2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)

Beijing, China, November 6-9, 2018

Towards Combining Motion Optimization and Data Driven
Dynamical Models for Human Motion Prediction

Philipp Kratzer!, Marc Toussaint' and Jim Mainprice’

2

firstname.lastname@ipvs.uni-stuttgart.de

!Machine Learning and Robotics Lab, University of Stuttgart, Germany
2Max Planck Institute for Intelligent Systems ; IS-MPI ; Tiibingen, Germany

Abstract— Predicting human motion in unstructured and
dynamic environments is challenging. Human behavior arises
from complex sensory-motor couplings processes that can
change drastically depending on environments or tasks. In
order to alleviate this issue, we propose to encode the lower
level aspects of human motion separately from the higher
level geometrical aspects using data driven dynamical models.
In order to perform longer term behavior predictions that
account for variation in tasks and environments, we propose
to make use of gradient based constraint motion optimization.
The present method is the first to our knowledge to combine
motion optimization and data driven dynamical models for
human motion prediction. We present results on synthetic and
motion capture data of upper body reaching movements (see
Figure 1) that demonstrate the efficacy of the approach with
respect to simple baselines often mentioned in prior work.

I. INTRODUCTION

As robots become more capable they will inevitably share
the workspace with humans. In this context predictive mod-
els of human behavior will become key for high human-
robot synergy and safety. Human behavior prediction and
understanding is an object of study of different fields includ-
ing computer graphics, bio-mechanics and robotics, hence
there are large differences in approaches developed in prior
works (see Section II).

In this work we propose to decouple low-level and high-
level movement prediction using data driven dynamical
models and motion optimization. We believe this approach
will help to generalize over environments and tasks. Mo-
tion optimization [1], [2], [3] methods are optimal control
algorithms used for motion planning of complex tasks.
These techniques approximate trajectory functional gradient
descent by discretizing in time, allowing to produce locally
optimal movements over a given time horizon. The system
dynamics are usually assumed to be known.

We propose a technique that integrates non-linear system
dynamics such as learned from human movement data with
motion optimization. This framework allows to account for
external constraints during movement that may arise form
the context (environment or task), such as obstacles or
orientation of held object, here we simply treat goal set
constraints. Note that integrating other constraints would be
straightforward, the reader may refer to [1] for examples of
other such constraints.

To demonstrate the efficacy of our approach, we have
gathered and segmented 250 reaching upper body move-
ments, see Figure 1. We use this data to learn a very

978-1-5386-7283-9/18/$31.00 ©2018 IEEE

202

Fig. 1: Human reaching towards the long stick. The initial position
and the predicted end state by our method are shown. Blue lines
show the trajectories of the right shoulder, right elbow and right
wrist as predicted by our method.

short term dynamical system behavior model, ~ 0.01 sec,
St41 = f(s¢y8¢—1...,8—1), where s € S is a purely
kinematic space. We model f using a Gaussian Process
(GP) [4] that abstracts all phenomena linked to complex bio-
mechanical processes. In order to account for the task context
(i.e. reaching goal position) and produce a longer horizon
prediction, ~ 1 sec, we optimize the mean and variance of
the GP together with the goal set constraint.

To our knowledge, the method presented in this paper is
the first to combine motion optimization and data driven dy-
namical models to predict human motion. This technique has
several advantages, 1) decoupling learning of the dynamics
holds the promise to generalize better than learning all level
of abstractions in one policy, 2) the implementation is simpler
than incorporating Newtonian dynamics, 3) modularity of
the model (dynamics/kinematics) makes retargeting behavior
straightforward.

After reviewing the related work in Section II, we outline
our method in Section IIT and propose a performance analysis
by comparing it with some baselines in Section I'V. Finally
we propose conclusions in Section V.

II. RELATED WORK

A. Human Motion Prediction

Prior work has made use of graphical models, such as
Hidden Markov Models (HMMs) or Conditional Random
Fields (CRFs), to predict human motion. Kuli¢ et al. used
HMMs to encode full-body motion primitives from obser-
vations of human motion and used the model for motion
recognition and imitation [5]. Lehrmann et al. used HMMs
to retain a dynamic model of human motion and reported
good results for motion completion tasks [6]. In [7], Koppula
and Saxena predicted trajectories of the human hand using
CRFs. Their approach samples possible trajectories by taking
object affordances into account. However, while graphical
approaches capture relationships between objects well they
do not allow for additional constraints that may come from
the environment, an issue that we address in this paper.

