

Computing β from a camera image is a bit more difficult than computing α. The reason is

that the agent needs to track its rotation to maintain the same exocentric reference line over

time [14]. In this work, we assume that the agent does not rotate, and thus maintains a con-

stant exocentric reference line and adjusts x̂ref accordingly while moving.

2.5.1 Angular representation. We refer to the pair θ, β as the angular representation, pos-

sibly replacing θ, β by higher derivatives, for example _y; _b. In the two-dimensional case, the

angular representation only consists of θ (or its derivatives). It will form the basis of the angu-

lar control strategies presented later.

2.6 Cartesian control strategies

We now have all the ingredients to define control strategies for solving the ball catching prob-

lem. We begin with the Cartesian strategy which is based on the Cartesian representation, con-

sisting of the agent and ball positions and velocities.

The main idea of Cartesian controllers is to predict the impact point of the ball R and arrive

at this point at the impact time (at the latest). Thus, these strategies are sometimes termed tra-
jectory prediction strategies. Predicting the impact point is very easy if we have an accurate
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estimate of the current ball position and velocity (with respect to the agent) and if we know the

ball dynamics, as we will show in Section 4.1.

The proposed Cartesian controller implementations mainly differ with respect to how they

use the impact point estimate to guide the agent. A naive control strategy runs to the impact

point as fast as possible [15]—but this is neither required nor helpful: first, the agent only has

to arrive at the impact point at impact time. Second, the ball’s trajectory might be perturbed in

midflight. Therefore, the agent is better off if it minimizes the risk of missing the ball in case it

is affected by a perturbation.

A suitable approach to build such a risk-averse controller is the optimal control framework,

for example linear-quadratic Gaussian control (LQG). We will describe in great detail how to

apply LQG to the ball catching problem in Section 4.1. We will see that LQG is able to catch

the ball in many cases, but its performance critically hinges on the ability to accurately predict

the impact point.

An alternative optimal control approach for ball catching has been recently presented by

[16]. It is based on the same Cartesian representation as LQG but uses a belief space planning

method based on model-predictive control (MPC). MPC allows to deal with a more realistic

agent model than the one considered here, but evaluating MPC in our simplified setting is pos-

sible because the agent model it assumes is strictly more general than the one we consider

here. Our experiments will show that both LQG and MPC exhibit similar behavior in the sim-

plified setting because they both rely on an accurate prediction of the impact point. We will see

that an impaired ability of predicting the impact point equally affects all Cartesian controllers

—including MPC.

2.7 Angular control strategies

An alternative set of strategies that does not require the prediction of the impact point is given

by the angular control strategies. These are a bit less intuitive to understand than the Cartesian

strategies, and various different implementations have been proposed in the literature. We

focus here on the two most prominent types of the strategies: Chapman’s strategy and the Lin-

ear Optical Trajectory (LOT) strategy.

2.7.1 Chapman’s strategy. [5] presented an important finding that triggered a whole

research field dedicated to angular control for projectile interception. In his paper, he pre-

sented what we call Chapman’s strategy: he was able to show that an agent arrives at the ball’s

impact point exactly at impact time if the agent runs such that the tangent of the angle θ
between ground plane and the ball rises at a constant rate. Moreover, he showed that in this

case the agent’s velocity is constant. Fig 2 provides a visual explanation of this insight, and we

prove it formally in Section 4.2.

To implement Chapman’s strategy, we need to address two issues. First, we need to find a

control law that ensures that the agent runs such that θ rises linearly. Several controller imple-

mentations have been suggested, one of the most popular ones being optical acceleration can-
cellation (OAC, [17]). It implements Chapman’s strategy by tracking the acceleration of the

tangent of the vertical viewing angle €y and adjusting the agent’s motion such that €y remains

zero. We review OAC and other implementations of Chapman’s strategy in Section 4.2.

The second issue is that we need is how to control the lateral orientation of the agent. Chap-

man suggests to adjust the lateral movement such that the bearing angle remains constant, a

strategy known as constant bearing angle (CBA).
The obvious advantage of Chapman’s strategy is that it does not require an estimate of the

impact point. However, the optimal-control based Cartesian controllers come with strong

guarantees that reliably predict their behavior, whereas little theoretical knowledge about
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Chapman’s strategy is available. Hence, a main focus of our work is to provide a theoretical

understanding of how and why Chapman’s strategy works. We additionally verify our findings

in a large array of simulation experiments.

2.7.2 Linear Optical Trajectory. Chapman’s strategy is not the only angular control strat-

egy that has been suggested. The most important competitor is the linear optical trajectory
(LOT) strategy [7]. Similarly to Chapman’s strategy, LOT uses the viewing and bearing angles

to adjust the agent’s running trajectory. The main difference to Chapman’s strategy is that

LOT does not command the vertical and the bearing angle independently, but adjusts the

agent’s running speed such that the ball follows a linear trajectory from its viewpoint, which is

equivalent to keeping
d
dt tanaðtÞ
d
dt tanbðtÞ

constant. This can result in a different running path, and it has

been argued that it is more biologically plausible as it does not treat θ and β independently.

Although various studies for ball but also frisbee catching [18–20] support the LOT model,

it is still debated whether LOT or Chapman’s strategy (or optimal control) account better for

explaining human behavior [16, 21]. We do not attempt to answer whether one strategy resem-

bles human behavior better than another. Instead, we aim to understand the relationship of

generalist and specialist strategies for ball catching. We therefore focus on Chapman’s strategy

Fig 2. An intuitive explanation of Chapman’s strategy. (Adapted from [7]). It states that for an ideal parabolic ball trajectory and an agent moving towards the

impact point with constant velocity axðtÞ ¼ �
a0 � R
T the tangent of the vertical viewing angle θ(t) = tan α(t) rises with a constant rate. This is illustrated by the blue line

segments whose length is linear both in θ since st = (R + D0)θ(t) and in time since snt = nst; hence, θ is linear, too. We will show this formally in Section 4.2.

https://doi.org/10.1371/journal.pone.0197803.g002
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(OAC with CBA) and use it as a representative of the specialist strategies for ball catching in

the remainder of this paper.

3 Related work

In this section, we give a brief overview of the main arguments brought up in favor of the spe-

cialist and generalist views. Most of the discussions and studies regarding this controversy

have addressed single decision making, i.e. classification and regression problems, whereas ball

catching is a sequential decision making, i.e. control problem.

We begin by briefly reviewing arguments regarding single decision making, then turn to

control problems in general and finally review related work regarding ball catching.

3.1 Single decision making: Classification and regression

In the generalist approach, single decision making problems are often tackled using supervised

learning. Various theoretical results [22, 23] and practical examples [24] show that supervised

learning is very successful at solving decision making problems—given that a sufficient

amount of training data is available. Specialists argue that for highly unpredictable and uncer-

tain environments with low amounts of data available, statistical learning is inferior to simple

rules of thumb, “heuristics”. [10] define heuristics as “processes that ignore information and

enable fast decisions”. He views the mind as an adaptive toolbox that employs various heuris-

tics and applies them to cognitive tasks. Gigerenzer’s definition falls short of explaining how

to find heuristics. He suggests that heuristics follow a certain pattern, such as a search rule, a

decision rule and a stopping rule, but it is not clear how to use this pattern as a template for

solving novel tasks, for example for finding rather than applying the ball catching heuristic. [4]

defines heuristics in the context of search, where he considers a method to be heuristic if it

only searches for solutions that are “good enough” but not necessarily optimal. He calls such

a solution satisficing. Gigerenzer criticizes that Simon implies a accuracy–effort trade-off,

assuming that more time and computation would result in a better and more optimal solution.

Gigerenzer argues that this does not hold true and that heuristics can be perform better than

the optimal solution, for example a statistical learner.

Indeed, statistical learning theory supports Gigerenzer’s argument. [25] showed that any

statistical learner is prone to overfitting when the problem exhibits high uncertainty and lacks

sufficient amounts of training data. Therefore, in such cases heuristics can outperform statisti-

cal learning [10, 11]. Statistical learning theory also explains when the opposite effect of under-
fitting occurs: a learner that relies on biases that are too strong or inadequate for the task make

systematic mistakes [26].

To conclude, statistical learning theory perfectly explains heuristics as biased solutions that

are optimal under uncertainty. We thus consider the controversy between generalists and spe-

cialists for single decision making as resolved. The main question then becomes what consti-

tutes a suitable bias for a task and how task-general or task-specific such biases need to be.

3.2 Sequential decision making: Control

The sequential decision making setting still lacks a clear cut answer to the controversy between

generalists and specialists. The reason is that the insights from the single decision making

setting do not address all difficulties of the sequential setting. For example, the temporal cou-

pling of decisions often renders supervised learning impractical as pure imitation of a known

sequence of (even optimal) actions might lead to inferior performance [9]. This motivates

approaches such as reinforcement learning [27].
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Similar to single decision making, specialists advocate rules of thumb and heuristics to be

the main driver for human decision making. However, these heuristics are usually task-spe-

cific. Therefore, we now discuss the differences between generalist and specialist approaches to

decision making directly in the context of ball catching.

We now cover related work on Cartesian and angular control strategies for ball catching.

3.2.1 Cartesian control strategies. As explained in Section 2.6, Cartesian control strate-

gies are based on a prediction of the ball’s landing point, or more generally on the prediction

of the ball trajectory. A large body of work in psychology advocates that prediction plays an

important role for cognition [28] and particularly for motor control [28–30]. Experimental

studies showing that prediction plays an important role in ball catching have been presented,

too [31, 32]. In ball catching, a predictive strategy has the great advantage that it can effectively

cope with cases where the ball goes out of the field of view [16]. In general, the main advantage

of viewing cognition as predictive modeling is that it provides a generally applicable computa-

tional framework for explaining human behavior. Moreover, it can often be directly trans-

ferred to artificial systems. Hence, the trajectory prediction strategy is the method of choice in

most robotic applications for ball catching [33, 34]. These applications, however, only study

catching in closed-room environments and thus do not address difficulties faced in scenarios

such as baseball: due to the long flight time the various aerodynamic forces such as drag or

Magnus forces affect the ball trajectory significantly [12]. Therefore, it is not clear if the predic-

tive approach to ball catching can be successfully applied in such scenarios.

3.2.2 Angular control strategies. The view of equating cognition with predictive model-

ing is not undisputed. As mentioned above, [10] advocates that humans rely on simple heuris-

tics and considers Chapman’s strategy as an instance of this heuristic approach. The simplicity

of Chapman’s strategy has triggered a large body of work in psychology and engineering to

study whether humans use this strategy and how it could be implemented [6, 35–37]. Most

of them study the setting presented in Section 2, but extensions that incorporate human con-

straints have been suggested, too [8].

Several studies investigate implementations of Chapman’s strategy and their performance

under different conditions, mostly in physical simulation experiments. One of the earliest

studies [38] notices the effect of air resistance on the ball trajectory, which Chapman neglected.