Recent work on human motion prediction has focused
on Recurrent Neural Networks (RNN). Fragkiadaki et al.
proposed a RNN based model that incorporates nonlinear
encoder and decoder networks before and after recurrent
layers [8]. Their model is able to handle training across mul-
tiple subjects and activity domains. With a similar approach
Martinez et al. [9] reported on using a sequence-to-sequence
Long Short-Term Memory (LSTM) architecture that outper-
formed prior RNN based methods. Although neural network
based approaches for motion prediction handle the high
dimensionality of the motion data very well, they require
a lot of training data and propagation of the uncertainty is
still an open research topic [10].

A third approach for predicting human motion is Inverse
Optimal Control (IOC) which aims to find a cost function
underlying the observed behavior. In [11], Berret et al. inves-
tigated cost functions for arm movement planning and report
that such movements are closely linked to the combination
of two costs related to mechanical energy expenditure and
joint-level smoothness. In [12], Mainprice et al. investigated
prediction of human reaching motions in shared workspaces.
Using goal-set IOC and iterative replanning, the proposed
method accounts for the presence of a moving collaborator
and obstacles in the environment using a stochastic trajectory
optimizer. Generally, IOC learns cost functions which allows
to encode behaviors disentangled from the dynamics model
and thus can transfer better to others agents [13].

Our work differs in several aspects from prior work in
human motion prediction. First, our approach remains low
in complexity by not relying on a bio-mechanical model,
instead encoding the short term behavior in a data driven
dynamical system. Second, we account for additional con-
straints by optimizing the predicted trajectory with respect to
a cost function. This makes it possible to handle environmen-
tal constraints, such as the distance to target states. Finally,
our model is able to query the predictive uncertainty of the
GP that, for example, can be used to weight trajectories or
predict workspace occupancy [14].

203

B. Gaussian Processes

Our approach for encoding low-level aspects of human
motion is based on Gaussian processes (GPs) which are
kernel based Bayesian machine learning models. A Gaussian
process is completely specified by a mean function u(x)
and a covariance function ¢(z, z’). A random function f(x)
can be drawn from the GP f(z) ~ GP(u(z), c(z,z')). A
comprehensive overview of Gaussian processes is available
in Rasmussen and Williams [4].

GPs have been used to model human motion in prior
works. In [15], Shon et al. learned robotic imitation of human
motion using GPs, which they achieved by transforming
motion-capture data of the human to a low-dimensional latent
space and afterwards transforming it to a high-dimensional
robotic state space. Similarly in [16], Wang et al. introduced
GP dynamical models for human motion where they made
use of a low-dimensional latent space and associated dynam-
ics to represent high-dimensional human motion. In contrast
to these prior works we predict the next full human state
to enable multistep rollouts and optimization over a time
horizon.

GPs have also been used in control to learn nonlinear
models of dynamical systems. In [17], Murray-Smith and
Sbarbaro developed a nonlinear adaptive control model using
a GP that takes the uncertainty prediction into account. In
[18], Berkenkamp and Schoellig developed a model to learn
control where a GP is used to infer a linear model of the
unknown dynamics around some linearization point. The
authors found that their framework is a powerful tool to
combine nonlinear learning methods with control algorithms.

The problem of human motion prediction is strongly re-
lated to time series forecasting. Recent work by Al-Shedivat
et al. [10] combined GPs with neural networks. The authors
made use of a recurrent neural network to learn kernels with
an LSTM structure and found that the method outperforms
state-of-the-art results on a number of datasets. We plan to
combine our approach with these GP-LSTMs in future work.