However, the author wrongly concludes that Chapman’s strategy is not applicable in the case

of air resistance [39] and does not study the influence of additional perturbations. [40] suggests

different control architectures for implementing Chapman’s strategy and tests them in two-

and three-dimensional simulations. He reports that Chapman’s strategy is more robust when

implemented with bang-bang, rather than proportional control, especially when modeling

human constraints such as sensorimotor delays, velocity and acceleration constraints. Except

for air resistance, he does not consider perturbations on the ball trajectory, though. [41] sug-

gests a different variant of Chapman’s strategy which controls the velocity rather than the

acceleration of the tangent, the control of optical velocity (COV) strategy. He evaluates it in a set

of simulated experiments with random noise and wind perturbations, with the main goal of

showing its superiority to LOT. We will derive a mathematical relationship between COV and

OAC in Section 4.3 and propose a method that combines the strengths of both approaches.

[42] implement OAC on a simulated mobile robot with differential drive, focusing on deriving

the full (image) Jacobians required to map image errors to wheel motor commands. They only

evaluate their system in two exemplary experiments. [43] study the performance of a bang-

bang OAC model for a variety of different initial configurations of the agent and various per-

turbations, but they neglect air resistance.

Finally, simplified variants of Chapman’s strategy have been implemented in real-world

robotic experiments. [44] test different variants of Chapman’s strategies and suggest to
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preferably use bang-bang, following a similar line of reasoning as [40]. [45] propose a system

for ground ball interception but use an angle prediction strategy (AP) rather than OAC: the

error is computed as the difference of the current and a linear prediction of the tangent of the

angle in the next time step. We will discuss this strategy in Section 4.3 and show that it is equiv-

alent to the COV strategy. Finally, [39] implement the OAC strategy on a mobile robot and

study the behavior when catching a balloon. They also report that active servoing of the camera

resulted in more stable behavior than using a passive camera.

4 A comparison of Cartesian and angular control for ball catching

The goal of this section is to systematically compare the Cartesian and angular control

approaches presented in the previous section. We show that angular control strategies, brought

forward by the specialist view, generalize over systematic perturbations of the ball trajectory,

such as air resistance, whereas generalist strategies based on the Cartesian representation gen-

eralize better over perturbations induced by Gaussian noise.

We begin by formalizing and implementing these strategies, amongst them novel strategies

not considered in the literature. Our treatment includes an in-depth theoretical analysis of all

presented strategies as well as an empirical study in terms of extensive physical simulation

experiments.

4.1 Cartesian control strategies

In Section 2.6, we discussed different ways to implement a Cartesian controllers for ball catch-

ing. We now formalize a representative for the Cartesian control strategies by instantiating the

linear-quadratic Gaussian control framework (LQG). In a nutshell, applying LQG to a control

problem consists of two phases: in the first, offline phase, LQG uses known dynamic and obser-

vation models (of agent and ball) and a cost function (rewarding catching success) to compute

the control function u = ft(z), which computes optimal control outputs u for every possible

observation z (position of ball and agent) of the underlying state x (position and velocity of

ball and agent). The subscript t indicates that this function is time-varying, that means, it

depends on the time-to-impact (time until the ball hits the ground). In the second, online
phase, at every time step t the agent makes an observation zt, infers the most likely state xt, esti-

mates the time-to-impact T and applies ft to compute u.

Note that whereas standard LQG requires the dynamic and observation models to be linear

and the cost function to be quadratic, nonlinear extensions such as iterative LQG (iLQG) exist

[46]. For a more in-depth treatment on optimal control see [47] and the supplementary mate-

rial (S4 Text).

In order to apply LQG to our problem, we now define (1) a state representation, (2) a

(locally) linear dynamics model, (3) an observation representation as well as an observation
model, (4) a finite-horizon cost function and (5) a way to measure the time-to-impact.

4.1.1 State, observation and dynamics. The formalization of the ball catching problem

(Sections 2.1 and 2.2) directly provides the state and dynamics required to instantiate the LQG

framework. LQG requires the state representation x to beMarkov: xt must fully define the sys-

tem’s state at time t such that adding more information about the past of xt cannot improve the

prediction of any future state. A suitable state representation fulfilling this criterion is the Car-

tesian representation presented in Section 2.2. Section 2.1 also presented the dynamics model

governing ball and agent motion based on this state. The dynamics are linear in the ideal case

and locally linear when assuming drag. Moreover, LQG allows us to relax the assumption that

we can perfectly estimate all quantities of the Cartesian representation. Instead we assume the

agent’s observation of these quantities to be perturbed by Gaussian noise.
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We thus define the state representation x and the observation z as

x ¼ ½bx; _bx; by; _by; bz; _bz; ax; €ax; az; €az�
T
; ð11Þ

z ¼ ½~bx; ~by; ~bz; ~ax; ~az�
T
: ð12Þ

To formalize the state dynamics for LQG, we use the ball dynamics stated in Section 2.1 and

bring them into the linear form required by LQG. Similarly, we need to define a linear observa-

tion model mapping states to observations. All details on how to adapt the state dynamics and

observation model for the LQG framework are provided in the supplementary materials (S2

Text).

Remark: in our formalization, the Cartesian representation defines agent and ball position

with respect to a global reference frame, whereas the angular representation of the ball is

defined relative to the agent. However, this is only a matter of convenience because separating

agent a and ball b makes the equations more comprehensible. We could easily define the ball

in a relative reference frame b̂ ¼ b � a, omit the agent from the state and obtain equivalent

dynamics.

4.1.2 Cost function. Section 2.3 formalized the ball catching task as the minimization of

the distance between agent and ball at impact time while respecting the agent’s motion con-

straints (Eqs 4–6):

minimize
a

Lterminal distance; ð13Þ

subject to k _aðtÞk � _amax; ð14Þ

k€aðtÞk � €amax: ð15Þ

where Lterminal distance ¼ kbðTÞ � aðTÞk2 denotes the terminal distance cost. The main objective

Lterminal distance is a finite-horizon term and thus suited for LQG, but LQG cannot directly incor-

porate the hard agent motion constraints. Instead, LQG requires a single cost function in

quadratic form. To address these requirements, we define the cost for LQG as a sum of

Lterminal distance and an additional regularization term that penalizes control effort,

L ¼ wdistLterminal distance þ wctrlLcontrol effort ð16Þ

Lcontrol effort ¼
XT

t¼0

kuðtÞk2; ð17Þ

where the hyperparameters wdist and wctrl balance the influence of the two cost terms.

Note that omitting Lcontrol effort would result in a controller that tries to move the agent

directly to the impact point within a single time-step—a motion that is impossible in the gen-

eral case given the agent’s motion constraints.

4.1.3 Computing time-to-impact. Finally, LQG requires a way to estimate the current

time horizon. In the ball catching scenario, this corresponds to the time-to-impact T. For

the ideal case, we can compute it directly solving the ball dynamics equation (Section 2.1) for

by(t) = 0. We thus obtain,

� 0:5gT2 þ _byðtÞT þ byðtÞ ¼ 0; ð18Þ

and solve for T, assuming the current ball position by(t) and velocity _byðtÞ to be known.
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In the presence of drag, no closed-form solution of the dynamics is known. In this case, we

compute T by running a forward simulation of the ball trajectory using the current estimate of

x and the (drag) dynamics model.

4.1.4 Controller analysis. We are interested in the performance of LQG both in the ideal

case and in the presence of perturbations. We consider two different types of perturbations.

Random perturbations: It is by design that LQG is robust to Gaussian noise both in the

dynamics as well as the observation [47]. This suggests that LQG is robust to any form of

Gaussian perturbations.

Systematic perturbations: To get an intuition for how LQG is affected by systematic per-

turbations, we look at how it is influenced by drag. Since we know that the drag induces differ-

ent ball dynamics than the ideal case we inspect the optimal control gains obtained when

assuming a model either with or without drag.

We begin by stating the insights that hold irrespective of whether we assume drag or not.

First, we observe that LQG computes separate, identical gains for ux and for uz; this makes

sense for the ball catching problem as the two coordinates are decoupled [30]. Second, we see

that, for both models, the gains can be decomposed into a constant, proportional and deriva-

tive term which vary over time kp(t), kd(t) and kc(t). Therefore, we see that LQG learns a

(biased) PD-controller of the following form

ux ¼ kpðxb � xaÞ þ kdð _xb � _xaÞ þ kc; ð19Þ

where we have omitted the time indices to improve readability (uz can be defined in an analo-

gous way).

We can now analyze how these gains differ depending on whether the model assumes drag

or not. Fig 3 shows the gains in relation to the time to impact. We see that kp and kd are the

dominating terms for LQR, and that kp has a (reciprocal) quadratic and kd a linear dependence

on t. This reflects the quadratic form of the idealized ball trajectory equation. When the model

incorporates drag (Fig 3B), the influence of the constant term kc increases with the time to

impact. This correlates with the fact that with increased flight time the influence of drag

increases, too. Due to the non-linear nature of the drag force no linear control term can

account for it, and different drag parameters (mass, radius, drag coefficient) thus affect this

term and the behavior of the controller.

We thus hypothesize that wrong model assumptions induces a systematic error in LQG and

degrade the performance of LQG for unmodeled systematic perturbations.

Fig 3. Analysis of the control gains computed for the ideal case and for drag. (A) LQR without drag. (B) iLQR with drag.

https://doi.org/10.1371/journal.pone.0197803.g003

No free lunch in ball catching: A comparison of Cartesian and angular representations for control

PLOS ONE | https://doi.org/10.1371/journal.pone.0197803 June 14, 2018 14 / 48

https://doi.org/10.1371/journal.pone.0197803.g003
https://doi.org/10.1371/journal.pone.0197803


4.2 Angular control strategies

In this section, we turn to a formalization and theoretical analysis of the angular control strate-

gies for ball catching. We focus our analysis on the simplified two-dimensional case where the

ball moves in the plane and the agent on a line (bz = az = 0). It is based on Chapman’s strategy,
described in Section 2.7.1. We provide theoretical results that make predictions how and

under which conditions this strategy is successful at the ball catching task (Section 4.2), derive

different control laws for implementing it, and then provide a discussion of whether the angu-

lar representation qualifies as a state representation and close by extending the strategy to the

full three-dimensional case (Section 4.3).

We begin our analysis by stating why the angular strategies are expected to result in success-

ful agent motion. To that end, we present a reformulation of Chapman’s proof [5], showing

that, under the assumption of a perfect parabolic trajectory, Chapman’s strategy leads to suc-

cessful interception of the ball. We extend Chapman’s proof and give additional important

insights about the angular representation, which allows us to design novel robust control strat-

egies that implement Chapman’s strategy in the next section.

All of the following proofs were verified using SymPy [48], and the corresponding code has

been made publicly available at https://github.com/shoefer/ball_catching.

Our proofs concentrate on the two-dimensional case. To facilitate notation for this case, we

rewrite the equations of motions as follows.

Ball Trajectory: We begin by expressing the ball dynamics as a function of time t:

bxðtÞ ¼ nt cosφþ bx;0; ð20Þ

byðtÞ ¼ nt sinφ �
1
2
gt2 þ yb;0; ð21Þ

where g = 9.81 denotes gravity (on earth). n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_b2x;0 þ _b2y;0

q

and φ ¼ tan � 1
_by;0
_bx;0

represent the

initial velocity of the ball in polar, and _bx;0 and _by;0 in Cartesian coordinates. Without loss of

generality, we assume bx(0) = bx,0 = 0 and by(0) = by,0 = 0.