III. METHOD

Our approach works in three phases: 1) offline we learn a
predictive dynamics model of the human s; 1 = f(&;) where
&; is the observed trajectory and f(§) ~ GP(u(§), ¢(&,£)),
see Figure 2. The aim of the f is to predict the kinematic

gpred ' \
®, - %..
L
o,
& @ St—1
® St_—2
® St—T

Fig. 2: Trajectory prediction with goal state optimization.

state of the human in the next time step based on a short
sequence of previous states along with uncertainty. This is
achieved by supervised training of a GP model on human
motion capture data, 2) online we use the learned model
to unroll a trajectory of future states starting with the state
at the current time step s; and a short sequence of previous
states s;_1, ..., St—r, finally, 3) the trajectory of future states
&preda 1s optimized further by simultaneously minimizing
the distances to the mean predictions, the variances of the
predictions and additional constraints, for instance goal set
constraints.

A. Problem Statement

We define a trajectory £ = so.r = (So,81,...,ST) as a
vector of states at discrete time points 0, 1, ..., 7" with T" being
the length of the trajectory and s; € S. The state space S
parametrizes the human posture. In our experiments we use
two representations, i.e. positions of joints centers in pelvis
coordinates or joint angles.

The goal of our method is to predict a future trajectory
&preda = ST:T+p given the currently observed trajectory &
that is close to the trajectory a human would perform.

B. Predicting the Next State

To specify the GP distribution f, we make use of the fol-
lowing Radial Basis Function (RBF) kernel defined between
trajectories:

c€, €)= aetealle=¢ls (1)

with o o being the base hyperparameters of the RBF and ©
being a T'x d matrix of hyperparameters weighting the entries
of the trajectory for time steps 7" and state dimension d. RBF
are commonly used with GPs, they have the advantage to be

smooth and infinitely differentiable, thus easy to optimize in
the trajectory optimization step.
We use the mean function of GP regression for predicting
the next state s;1; when observing an unseen trajectory &,
_ T
fopr =m(siq1 | &, X)=k'CT'Y 2)
where X is the training data consisting of N pairs (£, s,)
of demonstrated trajectory &/, and the following states s!,.
C is the N x N covariance matrix with elements C,,,, =
c(&,€) + B 5,m, with the trajectories &, and &/, from
the training data X and /3 being a white noise constant. & is
a vector with elements k,, = ¢(&],, &) and Y is a matrix of
states from the training data with rows y,, = s/,.
The corresponding variance function of the GP is
Vifdi = 02 (sip1 | &, X) = e(é, &) —k'C7'k - (3)
which gives the uncertainty about the prediction of the next
state given training data X and current trajectory &;.

C. Multistep Prediction

Multistep prediction consists of computing the trajectory
&1 = Si—T41.4+1 by appending a predicted state to & =
s¢—1.+ and iteratively repeating this step. Thus, a fixed time
window of size 7' is used.

204

By using the mean and the variance of the GP (Equa-
tions 2, 3) the trajectory prediction function g(&;) = &t41
is

9(&t, X) = (8t—T41,5t—T+2, - 5t,5¢41) “4)
where s;41 ~ N(feri1, V[fili1). For a naive prediction
S¢+1 = f« can be used for all ¢. Multiple trajectories

can be generated by sampling multiple sty from the GP
distribution N (fi; 11, V[filt41)-

D. Optimizing the Trajectory

In order to improve the predicted trajectory &ppeq =
St+1:¢+D, With D being the number of predictions, we want
to minimize the distance to the mean prediction f* for each
future time step as well as the variance V[f,] at each time
step. Additional cost objectives can, for example, promote
close distances to possible target states or penalize close
distances to obstacles.

We optimize the cost function V({p,cq) that is a sum
of mean distance costs and variance costs over the states
of the predicted trajectory &,r.q to obtain an optimized
trajectory &4

f;red = arg min V(&PTEd)

"o]
V(€pred) = Z lsat1 = feapi P+ V[flarr S

mean cost variance cost

subject to h(Epreq) =0

where fiy 1 = m(say1|€q, X) is the mean and V([f.]411 =
02(5441,&q, X) is the variance at step d + 1. v is a weight
describing the importance of the variance minimization,
h being an additional goal constraint and the trajecto-
ries £&g = (Sq—71.4) describing the trajectory & shifted
by predicted states. Because of the RBF kernel structure
the derivation of the gradient V¢V is straightforward. We
minimize the cost function using sequential least square
programming (SLSQP), an optimization algorithm designed
for constrained non-linear optimization problems [19].

Figure 2 shows an example of a two-dimensional trajectory
that should be optimized to end at some target state Sirges.
In blue the multistep prediction is shown, green shows the
expected trajectory after optimization.

E. Tuning the Hyperparameters of the Gaussian Process

The covariance function ¢(&,&’) of the Gaussian Process
relies on the scalar hyperparameters «; and a9 and the
matrix hyperparameters O.

Because integrals over the parameters in a GP are an-
alytically tractable it is possible to compute the marginal
likelihood. The log marginal likelihood for a column vector
y € Y is given by:

1
2
Details about how the marginal log likelihood is obtained
are available in Rasmussen and Williams [4]. The hyperpa-
rameters of the covariance function can be adapted to the

1 N
In plylas 2,0) = —5/C| — 5y C 7y — Tn(2r) (©)

data by minimizing the Negative Log Marginal Likelihood
(NLML) of the GP with respect to the hyperparameters (see
Equation 6). We can obtain the NLML for each column in
Y corresponding to each dimension of the state space and
then minimize the sum of the NLML using a Conjugate
Gradients (CG) algorithm.

F. Algorithm

Algorithm 1 GP Trajectory Optimization
Offline:
0,2, © < initialize
while not converged do
compute C,C~! from X
ai,2, © « update(C,C~1Y)

LA

Online:

Input: &

for d=1to D do
Etvd < 9(&t+d—1,X) (see Equation 4)
Stt+q ¢ predicted state from &4

Epred (St415 86425 o 8t+D)

while desired accuracy not reached do
E;m“ed <~ updateSLSQP(gpreda X)

Output: &preq

Our complete method can be seen in Algorithm 1. Lines
1 to 4 show the offline phase of the algorithm that is used to
adapt the hyperparameters of the GP minimizing the NLML
loss of the GP. In lines 6 to 9 an initial prediction for
the future states &,..q is computed based on a rollout of
the naive multistep prediction. Afterwards, the trajectory is
optimized in line 11 using the SLSQP algorithm to minimize
the cost function V' (,,¢q), which we defined in Equation 5,
and to fulfill the additional constraints. After the algorithm
converges or the desired accuracy is reached it outputs the
optimized predicted trajectory &preq.

IV. EXPERIMENTS

To test our method we run different versions of it as well
as baselines on one-dimensional synthetic data and on real
motion data recorded with a motion capture system.

A. Datasets

1) Synthetic Data: We created a discrete 1D dataset
based on cubic splines. To generate the synthetic dataset
we randomly sampled values from the set {0, 0.3, 0.8, 1}
and performed a cubic interpolation between these values.
The data was discretized by sampling 50 additional points
between the values from the interpolated curve. Starting at
random time steps, shorter trajectories from this dataset for
training and testing the algorithms were sampled.

205

Fig. 3: Motion capture system used in the experiments.

2) Motion Capture Data: The human motion dataset was
captured using an Optitrack motion capture system. The
subject wore a motion capture suit with 25 markers placed
on the upper body of the human. The subject was instructed
to perform tasks with objects placed on two different tables
in the motion capture area (see Figure 3). Possible tasks were
placing, drinking, pouring, opening, closing and scrubbing.
Each task was preceded by a reaching motion to pick up
the objects involved. Marker position data was recorded at a
rate of 120 Hz. In total we recorded 132 minutes of motion
capture data with two different actors.

Reaching motions naturally yield goal set constraints for
the hand, which can be inferred from the object location
on the table. In order to evaluate the efficacy of our model
to handle such constraints, 250 reaching trajectories of the
right hand have been segmented from all tasks. We used a
training set size of 200 trajectories and a test set size of 50
trajectories. Three types of state representation are compared
with different state representation: 1) wrist dataset: only
wrist positions, 2) arm dataset: joints center positions of
the wrist, elbow and shoulder, and 3) joint angle dataset:
12 joint angles and 5 translations of the human’s upper body
and right arm.