Impact Time and Impact Point: By setting (Eq 21) to zero and solving for t, we obtain the

ball’s impact time T. We obtain the range or impact point R by resubstituting T into (Eq 20):

T ¼
2n

g
sinφ ð22Þ

R ¼
n2

g
sin2φ ð23Þ

Agent Trajectory: In the two-dimensional case we assume az(t) = 0 for all t. The agent thus

moves on a line and we write a(t) = ax(t). We further assume that the agent’s initial position

a(0) = ax,0 does not coincide with the ball’s initial position, ax,0 6¼ bx,0.

Agent Reference: The following results neglect the agent’s velocity and acceleration con-

straints. Instead, they only deal with the desired agent motion aref(t), which we distinguish

from the actual agent motion a(t). We also refer to aref(t) as the agent reference. Control laws

relating aref and a are covered in the next section.

Chapman’s Proof: From (Eq 8) we know that the tangent of the vertical viewing angle θ
is a function of the agent and ball position. Chapman’s strategy assumes that the velocity of

the vertical viewing angle _y is constant. We can express this assumption with the following
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equation:

byðtÞ
arefðtÞ � bxðtÞ

¼ _yref t þ _yref ;0

¼ _yref t þ
by;0
a0

¼ _yref t;

ð24Þ

where _yref is a constant representing the reference velocity of the tangent of the vertical viewing
angle, called tangent reference velocity. _yref ;0 ¼

by;0
a0 � bx;0

is the initial tangent reference velocity

at time t, which is zero as we assume by(0) = by,0 = 0 (and bx,0 6¼ a0). Moreover, we assume

aref(0) = a(0) = a0

Given these equations, we now prove the following statement:

Theorem 4.2.1. (Chapman’s Proof). Given a parabolic ball trajectory, parametrized by initial
velocity ν and launching angle φ, the agent reference aref(t) coincides with the ball position at
time T, aref(T) = R = bx(T) (“the agent intercepts the ball”) if the agent reference is chosen such
that the tangent of the vertical viewing angle increases linearly, _yðtÞ ¼ const. [5].

Proof. By bringing all terms in (24) to the right-hand side and solving for aref(t) we obtain

the following expression:

arefðtÞ ¼
1
_yref

nt _yref cosφþ n sinφ �
1
2
gt

� �

ð25Þ

We now assess how far the agent is away from impact point R as we approach the impact time

T, by computing the limit of aref(T − δ) − R for δ! 0. After some modest algebraic manipula-

tions we obtain:

lim
d!0

arefðT � dÞ � R ¼ d � n cosφþ
g

2 _yref

 !

¼ 0: ð26Þ

This limit is 0 since δ! 0 is multiplied with a constant expression.

We have now verified Chapman’s proof [5], proving the suitability of his strategy to inter-

cept balls with parabolic trajectories. Next, we can prove a set of interesting lemmas regarding

the relationship of the tangent reference velocity _yref and the agent reference aref.

Lemma 4.2.2. For an agent that moves such that Eq (24) is satisfied, for every set of initial
conditions a0, ν, φ there exists a unique consistent tangent reference velocity _y�ref :

_y�ref ¼
n

a0
sinφ: ð27Þ

Proof. Evaluate Eq (25) for t = 0 and solve for _yref (assuming aref(0) = a0).

This lemma illustrates the tight connection between a0 and _yref . The next lemma, which has

also been shown by [5, Eq 7], studies connection of _yref and the agent reference aref.

Lemma 4.2.3. The agent reference that satisfies Eq (24) is constant, aref = const: the agent
moves from its initial position a0 to the impact point R with constant velocity [5].
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Proof. By substituting _yref in Eq (25) by _y�ref from Lemma 4.2.2 we obtain the consistent
agent reference a�ref :

a�refðtÞ ¼
a0

n sin ðφÞ
n2t
a0

sin φð Þ cos φð Þ þ n sin φð Þ �
1
2
gt

� �

: ð28Þ

By computing the derivative with respect to t we obtain:

da�refðtÞ
dt

¼ n cosφ �
a0g

2n sinφ
¼ _a�ref ; ð29Þ

which is constant. Finally, it is easy to see that _a�ref ¼
R� a0
T .

Lemmas 4.2.2 and 4.2.3 are constructive for creating an open-loop controller that imple-

ments Chapman’s strategy: the agent should estimate the consistent tangent reference velocity

_y�ref and run such that _yðtÞ ¼ _yref . It then runs with constant velocity _a�ref towards the impact

point. We will use this idea to suggest control laws for Chapman’s strategy in the next section.

In practice, however, the agent does not know the consistent tangent reference velocity _y�ref
because it does not have access to the initial conditions a0, ν and φ. To get an intuition about

_y�ref , we first plot its value using Eq (27) for different initial conditions (Fig 4).

We see that _y�ref has similar values for a wide variety of initial conditions. However, the fol-

lowing corollary shows that choosing an inconsistent tangent reference velocity can result in an

agent reference aref that leads to undesired behavior.

Corrolary 4.2.4. Given initial conditions a0, ν and φ, and the consistent tangent reference
velocity _y�ref resulting from Eq (27). If we use an inconsistent tangent reference velocity _y�ref 6¼

_y�ref
for computing the agent reference aref, the agent first moves to a�0 , which is the starting point for
which _y�ref would be the consistent tangent reference velocity, before moving to the impact point R.

This corollary shows that we have to carefully choose the tangent reference velocity because

every inconsistent tangent reference velocity _y�ref is linked to an initial position a�0 —an a�0
that can lie in the opposite direction of the impact point R, even for very small deviations

j _y�ref �
_y�ref j. Such an example is illustrated in Fig 5.

Estimating Consistent Reference Velocity: The obvious next question is how to estimate

_yref in the best way without knowing the initial conditions φ, ν and a0. One idea is to observe

the tangent velocity shortly after the ball is launched, at some small ~t > 0, and set _y�ref ¼
_yð~tÞ

(in Section 4.3.4 we will introduce this strategy as COV-IO). To assess how severely this (incon-

sistent) choice of _y�ref deviates from the consistent _y�ref and how it affects the agent reference,

we compute how much the resulting inconsistent initial agent position a�0 differs from the

actual initial position a0.

Lemma 4.2.5. Assume the initial starting position of the agent is a0 = R + D0, where D0

denotes the agent’s initial distance to the impact point R. If the agent observes _y�ref ¼
_yð~tÞ after

~t ¼ d � T time steps, 0< δ< 1, (that means after 100 � δ percent of the entire trajectory length)
the difference of the inconsistent initial agent position a�0 differs from the actual initial position a0

by

a�0 � a0 ¼ D0
d

1 � d
: ð30Þ
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Proof. We first compute _y�ref by solving Eq (24) for _yref , substituting t by ~t ¼ d � T and

substituting a0 by R + D0:

_y�ref ¼ �
ngðd � 1Þ sin ðφÞ

D0g � dn2 sin ð2φÞ þ n2 sin ð2φÞ
: ð31Þ

Next, we compute the inconsistent a�0 by replacing _yref in Eq (27) with _y�ref :

a�0 ¼
1

gðd � 1Þ
� D0g þ dn2 sin 2φð Þ � n2 sin 2φð Þð Þ; ð32Þ

and finally compute a�0 � a0 ¼ a
�
0 � R � D0 which yields Eq (30).

Fig 4. Consistent _θ�ref for varying initial distance from impact point D0 = a0 − R and varying initial ball velocity ν while keeping φ= π
4 fixed. Values greater 1 are

clipped. Different values for φ only moderately scale the value of _y�ref (see Eq 27).

https://doi.org/10.1371/journal.pone.0197803.g004

No free lunch in ball catching: A comparison of Cartesian and angular representations for control

PLOS ONE | https://doi.org/10.1371/journal.pone.0197803 June 14, 2018 18 / 48

https://doi.org/10.1371/journal.pone.0197803.g004
https://doi.org/10.1371/journal.pone.0197803


Fig 5. Chapman’s strategy for initial conditions D0 = 10m;ν= 30 m
s , without perturbations, and for an adversarially chosen tangent reference velocity

_θ�ref = 0:1885 (deviating by −0.02 from the consistent _θ�ref = 0:2085). The agent implements the COV strategy which is described in Section 4.3, using the simulation

setup from Section 4.4. We see that the agent initially runs in the wrong direction, away from the ball, before turning at t = 0.8 to head towards the ball. While this

deviation still allows the agent to catch the ball, _y�ref ¼ 0:161 (deviation of −0.027 from _y�ref ) would already result in an unsuccessful catch. Top left: agent and ball

position. Top right: tangent of the vertical viewing angle and its derivatives; the dotted black line indicates the consistent _y�ref value, the dotted gray line indicates the

adversarially chosen inconsistent _y�ref . Bottom left: agent velocity (dashed lines denote velocity contraints). Bottom right: agent acceleration (dashed lines denote

acceleration constraints).

https://doi.org/10.1371/journal.pone.0197803.g005
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Interestingly, the expression in Eq (30) only depends on the initial distance D0 of the agent

to the impact point and the time the agent waits to observe the current reference velocity, T � δ.

Fig 6 plots the error for different distances and observation times. We see that the error

increases linearly with distance D0, and is lower the earlier the agent observes it.

Perturbed Trajectories: All results so far only hold for the ideal case, that is for a ball mov-

ing on an ideal parabolic trajectory. However, in realistic settings, the trajectory is perturbed

by both random and systematic noise, such as drag. We now show that Chapman’s strategy

adapts the agent reference to such noise:

Lemma 4.2.6. If the ball trajectory is perturbed by some function ε(t) in the horizontal compo-
nent, bx

0
ðtÞ ¼ bxðtÞ þ εðtÞ, the agent reference adapts by changing to

a0refðtÞ ¼
1
_yref

n sinφ �
1
2
gtþ _yref nt cosφþ ε tð Þð Þ

� �

: ð33Þ

Proof. It can be easily shown by substituting bx(t) in Eq (25) by bx(t) + ε(t).
Note that ε(t) can be in principle any source of noise. For example, we can approximate

drag by ε(t), as exemplified in Fig 7. This finding shows why Chapman’s strategy has been pre-

viously reported to be robust to drag [38], and it clearly distinguishes it from the Cartesian

control strategies which were not invariant to different drag parameters (Section 4.1.4). How-

ever, this result only characterizes the influence of noise on the agent reference trajectory;

velocity and acceleration constraints influence the agent’s ability to follow the reference

Fig 6. Difference between the inconsistent and the actual initial agent position, when observing the tangent reference velocity after 1%, 5% or 10% of the entire

trajectory length.

https://doi.org/10.1371/journal.pone.0197803.g006
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trajectory, and we will see in Section 4.4 that high-frequency perturbations causes problems in

practical applications.

4.3 Control laws for Chapman’s strategy

The previous section has shown under which conditions Chapman’s strategy generates an

agent reference trajectory aref that, if followed, guarantees interception of the ball. However, it

ignored motion constraints that apply in realistic settings. We now discuss control laws for

tracking aref. In the related work section (Section 3), we already discussed three control laws

for Chapman’s strategy: the angle prediction (AP) strategy directly uses the tangent θ, the con-
stant optical velocity (COV) uses its velocity _y, and the optical acceleration cancellation (OAC)
uses the acceleration €y.

We now show that AP, COV and OAC all work equivalently, but differ with respect to how

they estimate the tangent reference velocity _yref . We begin by formalizing the control laws that

implement AP, COV and OAC. We then show how to relate these control laws to each other

in order to demonstrate their equivalence.

To facilitate our analysis, we assume that the agent applies a simple proportional control

law:

u ¼ kp e; ð34Þ

with some proportional gain kp and error e. We can thus focus on how AP, COV and OAC

define the control error e.
Remark: In Section 3 we mentioned that in practical implementations bang-bang control

is used instead of P-control. This is due to the high system noise when sensing the vertical

viewing angle and its tangent, respectively [40, 44] However, P-control and bang-bang control

Fig 7. Example illustrating that drag can be closely approximated by the horizontal perturbation function ε(t). In this example, we simulate a ball with massmb =

0.15 kg, radius rb = 0.0366 m, drag parameters cd = 0.5, A = πr2, ρ = 1.293 and initial conditions n ¼ 30 m
s , φ ¼

p

4. The figure shows the ideal trajectory of the ball

without drag (black line), with drag (blue line) and the fitted trajectory resulting by adding ε(t) = −1.11t2 to xb(t) (red dashed line). Note that ε(t) is different for every

set of drag parameters and initial conditions.

https://doi.org/10.1371/journal.pone.0197803.g007
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are equivalent if we set kp to an extremely large value and assume that the control output u is

clipped.

Angle Prediction (AP): Assuming the tangent reference velocity _yref to be known, the

agent predicts the next value θ and compares it to the observed value:

eAPðtÞ ¼ ðyðt � DtÞ þ _yref DtÞ � yðtÞ: ð35Þ

A variant of AP with explicit dependency on time t has also been suggested [49]:

e0APðtÞ ¼ _yref t � yðtÞ: ð36Þ

We see that equivalence eAPðtÞ ¼ e0APðtÞ holds if _yðtÞ ¼ _yðt � DtÞ ¼ _yref for all t:

e0APðtÞ ¼ _yref t � yðtÞ ¼ ðyðt � DtÞ þ _yðt � DtÞDtÞ � yðtÞ¼ð _yðt� DtÞÞ¼ _yref
eAPðtÞ: ð37Þ

However, in practice _yðtÞ is not constant, and thus we focus on eAP.

Constant Optical Velocity (COV): COV [41] also assumes _yref to be known and compares

it to the current tangent velocity _y:

eCOVðtÞ ¼ _yref �
_yðtÞ: ð38Þ

Optical Acceleration Cancellation (OAC): OAC does not assume _yref to be known and

instead zeros the acceleration €y [40, 43]:

eOACðtÞ ¼ � €yðtÞ ð39Þ

AP, COV and OAC are equivalent: We show how the previously proposed control laws

are related through the error terms eAP, eCOV and eOAC.

Theorem 4.3.1. AP, COV and OAC all maintain the tangent velocity of the vertical viewing
angle equal to some desired reference velocity _yref . The different implementations of Chapman’s
strategy only differ in the way this reference velocity is estimated.

Lemma 4.3.2. eAP and eCOV only differ by a multiplication with a scalar, namely the frame
rate.
Proof.

eCOVðtÞ ¼ _yref �
_yðtÞ ¼ _yref �

1
Dt
½yðtÞ � yðt � DtÞ� ð40Þ

¼
1

Dt
ð _yref Dt � yðtÞ þ yðt � DtÞÞ ð41Þ

¼
1

Dt
eAPðtÞ: ð42Þ

Lemma 4.3.3. OAC is equivalent to AP and COV, if AP and COV employ an adaptive tangent
reference velocity _yref ≜ _yðt � DtÞ.
Proof.

eOACðtÞ ¼ � €yðtÞ ¼
1

Dt
ð _yðtÞ � _yðt � DtÞÞ ð43Þ

¼ �
1

Dt2
ð� yðtÞ þ yðt � DtÞ þ _yðt � DtÞDtÞ ð44Þ
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By setting _yref :¼ _yðt � DtÞ and re-arranging we obtain

eOACðtÞ ¼
1

Dt2
ð _yref Dt � yðtÞ þ yðt � DtÞÞ ð45Þ

¼
1

Dt2
eAP: ð46Þ

Theorem 4.3.1 then follows from Lemma 4.3.2 and Lemma 4.3.3.

We see that eOAC and eAP both assume a fixed _yref and only differ by a constant scaling fac-

tor—the square of the frame rate. In contrast, OAC updates the tangent reference velocity _yref

in every time step using the tangent velocity from the previous time step. We hypothesize that

OAC will generate more complex behavior since the implicitly optimized reference velocity

will drift with the current observation (since velocity and acceleration constraints will prevent

the agent for optimally zeroing the control error). Moreover, OAC will be more affected by

sensing noise as it needs to numerically compute €y, the second derivative of tan α.

Based on the insights from the previous sections, we now present novel implementations of

Chapman’s strategy. These implementations use a bang-bang controller to zero the control

error e, but define e in such a way to address shortcomings of previously suggested implemen-

tations, COV/AP and OAC.

4.3.4 Constant optical velocity with Initial Observation (COV-IO). The first implemen-

tation exploits Lemma 4.2.5 which state that the tangent reference _yref can be estimated

robustly when observing _y at the beginning of the ball trajectory. This overcomes the issue of

COV and AP of assuming a fixed a value for _yref . We term this implementation COV-IO, for

Constant Optical Velocity with Initial Observation of _yref .

We further increase the robustness of COV-IO by filtering both the estimate _yref as well as

the current reference velocity _y (detailed in the supplementary material S2 Text).

4.3.5 Combining COV and OAC—COV-OAC. The second implementation exploits

Lemma 4.3.3, which establishes a relation between COV and OAC. It allows us leverage the

fact that OAC does not require explicit computation of _yref and combine it the COV’s advan-

tage of not having to compute a second derivative of the tangent velocity €y. The reason we

want to avoid the second derivative is because it amplifies random noise, in particular at high

control rates.

We thus suggest COV-OAC, which estimates _yref using the delayed tangent velocity

_yðt � D _yref
Þ:

eCOV� OACðtÞ ¼ _yðtÞ � _yðt � D _yref
Þ: ð47Þ

If D _yref
¼ Dt, the controller reduces to a standard (unnormalized) OAC controller, otherwise

if D _yref
¼ t we obtain COV-IO. In practice, we choose a value 0 < D _yref

� t that approxi-

mates OAC close enough while still compensating high-frequent random fluctuations. To

increase robustness to noise even further, we use moving average filters for estimating _yðtÞ
and _yðt � D _yÞ, similar to COV-IO.

We hypothesize that COV-IO and COV-OAC result in the most robust implementations of

Chapman’s strategy, in particular when random noise is present. To validate this hypothesis,

we will compare our two novel implementations of Chapman’s strategy to COV(/AP), OAC

and the Cartesian controllers in simulated experiments in Section 4.4.
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4.3.6 Remark on the biological plausibility of Chapman’s strategy. We would like to

remark that the existence of COV-IO and COV-OAC counters an argument brought forward

by [50] regarding the biological plausibility of Chapman’s strategy. The authors conclude that

humans do not use Chapman’s strategy because they lack the ability to visually perceive accel-

erations accurately enough for control. The fact that COV-IO and COV-OAC only rely on the

computation of (averaged) velocities clearly disproves this argument.

4.3.7 Angular control in three dimensions: Constant bearing angle. So far, we have

been concerned with the two-dimensional scenario. As explained in Section 2.7.1, the bearing

angle can be used to extend any implementation of Chapman’s strategy to three dimensions.

The idea is to combine the control output of Chapman’s strategy, which we denote by uChapman

with a second control output uCBA which maintains a constant bearing angle β between the

agent and the ball. The two control outputs are then applied to perpendicular axes, formally

u ¼ uChapmanv þ uCBAv?; ð48Þ

where v = [vx, vz]T = [ax − bx, az − bz]T is the vector pointing from the agent to the ball’s shadow

on the ground plane, v? = [vz, −vx] is the orthogonal vector on the ground plane (see Fig 1A)

and

uCBA ¼ kCBA _b: ð49Þ

for some constant gain kCBA.

Implementation: We apply two techniques to make CBA robust to random noise. First, we

compute _b by finite differencing at some low frequency 1
Db
;Db < Dt:

_bðtÞ ¼
bðtÞ � bðt � DbÞ

Db

: ð50Þ

Second, we apply a moving-average filter similar to OAC-COV (Section 4.3.5). In total, this

introduces three hyperparameters, the time delay Δβ as well as the averaging window sizes hβ
and hbref

.

4.3.8 Chapman and the Markov property. We conclude the theoretical analysis of the

angular control strategies by discussing their relationship to the Markov property. As dis-

cussed before, the Markov property is an important prerequisite for using optimal control and

reinforcement learning. For example, the theoretical guarantees for LQG do not hold if we

cannot provide a Markov state representation. Therefore, it is interesting to study whether the

angular representation used by Chapman’s strategy (depending on the implementation, θ, _y or

€y) fulfills the Markov property. If this was the case, we might consider applying LQG or a simi-

lar variant to the angular representation.

However, it turns out that neither θ, _y nor €y are Markov. The full proofs are lengthy and

can be found in the supplementary material (S1 Text). As an example, we provide an intuitive

explanation for why θ is not Markov. The idea is to show that, even if the agent does not

move and the environment is deterministic, we cannot predict the future θ(t0) from a single

observation θ(t) for any t0 > t. Such a case can easily be found: we just look at different initial

conditions ν0 6¼ ν1, φ0 6¼ φ1 that result in trajectories θ1(t), θ2(t) which cross at some point

θ1(t1) = θ2(t2) but have different slopes _y1ðt1Þ 6¼ _y2ðt2Þ. Similar type of reasoning can be carried

out to show that _y and €y are not Markov, either.

We will discuss the implications of this finding in Section 7.

No free lunch in ball catching: A comparison of Cartesian and angular representations for control

PLOS ONE | https://doi.org/10.1371/journal.pone.0197803 June 14, 2018 24 / 48

https://doi.org/10.1371/journal.pone.0197803


4.4 Experiments

The goal of the following section is to verify our theoretical findings about the Cartesian and

angular controllers for ball catching. To that end, we conduct a large set of experiments testing

both types of controllers in simulated experiments under a variety of different perturbations.

These experiments will show that both types of controllers result in optimal catching perfor-

mance in the ideal case but that there is “no free lunch” for any of the two types: whereas

Cartesian controllers are impeded by systematic modeling errors, resulting from wrong

assumptions about drag, the performance of angular controllers degrades when high amounts

of Gaussian noise is present.

4.4.1 Experimental set-up. We now present the experimental set-up, including a descrip-

tion of the physical simulation environment, the set of tested perturbations and the controller

implementations.

All code has been made publicly available at https://github.com/shoefer/ball_catching.

Simulation: In our simulation we choose the ball parameters to standard baseball rules

with massmb = 0.15 kg and radius r = 0.0366 m. When simulating drag, we assume experi-

mentally established parameters for baseballs [51]: air density r ¼ 1:293 kg
m3, frontal area

A = πr2 and drag coefficient cw = 0.5. To model the agent, we use the approximate values of

olympic sprinters who can run with a maximal acceleration of roughly €amax ¼ 3 m
s2 and reach a

maximum velocity of _amax ¼ 11 m
s [52, 53]. The simulation runs at a frame rate of 60 Hz (time

constant Dt ¼ 1
60 s).

Initial Conditions: For each strategy and noise scenario we test different ball-agent config-

urations. In all configurations, the agent is in principle able to catch the ball, given its velocity

and acceleration constraints, but we include extreme cases where the agent must operate at its

limits to be successful.

In two dimensions, we use the configurations suggested by [43]. The initial ball launching

angle is always set to φ ¼ p

4, and we vary (i) the initial ball velocity ν = {20, 24, 28, 32, 36, 40}

and (ii) the distance of the agent to the ball’s impact point D0 2 {−15, −10, −5, 0, 5, 10, 15}

(D0 = a0 − R, see Fig 1B).

In three dimensions, we additionally vary the initial position of agent in the direction

orthogonal to the ball trajectory (z-axis in Fig 1B), parametrized by the angle ψ. We report the

averaged results over c 2 p

16 ;
p

8 ;
p

4 ;
p

2

� 	
.

In the cases where random noise is applied to the ball trajectory, we must ensure that the

initial conditions regarding the agent’s position hold. We therefore run the simulation twice in

order to determine the actual ball impact point: we first record the ball trajectory including the

actual noise, and then position the agent at the right distance to the actual impact point and

replay the ball trajectory recorded in the first run.

Measuring Performance Criteria: In order to evaluate the performance of a controller we

use the terminal distance cost Lterminal distance defined in Section 2.3.

Perturbations We distinguish two types of perturbations.

Perturbations of the ball trajectory: These include (i) drag, (ii) wind gust (wind over short

period of time) and (iii) turbulence (spin, Magnus force, and so on).

Perturbations of the agent’s sensory and motor capabilities: These include (iv) sensor

noise, (v) motor noise, (vi) sensorimotor delay and (vii) reduced control rate. Table 1 summa-

rizes all perturbations and their implementations.

To keep the number of experimental conditions at reasonable size, we vary the perturba-

tions to (iii) turbulence, (iv) sensor noise and (v) motor noise jointly, that is always use the

same standard deviation σ for them. We therefore refer to these three perturbations as Gauss-
ian perturbations.
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The main set of experiments studies the influence of individual perturbations (listed in

Table 1). Additionally, we test a worst case scenario with Gaussian noise σ = 0.1, wind and 400

ms delay (we run this scenario both with and without drag and reduced control rate).

In order to obtain statistically significant results, we run every controller five times for

every experiment.

4.4.2 Controller implementations. We test the angular controllers COV, OAC, COV-IO

and COV-OAC and the Cartesian controllers (i)LQG (Section 4.1) and MPC [16]. For the con-

trollers that have external parameters, we conducted preliminary experiments and determined

the set of parameters that performed good both at ideal and perturbed cases. Additionally, we

make the model parameters used to generate the Cartesian controllers explicit by writing (i)

LQGno drag for a model that assumes an ideal ball trajectory, (i)LQGdrag:baseball for a model that

assumes drag parameters of a baseball, and so on.

Furthermore, we need to take special care for evaluating the MPC controller. First, it uses

a slightly more complex agent representation. To guarantee a fair comparison to the other

methods, we tested a variety of different parameters and selected the ones that yielded the best

average performance (detailed in the supplementary material S2 Text). Second, the implemen-

tation provided by the authors is computationally expensive. To be able to collect sufficient

amounts experimental data, we only simulate the strategy at a frame rate of 10 Hz (as in the

original paper). We therefore mark the strategy with a � in all comparisons where it is evalu-

ated with a different frame rate than the other strategies.

Table 2 summarizes the controllers and the parameters used.

Controller Implementation in 3D: The Cartesian controllers (i)LQG and MPC can be

readily applied to both the two- and the three-dimensional case. To extend the angular strate-

gies, we combine them with constant bearing angle (CBA, Section 4.3), using parameters

Δβ = 0.15 s and hb ¼
1
6 s.

Table 1. Overview of implemented perturbations.

Perturbation Implementation Values

Ball

Drag (air
resistance)

See Eq (2). (i) off, (ii) on.

Wind gust Force Fwind applied for 0.1 s after 0.4T (trajectory duration). (i) headwind Fwind = (−8, 2, 0)T

(opposite to flight direction,

lifting),

(ii) tailwind Fwind = (8, 2, 0)T (in
flight direction, lifting).

Turbulence Gaussian noise (μ = 0,S = σ I) applied to ball position. (i) σ = 0.001, (ii) σ = 0.01, (iii) σ =

0.1

Agent

Sensor noise Gaussian noise (μ = 0,S = σλd||a − b||2 I) applied to sensed
ball position/velocity, modulated with agent-ball distance.

(i) σ = 0.001, (ii) σ = 0.01, (iii) σ =

0.1, λd = 0.05.

Motor noise Gaussian noise (μ = 0,S = σ I) added to u. (i) σ = 0.001, (ii) σ = 0.01, (iii) σ =

0.1.

Sensorimotor
delay

Time delay for agent to receive visual stimulus. (i) 0 ms (off)

(ii) 200 ms (average reaction time

of humans at college age, [54]),

(iii) 400 ms (extreme case, as in

[16]).

Control rate Simulation time step Δt. (i) 60 Hz, (ii) 10 Hz.

https://doi.org/10.1371/journal.pone.0197803.t001
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4.4.3 Results. We now present the main results of our experiments. We study the results

as to whether they confirm our two main hypotheses: that both angular and Cartesian control-

lers are optimal in the ideal case, but that different perturbations affect them in different ways.

Since the results for the two- and three-dimensional cases are largely equivalent, most of

the plots depicted in the following only show results from the two-dimensional case. For the

reader’s convenience, the results in three dimensions are provided in the supplementary mate-

rial (S1 Fig).

Both Angular and Cartesian Control Solve the Ideal Case: We first study the performance

of the controller implementations in the ideal case, without perturbations. Fig 8 shows the ter-

minal distance averaged over all initial conditions. We see that (i)LQG, MPC, OAC, COV-IO

and COV-OAC perform optimally, achieving close to zero terminal distance. This result con-

firms our theoretical analysis: (i)LQG and MPC guarantee optimal performance since their

assumptions are fulfilled. COV-OAC is optimal as it is a direct implementation of Chapman’s

strategy (Section 4.3). The good performance of COV-IO, which sets _yref according to the ini-

tial observation, has been predicted by Lemma 4.2.5. We also see that for COV-IO the agent

attains a value close to the consistent agent velocity _aref (Fig 9), as proved in Lemma 4.2.3.

Only COV performs inferior because it uses a fixed value for _yref—as predicted by Corollary

4.2.4. We therefore exclude COV from the following experiments.

We conclude that all sensible implementations of the angular and Cartesian controllers suc-

ceed in the ideal scenario.

No Free Lunch for Angular and Cartesian Control: Next, we inspect the influence of per-

turbations on controller performance. Figs 10 and 11 depict the average performance in the

two-dimensional case when applying perturbations individually.

First, we observe that most of the angular and Cartesian controllers are largely unaffected

by a reduced control rate, wind, and sensorimotor delays (Fig 10). Only delays of 400 ms

pose a problem for the controllers, but solely because the delayed observation in combination

with the agent’s motion constraints render extreme initial configurations unsolvable. We will

thus focus on Gaussian perturbations (turbulence, sensor and motor noise) and drag in the

following.

Table 2. Controller implementations. For angular controllers only parameters for the two-dimensional case are

shown, see text for parameters in three dimensions.

Name Description Parameter Settings

Angular Controllers

OAC Optical acceleration cancellation -

COV Constant optical velocity (equivalent

to AP, see Lemma 4.3.2)

_yref ¼ 0:2

COV-IO COV with initial observation of _yref
h _y ¼

1
12 s, h _y ref

¼ 5
12 s.

COV-OAC COV with delayed _yref estimation h _y ¼
1
12 s, h _y ref

¼ 5
12 s, D _y ref

¼ 1
6 s.

Cartesian Controllers

(i)LQGnodrag,

(i)LQGdrag:baseball,

(i)LQGdrag:soccer

(Iterative) linear-quadratic Gaussian

control with different drag dynamics

Cost function terms:

wterminal distance = 1000,

wcontrol effort = 0.1. Full dynamics and parameters for

(extended) Kalman filter are given in the

supplementary material (S2 Text).

MPCnodrag Model-predictive control in belief

space [16]

F1 = 7.5, F2 = 7.5, M = 10−3, O = 10−15.

The internal model is equivalent to the one used by (i)

LQG without drag.

https://doi.org/10.1371/journal.pone.0197803.t002
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Angular controllers are impaired by high Gaussian perturbations: Fig 11 shows that

OAC performs significantly worse for low amounts of Gaussian noise, whereas COV-IO and

COV-OAC perform optimally for the low and medium setting. The reason is that COV-IO

and COV-OAC operate on the first derivative of θ and use moving average filtering, whereas

OAC operates on the second derivative, which amplifies noise much stronger. However, the

performance of COV-IO and COV-OAC degrades for high Gaussian noise, whereas (i)LQG

only degrades a bit and MPC is barely affected.

Cartesian controllers are impaired by wrong model assumptions regarding drag: The

plots in Fig 12 show that the performance of all Cartesian controllers degrades significantly

when the underlying model assumes wrong drag parameters. Fig 13 illustrates the behavior of

the controllers with wrong drag assumptions in three dimensions. If the Cartesian controller

assumes drag but we do not simulate it, the controller systematically overestimates the range R
of the trajectory (Fig 13, top row). In the opposite case, the Cartesian controllers underestimate

the range (Fig 13, bottom row).

Finally, Fig 14 shows how the controllers are affected by combinations of perturbations.

We see that in the worst case scenario where all perturbations are applied with the highest

value, both types of controllers perform similarly bad. Figs 15 and 16 show that the same

holds true for the control effort. This confirms our result that there is no free lunch for

any type of controller: angular controllers are impaired by high Gaussian noise, Cartesian

Fig 8. Comparison of ball catching strategies in 2D for ideal case.

https://doi.org/10.1371/journal.pone.0197803.g008
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Fig 9. COV-IO: Agent velocity and tangent of vertical viewing angle velocity, initial conditions D0 ¼ 10m;ν ¼ 32 m
s ;φ ¼

π
4.

https://doi.org/10.1371/journal.pone.0197803.g009
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controllers by wrong drag parameters, yet both perform equally bad when averaged over the

various scenarios.

5 On the optimality of Chapman’s angular control strategy

The previous section provided new insights about the differences between generalist and spe-

cialist approaches to ball catching: we showed that angular controllers generalize better to

Fig 10. Comparison of ball catching strategies in 2D: Sensitivity to different individual perturbations.

https://doi.org/10.1371/journal.pone.0197803.g010

Fig 11. Comparison of ball catching strategies in 2D: Sensitivity to Gaussian perturbations.

https://doi.org/10.1371/journal.pone.0197803.g011
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systematic and Cartesian controllers better to Gaussian perturbations of the ball trajectory.

This raises the question about the main cause for these differences.

The goal of this section is to show that optimality is not a criterion: therefore, optimization

is a valid tool to obtain both generalist and specialist, “heuristic” solutions for decision making

problems. We have discussed in Section 3 that this result is known for the non-sequential deci-

sion making setting, and our result extends it to the sequential decision making setting.

To make this point, we show that the specialist approach to ball catching, the angular con-

trol strategy, is optimal in its “preferred” environment: an environment with systematic, but

without Gaussian perturbations. We show this by conducting the following experiment: the

agent has to learn how to catch the ball (i) in an environment without Gaussian perturbations,

but the agent is only given access to (ii) observations from a (simulated) camera and to (iii) a

reward signal proportional to its catching performance. This setting leaves it open to the agent

Fig 12. Comparison of ball catching strategies in 2D for drag, and performance of (i)LQG with wrong drag model in ideal case.

https://doi.org/10.1371/journal.pone.0197803.g012

Fig 13. Agent trajectories (bird’s eye view) for different strategies in the three-dimensional case with and without drag. Initial conditions are set to

D0 ¼ 15m; n ¼ 40 ms ;φ ¼
p

4 ;c ¼
p

4. Top row: with drag. Bottom row: without drag.

https://doi.org/10.1371/journal.pone.0197803.g013
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how to use the observation to solve the ball catching task. Hence, if we can show that the agent

learns a successful controller and that the learned controller structurally resembles any of the

angular control strategies presented in the previous section, we show that the angular control

strategy is optimal for this environment.

5.1 Learning setting

We now provide a high-level overview of the learning setting and the structure of the argu-

ment that we show the optimality of the angular control strategy. An in-depth treatment of all

technical details will be given in Section 5.2.

In the following, we confine ourselves to the two-dimensional ball catching scenario (Sec-

tion 4.4.1). The reason is that the previous section provided strong theoretical guarantees for

both Cartesian and angular control in this case, and it results in a lower-dimensional camera

image, facilitating the analysis of what is learned.

We will begin our argument by providing an explicit list of biases used in the learning

experiments. The purpose of this list is to enable the reader to convince herself that all

employed biases and assumptions are task-general and not tailored to the ball catching prob-

lem—and thus do not implicitly rely on any heuristics.

Next, we will explain the camera model that simulates observations, and show how to use

reinforcement learning to learn a controller that is directly applied to the observations. We will

Fig 14. Sensitivity to combinations of perturbations (2D).

https://doi.org/10.1371/journal.pone.0197803.g014
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then show how to manually implement the angular controllers COV-IO and COV-OAC as

baselines. Importantly, we will use the same camera model and controller parametrization as

for the learned controllers. This will allow us to compare the parameters of the learned control-

lers with the baselines, and thus show that an equivalence between these holds. This equiva-

lence will show that the reinforcement learning procedure is able to learn an angular

controller that forms an instance of the specialist, heuristic ball catching approach.

5.1.1 Biases for learning. In our experiment, we rely on a set of assumptions and learning

biases which we summarize in Table 3. The reason why this list might seem long at first sight is

because most of these biases are commonly left implicit in applications of optimization and

machine learning. For example, linear functions are very common as they can be learned effi-

ciently and are effective at solving many tasks while still being easy interpret. Their interpret-

ability enables us to show that the agent indeed learns an angular controller.

Inevitably, these assumptions impose a bias on the policy and thus exclude certain types of

solutions. In particular, the assumption of a linear policy implies that it is stationary, which

excludes any type of Cartesian controller (Section 4.1.4). Although we might be able to learn a

Cartesian controller by removing assumptions (for example using a recurrent neural network)

it is not the scope of this experiment to show that reinforcement learning is more likely to find

an angular or Cartesian controller. Instead, we aim to show that we can state an optimization

problem with reasonable, task-general assumptions, and that the solution to this problem is a

Fig 15. Control effort in ideal case (2D).

https://doi.org/10.1371/journal.pone.0197803.g015
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Fig 16. Control effort affected by combinations of perturbations (2D).

https://doi.org/10.1371/journal.pone.0197803.g016

Table 3. Biases used in the reinforcement learning experiment for ball catching.

Bias Description Where Explained

Simulated camera To provide the input to the agent we simulate a camera that

generates a 1D gray-scale image.

[13], Section

5.1.2, Fig 17

Full observability In order to observe the ball at any position, we assume that the agent

has a 180 degree field of view.

Section 5.1.2

No high-frequency

Gaussian noise

The agent does not have to deal with any form of high-frequency

Gaussian noise, but only drag.

–

Augmented input We augment the camera image given as input by applying a time-
embedding, including images of previous time-steps, and temporal

pixel-wise image derivatives. We test various combinations of input

augmentations, considering them as features to be selected by the

learner.

[55], Section 5.1.2

Linear P-control policy The agent maps pixels to motor outputs (accelerations) using a linear
mapping. The mapping is factored into two components: a pixel-

specific weight vector and a scalar proportional gain factor.

Section 5.1.3

Curriculum learning To guide optimization we start training with simple initial

conditions and proceed to more complex ones as soon as the agent’s

learning performance progresses.

[56], Section 5.1.3

Vision-related

regularization

We incorporate prior knowledge about the camera model by

regularizing the policy, enforcing similar weights for adjacent pixels.

[57], Section 5.1.3

https://doi.org/10.1371/journal.pone.0197803.t003
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heuristic angular controller. This shows that angular controllers can be considered as optimal

with respect to these assumptions.

We turn to an overview of the learning experiment. For every component of our scenario,

we will refer back to the list of biases presented in Table 3 and detail how each bias is imple-

mented. To guide the reader, we will mark each reference to a bias with an underscore.

5.1.2 Camera model. In order to perform learning directly on sensor data we equip

the agent with a simulated camera sensor, illustrated in Fig 17. The camera provides a full

180˚view, with the ball occupying a certain set of pixels in the camera image depending on its

position in the environment. We term this image the raw observation and denote it by ~o 2 RN

with dimensionality N. The 180˚ view ensures that the full observability bias is fulfilled. This

bias is helpful in two regards: it is based on the same position-controlled agent model used in

the previous section and thus allows us to transfer our previous insights for analyzing the

learned policies. Further, fully observable problems are much easier to solve using learning

than partially observable problems.

All implementational details about the camera model are provided in the supplementary

material (S3 Text).

Input Augmentation: The successful controllers presented in the previous section operate

both on an input signal as well as on higher derivatives of this signal—for example, the angular

controllers operate on θ, _y or €y, and the Cartesian controllers on a;b; _a and _b. To enable the

learner to come up with a successful control policy, too, we augment the raw observation such

that the policy is able to compute derivatives, if necessary. The controller is thus provided with

Fig 17. Exemplary raw observations generated by the simulated camera model. The agent a observes the ball bt at different times t and receives a 1D image with a

field of view of 180˚.

https://doi.org/10.1371/journal.pone.0197803.g017
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these augmented observations as input. In order to distinguish them from the raw observations

~o, we denote the augmented observations by o.

We augment the observation in two ways. First, we combine the current image ~oðtÞ
with a temporal derivative of the image _~oðtÞ, computed using image differencing

_~oðtÞ ¼ ~oðtÞ � ~oðt � 1Þ. The notation for referring to this type of augmentation is

o ¼ ~o � _~o, where � denotes the concatenation of two vectors. Second, we add a second

delayed camera image to the observation: either the image at initial time tinit or the image

that is delayed by tdelay.

Enriching the input in this way implements the augmented input bias. Note that we also

evaluate the performance operating directly on the non-augmented observations. The com-

plete list of tested augmentations is provided in Table 4.

5.1.3 Reinforcement learning on observations. The task of the agent is to learn a control-

ler π(o) = u, called policy in the reinforcement learning setting, which maps every observation

o to a control signal u. (Here the control signal u is scalar since we only consider the two-

dimensional scenario.) We now explain how we define the policy π and use reinforcement

learning to find π.

Linear Policy: In our experiments, we exploit the linear P-control policy bias by decompos-

ing π such that it mimics the structure of a P-controller. This allows the learner to compute the

control input and the control gain separately:

pðoÞ ¼ vwTo; ð51Þ

where v 2 R denotes the scalar gain factor and w 2 RN the pixel-specific weight vector; N corre-

sponds to the size of the (augmented) observation o.

We train one policy per augmented observation type and evaluate which one perform best

(according to their terminal distance at impact time).

Policy Search Using CMA-ES: We apply model-free, policy-based reinforcement learning,

using the stochastic optimization method Covariance Matrix Adaption—Evolutionary Strategy
(CMA-ES) [58, 59]. Evolutionary methods such as CMA-ES optimize the policy π by maintain-

ing a set of candidate policies, and by iteratively sampling new policies based on their perfor-

mance with respect to a given cost LES until converging to a local optimum of this cost.

To apply CMA-ES to the ball catching problem we could, in principle, set LES to the termi-

nal distance cost Lterminal distance, which we already used in Chapter 4 to assess the performance of

angular and Cartesian controllers. However, applying this cost directly results in slow or bad

performance, as explained in the following. Therefore, we use the regularized worst-case termi-
nal distance cost

LES ¼ Lyterminal distance þ lLspatial; ð52Þ

which consists of a modified version of the terminal distance cost Lyterminal distance and an addi-

tional regularization term Lspatial, weighted by hyperparameter λ. These two terms will be

Table 4. Observation augmentations.

Time-embedding

Observation type Current (t) Current & initial (t, tinit) Current & delayed (t, t − tdelay)

Observation ~o oðtÞ ¼ ~oðtÞ oðtÞ ¼ ~oðtÞ � ~oðtinitÞ oðtÞ ¼ ~oðtÞ � ~oðt � tdelayÞ

Derivative _~o oðtÞ ¼ _~oðtÞ oðtÞ ¼ _~oðtÞ � _~oðtinitÞ oðtÞ ¼ _~oðtÞ � _~oðt � tdelayÞ

Obs. & Derivative ~o; _~o oðtÞ ¼ ~oðtÞ � _~oðtÞ oðtÞ ¼ ~oðtÞ � _~o ðtÞ

�~oðtinitÞ � _~o ðtinitÞ

oðtÞ ¼ ~oðtÞ � _~o ðtÞ

�~oðt � tdelayÞ � _~oðt � tdelayÞ

https://doi.org/10.1371/journal.pone.0197803.t004
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explained in the following. They address practical learning issues of applying CMA-ES to the

ball catching problem and incorporate the biases curriculum learning and vision-related

regularization.

Optimizing for Multiple Initial Conditions: Our ultimate goal is to find a policy π that

works well for a wide range of initial conditions. However, Lterminal distance only evaluates the per-

formance of π for a single initial condition. We therefore evaluate every candidate policy con-

sidered by CMA-ES on a set of initial conditions I , and compute the worst-case terminal
distance cost for this set:

Lyterminal distance ¼ max
i2I

Lterminal distance: ð53Þ

By considering only the initial condition where the policy performs worst, we avoid that the

optimization procedure settles on a local optimum where the policy performs very well on

some, but very bad on other initial conditions.

Curriculum Learning with CMA-ES: Optimizing for the worst-case cost Lyterminal distance is

costly and thus increases the runtime of CMA-ES if the set of initial conditions I is very large.

To resolve this problem, we use curriculum learning to adapt the set of initial conditions I in

every iteration of CMA-ES: we sort all initial conditions by difficulty in ascending order. We

then define sets I 0; I 1; . . . ; IM of increasing size as follows: I 0 ¼ fi0g only contains the sim-

plest initial condition and we add more difficult conditions one-by-one to every subsequent

set I 1; . . . ; IM . To use these sets, we apply CMA-ES on I i, starting with i = 0, and proceed to

I iþ1 once the cost Lyterminal distance drops below a pre-defined threshold (in our experiments

Lyterminal distance < 0:5).

Vision-Related Regularized Training Cost: Although Lyterminal distance is better-suited for

learning than Lterminal distance it still results in poor performance because we do not exploit any

knowledge about the fact that we learn a policy that is applied to a camera image o. An impor-

tant property of camera sensors is the spatial arrangement of pixels: it results in any visible

object being projected on a set of adjacent rather than disconnected pixels in o. Exploiting this

knowledge as a vision-related regularization bias for learning is very common in computer

vision [57], and we do so too by defining the spatial continuity regularization term

Lspatial ¼
1

N � 2

XN� 2

i¼0

ðwiþ1 � wi �
1

N � 2

XN� 2

j¼0

ðwjþ1 � wjÞÞ
2
; ð54Þ

where {0, . . ., N − 1} denote the indices of the image o and wi denotes the policy’s weight asso-

ciated with the i-th image pixel. We can write this formula more concisely if we define Var as

the (uncorrected) sample variance and w0 as the spatial derivative over vector w:

Lspatial ¼ Var½w 0�: ð55Þ

5.1.4 Angular baseline policies. To analyze whether the previously outlined reinforce-

ment learner indeed finds an angular, “heuristic” controller, we will compare the weights of

the learned policies to the weights of two baseline policies.
The baseline policies mimic the COV-IO and COV-OAC controllers (Section 4.3), and use

the same camera model and the same two-step linear controller as the learned policies. This

makes it easy to directly compare the policies by inspecting their weights v and w.

We now illustrate how to compute the baseline policies, using the example of COV-IO.

We know from Section 4.3 that COV-IO is implemented by zeroing the control error

eCOV� IO ¼ _yðtinitÞ � _yðtÞ using a bang-bang controller. Therefore, the COV-IO baseline policy
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must be able to compute the quantities _yðtinitÞ and _yðtÞ from the augmented observation and

subtract them from each other. Therefore, we compute a linear mapping OðoÞ ¼ wT
O

o such

that OðoÞ / _yðtinitÞ � _yðtÞ, for some suitable augmented observation o. The COV-IO control

output can then be computed by applying bang-bang control on O(o).

We show in the supplementary material (S3 Text) how to choose o and how to compute O

to implement COV-IO and COV-OAC directly on observations. Importantly, we will compare

the mapping O (in particular the pixel-specific parameter vector wO) with the learned policy

parameters to decide whether they resemble the COV-IO and COV-OAC strategies.

To avoid confusion with the controllers implemented in the previous section, operating

directly on θ, _y and higher derivatives, we refer to the two baseline policies operating on obser-

vations as COV-IOo and COV-OACo.

5.2 Experimental setup

We now describe the technical details of our learning experiment.

5.2.1 Simulation and scenario. Simulation: We run the dynamic simulation with a time

constant of Dt ¼ 1
60 s, using the same simulation as in the previous experiments described in

Section 4.4.1.

Camera Sensor: For the camera model, we use resolution ρ = 0.27 which results in a size of

N = 18 pixels for the raw observation ~o. We test different input augmentations by varying the

type of observation (observation only, derivative only or both) and by adding a second delayed

camera image to the observation, which we call time-embedding (no delay, observation at tinit

or at t − tdelay). We test different variants, such as adding the image at initial time tinit or the

image that is delayed by tdelay. We use the following parameters: tinitial ¼ 1
20 s, and tdelay ¼ 5

6 s.
Note that depending on type of input augmentation, the dimensionality of o varies between

N = 18, N = 36 and N = 64.

This results in the nine different augmentations summarized in Table 4, which we all test in

our experiments.

Performance and Testing Procedure: We test the success of each strategy in the same way

as in the experiments presented in Chapter 4: using the terminal-distance cost Lterminal distance

evaluated on the full set of initial conditions.

Initial Conditions and Perturbations: To train the agent we choose the initial conditions

to be a reduced set of the ones used in the previous experiments (see Section 4.4.1). Reducing

the set has two purposes: first, it accelerates learning, second, it tests whether the learner over-

fits or is able to generalize to a range of unseen conditions.

The reduced set of initial conditions I uses the same lauching angle φ ¼ p

4 as the full set, but

only varies the initial ball velocity by ν = {20, 30, 40} ms and the initial distance of the agent to the

ball’s impact point D0 2 {−15, −7.5, 0, 7.5, 15}m. Additionally, we vary whether drag forces

apply to the ball or not. In total, this results in 30 unique combinations of initial conditions.

5.2.2 Reinforcement learning. We now briefly detail the settings of the reinforcement

learner.

CMA-ES Hyperparameters: For CMA-ES, we use a candidate parameter set of size 10, and

set the maximum number of CMA-ES iterations to 10000. We set the initial variance for v to

s2
v ¼ 15� 1010 and for w to s2

w ¼ 15. Note that setting the value of s2
v very high allows the

agent to learn either a proportional or an approximation of a bang-bang controller.

As convergence criteria, we allow a tolerance of 0.1 with respect to variance in the cost

Lyterminal distance and of 0.1 in the input parameters. Moreover, we vary the spatial regularization

parameter λ 2 {0.01, 0.1}.
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Note that we also tested adding L1- and L2-regularization to LES but this did not result in

improved performance.

Curriculum: To construct the curriculum of initial conditions we sort the set of (reduced)

initial conditions according to initial distance D0, initial ball velocity ν and the presence of

drag (no/yes), resulting in a sequence of 30 sets of initial conditions of increasing difficulty.

Every time CMA-ES converges for one set of initial conditions from the curriculum, we

proceed to the next set and multiply the variance parameters σv and σw by 1.2. In preliminary

experiments this gave the better performance as it avoided premature convergence, that is con-

vergence before the end of the curriculum is reached.

We also compare to optimization without a curriculum, that is setting I to all initial condi-

tions; however, this consistently leads to significantly worse performance and we thus omit the

analysis of these results in the following section.

For each combination of input augmentation, regularization parameter setting and initial

condition selection (curriculum or not), we run CMA-ES five times with different random

seeds and report the best result for every run.

5.3 Results

Fig 18 shows the performance of the linear policies learned by CMA-ES, applied to the nine

different types of augmented observations. It also includes the performance of the baselines

COV-IOo and COV-OACo. We see that the type of observation augmentation has the biggest

influence on the result. Moreover, we see that the best results are achieved when using a spatial

regularization λ = 0.1.

We now study which type of observation augmentations perform best. We see that the best

results are achieved when using o ¼ _~ot �
_~otinit

, resulting in a terminal distance of 0.03, followed

by o ¼ _~ot �
_~ot� tdelay

with terminal distance of 0.19. None of the other observation augmenta-

tion types yields competitive results, except for the policy that uses o ¼ ~ot � ~otinit
� _~ot �

_~otinit
,

achieving 0.61 average terminal distance. We hypothesize that it performs slightly worse than

Fig 18. Average terminal distance when learning policies on different types of observations. Values annotated by a star indicate that the corresponding bar exceeds

the bounds of the figure.

https://doi.org/10.1371/journal.pone.0197803.g018
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the two best policies because the augmented observation is more high-dimensional, containing

both ~o and _~o. This leads to overfitting and thus decreases performance.

Interestingly, the two best policies also slightly outperform the supervised baselines. They

seem to have adapted better to the imperfections of the sensor with respect to the control task,

rather than only adapting to the task of predicting the supervised signal.

5.3.1 Learned policies are equivalent to COV-IO and COV-OAC. The quantitative anal-

ysis shows that it is possible to learn a successful ball catching policy directly on observations,

using generic reinforcement learning. We now turn to a qualitative analysis, by studying what
type of policy has been learned, and whether one of the policies implements one of the angular

controllers presented in the previous section. To answer this question, we will study the con-

trol outputs and the parameters learned by the two best policies and compare them to the

parameters of the baselines policies.

The two best policies resulted from applying CMA-ES on the augmented observations

o ¼ _~ot �
_~otinit

and o ¼ _~ot �
_~ot� tdelay

, we thus focus on these ones. In the following, we state our

main results and provide all details in the supplementary material (S3 Text).

First, we observe that the CMA-ES policies compute a bang-bang control policy: for both

the value of v is very high (|v|>1011). This facilitates our comparison because we implemented

the baseline policies as bang-bang controllers, too. Next, we compare the policies with respect

to the control output they compute. We use the data used to train the baseline policies, discre-

tize the output of both controllers y 2 {−1, 0, 1} and use a zero-one loss

LðO; fðoðiÞ; yðiÞÞgi¼1;...;NÞ ¼
1
N

XN

i¼0

ð1 � 1fOðoðiÞÞ ¼ yðiÞgÞ; ð56Þ

to compare the outputs (1f�g denotes the indicator function which evaluates to 1 if the expres-

sion inside the brackets is true and to 0 otherwise). We obtain a similarity of 0.89 for COV-IOo

vs. o ¼ _~ot �
_~otinit

and 0.77 for COV-OACo vs. o ¼ _~ot �
_~ot� tdelay

. This shows the outputs are

similar, in particular for COV-IOo, although not exactly the same.

Fig 19. Analysis of policy parameters, with CMA-ES applied to ot = ð _ot ; _otinit
Þ. �r denotes the correlation coefficient,m and b the slope and intercept of the linear fit.

https://doi.org/10.1371/journal.pone.0197803.g019
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Finally, we compare the pixel-specific weight vectors w. Figs 19 and 20 show a comparison

of the learned policy weights (blue solid curves) to the weights of the baseline policies (green

dashed curves). At first sight, they do not look similar at all. We hypothesize that this results

from the fact that not all entries in w are relevant for control. This can be the case if the ball

always occupies the same area in the camera image, for example because it never passes above

the agent’s head. In this case, the ball always appears in the right part of ~o and _~o.

To investigate this hypothesis, we apply the learned policies on the set of all initial condi-

tions and compute a histogram over each pixel in o. This histogram is shown in the left bottom

halves of Figs 19 and 20. It confirms our hypothesis that the ball never passes the agent’s head

because the left parts are completely empty. This is a result of the fact that the ball is always

thrown from the same side and that the agent moves in such a way that it never lets the ball

pass its head. This is an indication for the stable catching behavior—but also for some form of

“overfitting” to the learning scenario.

Since the ball always occupies a certain part of the image, all weights outside this part of the

image are irrelevant for performance. We thus compare the learned weights to the baseline

weights only with respect to the relevant part of the image. The result is shown in Figs 19 and

20, upper right half. We see that, after accounting for the offset induced by focusing on a lim-

ited set of weights, the weights align almost perfectly for COV-IOo, and approximately for

COV-OACo. This means that, CMA-ES applied to o ¼ _~ot �
_~otinit

has learned a controller

that is highly similar to COV-IOo, and a controller similar to COV-OACo when applied to

o ¼ _~ot �
_~ot� tdelay

.

5.3.2 Conclusion. Our analysis shows that CMA-ES learns policies that are highly similar

to the COV-IO and COV-OAC angular controllers presented in Section 4.3. The learned poli-

cies merely differ in the fact that they do not generalize to the setting when the ball is thrown

from the left. However, we see no principle reason why the learned policies should not general-

ize to this slightly more complex version if we train on more initial conditions. We thus con-

clude that model-free reinforcement learning is able to find angular control policies. This

implies that the angular control strategy is an optimal solution to the two-dimensional ball catch-
ing problem without high-frequency Gaussian perturbations.

Fig 20. Analysis of policy parameters, with CMA-ES applied to ot ¼ ð _ot ; _ot� tdelay
Þ.

https://doi.org/10.1371/journal.pone.0197803.g020
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6 Discussion

Our results show that the generalist and specialist approaches yield two very different solutions

to the ball catching problem, each optimal and more appropriate for a different environmental

condition. Our in-depth theoretical and empirical analysis has identified a variety of properties

along which the two solutions differ, which we summarize in Table 5.

We now discuss implications and possible extensions of our work. We structure the

discussion along the four main contributions of our study, stated in the introduction: (i) the

implications of no approach being superior in solving the ball catching problem under all envi-

ronmental conditions, (ii) the advantages and disadvantages of model-based and model-free

control, (iii) the possibility of generalizing our optimality results to different ball catching sce-

narios, and (iv) the role of representations for ball catching and decision making problems. In

every section, we derive hypotheses how we might find a solution to ball catching that general-

izes across all relevant experimental conditions.

6.1 No free lunch for ball catching

The main result of our work is that angular controllers are robust to systematic deviations of

the ball’s trajectory, such as drag, whereas the Cartesian controllers cope better with high-fre-

quency Gaussian noise. We can relate this, at least in an informal way, to the no free lunch the-

orem [60]: every strategy makes implicit assumptions about the problem, but this come at the

price of degraded performance on other problem variants.

This raises the question about whether one type of perturbation, drag or high-frequency

Gaussian noise, is more relevant in realistic settings. The answer to this question is not obvious

and can ultimately only be given by real-world experiments. However, conducting controlled

experiments in a baseball setting [12] is difficult, and no robots for ball catching beyond small

distance throws [33] have been developed yet.

6.2 Model-based vs. Model-free control

We saw that the Cartesian controllers suffer from a well-known disadvantage of model-based

control in general: the sensitivity to modeling errors [9]. However, the Cartesian approach

leverages the model to make predictions when observations are noisy, using Bayesian filtering.

This type of filtering reduces Gaussian noise more effectively than the temporal averaging

employed by the model-free angular controllers, and thus copes better with high amounts of

Gaussian noise.

Assuming that both types of perturbations are relevant, the question arises how to extend

or combine model-free angular and model-based Cartesian control to cope with both types of

perturbations:

Table 5. Revised comparison of differences between generalist and specialist solutions to ball catching.

Generalist Specialist

How to find a solution? (Model-based) optimal control Model-free reinforcement learning

Input representation Cartesian:
Agent/ball position and velocity, a, _a; b; _b

Angular:
Tangent of vertical viewing angle θ, _y; €y, bearing angle β

Input = Markov state? yes no

Controller type PD-control Bang-bang / P-control

Stationary controller? No Yes

Optimal wrt. to environmental condition High-frequency Gaussian noise Low-frequency systematic noise (drag)

https://doi.org/10.1371/journal.pone.0197803.t005
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Cartesian control with hidden variable estimation: One option to decrease the sensitivity

to drag of the Cartesian controllers is by treating the drag coefficient as a hidden random vari-

able and performing inference over it [61]. However, such an approach might come at the cost

of high computational complexity.

Model-based angular control: Another option is to make the angular controller robust to

high-frequency noise by developing a model-based variant of angular control. Although this is

impeded by the angular representation not being Markov, practically feasible solutions might

exist: when taking into account multiple instead of only a single derivative of the vertical view-

ing angle, the resulting representation might violate the Markov assumption only moderately.

Then, an approximate forward model could be stated and combined with an optimal control

method like LQG or MPC.

We will discuss another option based on a different representation in Section 6.4.

6.3 Optimal ball catching in complex settings

Our analysis has shown that the two solutions are not only superior, but even optimal under

the different environmental conditions. We now discuss how these optimality guarantees

could be transferred to more complex variants of the ball catching problem.

Chapman’s strategy in three dimensions: Our theoretical analysis of the angular control-

lers provided insight about the two-dimensional scenario but it left open how to extend our

theoretical results to the three-dimensional case, for example when using Chapman’s strategy

with CBA (Section 4.3.7). Although our empirical results clearly indicate that OAC generalizes

to the three-dimensional case when paired with CBA, an analytical proof to support our

empirical results is required.

Similarly, the reinforcement learning experiments in Chapter 5 only solved the two-dimen-

sional ball catching problem. Addressing the three-dimensional scenario necessitates a way of

coping with the increased dimensionality of the visual sensory input. This requires substituting

the linear policy used in our experiments with a more expressive function class such as (convo-

lutional) neural networks. These networks have become a de-facto standard in processing and

learning from visual inputs [24] and reinforcement learning [2].

Partially observable ball catching variants: An interesting question is how the controllers

generalize to partially observable variants of the ball catching problem. One such variant is pre-

sented by [16]: it requires the agent to turn away from the ball and run open-loop in order to

catch the ball. [16] suggested a method to solve this problem, but, as shown in Section 4.4.1, it

is based on the Cartesian representation and thus fails for systematic, non-Gaussian perturba-

tions of the ball trajectory such as drag. This result raises the question whether solutions based

on the angular representation exist for the more complex ball catching problem, too. Although

similar control problems can be addressed with local reactive behavior [62] and a (model-free)

extensions of the angular controller presented here, incorporating a field of view exists [8],

each of these approaches requires the ball to remain in the field of view for the entire time, pre-

venting them from being applied to the partial observability case. Only if a model-based ver-

sion of the angular controller (see previous section) exists it might be able to deal with the

partial observability scenario.

6.4 The role of representations for ball catching and decision making

Our work shows that whether we choose the Cartesian or the angular representation has a sig-

nificant impact on the complexity and the performance of the resulting controller. Therefore,

we propose to treat representations as a first-class citizen for solving any type of decision mak-

ing problems. In such a representation-centric view, the representation “dictates” all relevant
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choices, such as the necessity of a model, the control type, etc., and thus influences computa-

tional complexity and success under different environmental conditions. The representation

leaves out unnecessary information and exposes the relevant aspects of the problem space—in

the case of ball catching, it pretty much is the solution.

Therefore, a representation-centric view also offers another option for finding a solution

that is robust to all realistic perturbations: a controller optimal under both high-frequency

noise and drag might require a representation different from the ones studied here—be it with

model-free or model-based control.

How could we find such a representation? We suggest to leverage recent advances in

representation learning [63] and deep reinforcement learning to study this question. Repre-

sentation learning methods are explicit methods in the sense that they optimize a learning

objective that characterizes useful properties of representations. How to define “usefulness”

in a generalizable way is an open research question, and promising candidates for ball catch-

ing might be methods that exploit physical prior knowledge about how agents move in the

real world [64] as well as methods that explicitly optimize representations to be useful for

for model-based control [65, 66]. In contrast, deep reinforcement learning methods are

implicit in the sense that they directly optimize the control objective (catching success in

our case) and build intermediate representations in the neural network that is trained to

map from inputs to outputs. We are curious to see how these methods would perform in

one of the generalized ball catching settings and what kind of representations they would

learn.

7 Conclusion

In this work, we studied the ball catching problem with the goal of investigating the relation-

ship between generalist and specialist approaches to decision making. We found out that nei-

ther of the two approaches is superior and that each approach can be considered optimal

under a different environmental conditions. We showed that the key difference between these

approaches has to be sought in the representation, angular vs. Cartesian, which has the most

significant impact on the agent’s ability to solving the ball catching problem.

We conclude this paper by arguing that finding the right solution to a decision making or

control problem is orthogonal to the generalist and specialist approach, and thus requires a

reconciliation of these views: (i) We need generalist, optimality-based learning to solve prob-

lems that we cannot solve directly through engineering. But since brute-force, uninformed

learning requires large amounts of data even for problems as simple as the ball catching prob-

lem (ii) we must also embrace the specialist view. It is required to gain insights into specific

problems, which we can first turn into task-specific biases and eventually into biases that gen-

eralize over entire sets of problems. Our view that solving decision making and control prob-

lems requires a trade-off between biases and learning is clearly supported by the bias-variance

and the no free lunch theorems in supervised learning, and we believe that future work should

—rather than arguing in favor of one or the other extreme—study how to effectively balance

biases and learning in decision making and control.
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Investigation: Sebastian Höfer.
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Writing – original draft: Sebastian Höfer.
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(NIPS). Montréal, Canada; 2015. p. 2746–2754.

66. Jonschkowski R, Brock O. End-To-End Learnable Histogram Filters. In: NIPS 2016 Workshop on Deep

Learning for Action and Interaction. Barcelona, Spain; 2016.

No free lunch in ball catching: A comparison of Cartesian and angular representations for control

PLOS ONE | https://doi.org/10.1371/journal.pone.0197803 June 14, 2018 48 / 48

http://www.wired.com/wiredscience/2012/08/maximum-acceleration-in-the-100-m-dash
http://www.wired.com/wiredscience/2012/08/maximum-acceleration-in-the-100-m-dash
http://hypertextbook.com/facts/2000/KatarzynaJanuszkiewicz.shtml
http://hypertextbook.com/facts/2000/KatarzynaJanuszkiewicz.shtml
http://archive.li/jw9W
https://doi.org/10.1109/TIT.1972.1054786
https://doi.org/10.1162/106365603321828970
http://www.ncbi.nlm.nih.gov/pubmed/12804094
https://doi.org/10.1080/07468342.2003.11922003
https://doi.org/10.1080/07468342.2003.11922003
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
https://doi.org/10.1007/s10514-015-9459-7
https://doi.org/10.1371/journal.pone.0197803