B. Prediction Methods

Test and training set trajectories are sampled of length
T = 10 corresponding to 0.083 sec on the real data starting
from a random index. We want to predict D = 30 points
corresponding to 0.25 sec on the real data in the future. In
our experiments we use the following prediction methods:

o vel_pred: Predict a trajectory based on the velocity of
the current state. The velocity is assumed to be constant.

o lin_pred: Linearly interpolate between the current state
and the target state.

o Istm: Predict a trajectory based on a one-layer recurrent
neural network with long short-term memory (LSTM)
blocks.

o gp_multistep: Use the GP multistep prediction without
trajectory optimization.

o gp_trajopt: Optimize the gp_multistep prediction re-
garding mean distance and variance with goal state
constraint.

o ja_multistep: Predict a trajectory in joint angle space
based on the GP multistep prediction method in joint
angle space.

e ja_trajopt: Optimize the ja_multistep prediction re-
garding mean distance and variance with goal state
constraint. To calculate the distance of the wrist to its
goal position, the position of the wrist in real world
coordinates is calculated by forward kinematics. We
then use the squared distance between the two points.
For optimization we additionally use the Jacobian of the
wrist.

Note that lin_pred, gp_trajopt and ja_trajopt need additional
information about the target state. For the motion capture
datasets we consider that only the target state of the wrist
is given, but not the target state for the other joints. For
example, this situation is given when one wants to predict a
reaching motion and knows which objects can be gripped by
the human because the wrist will end up close to the object
the human wants to pick up.

C. Hyperparameter Tuning

Training of the GPs is done by hyperparameter tuning as
described in Section III-E. We use the same hyperparameters
for gp_multistep and gp_trajopt and the same hyperparame-
ters for ja_multistep and ja_trajopt.

Figure 4 shows the results of the hyperparameter tuning in
joint angle space. The hyperparameter tuning automatically
performs weighting and scaling of the individual dimension
of the joints for every time step. Note that certain joints
move more than others which makes comparing between
rows difficult. For instance, rArmTrans corresponding to
the translation of the arm has a high value for all time
steps, however this translation only changes by less than a
millimeter throughout the dataset, hence the influence on the
kernel remains very marginal.

Within a row it can be observed that the most recent
time step (tf = 9) has high values that most of the time are
decreasing when going further back in the past. This result
is expected because the latest time step has most information
about how the motion will be continued.

D. Training set size for synthetic and wrist data

Figure 5 shows a comparison over training sizes for
different prediction methods. The prediction is applied at
the last 30th time steps of a trajectory. The test set is the
same for all training sizes. Because the constant velocity
prediction and the linear prediction methods work on the
test trajectory without using training data, their loss does
therefore not change when increasing the training size.

The first row in Figure 5 shows the performance on the
synthetic dataset while the second row shows the perfor-
mance on the wrist dataset.

012 3 456 789

PelvisTransX
PelvisTransY
PelvisTransZ
PelvisRotX
PelvisRotY
PelvisRotZ
rShoulderTransX
I

rShoulderTransY
rShoulderTransZ
rArmTrans
rForeArmTrans
rShoulderY1
rShoulderX
rShoulderY2

rElbowZ .

rElbowX

Il

rElbowY

Fig. 4: Results for optimizing the hyperparameters © of the GP
regarding the distance between trajectories in joint angle space.
The y-axis shows the name of the joint angle, the x-axis shows the
previous time steps with time step 9 being the latest step. Darker
colors correspond to higher values.

The prediction of the gp_multistep method performs better
with increasing training sizes for both datasets (first column).
The loss for the gp_trajopt method also slightly decreases
with training size. However, the improvements are not as
high as for the gp_multistep method because the goal con-
straint already fixes the target state and only the states in
between are improved.

The plots in the second and third row show the prediction
step on the x-axis and the mean Euclidean distance to the
ground truth of the corresponding prediction step on the y-
axis. The second row shows plots for a small training size
and the third row for a larger training size. The precision
of the predictions of the GP based methods increases with
larger training size. The gp_multistep method outperforms
the vel_pred method and the gp_trajopt method outperforms
the lin_pred method on both datasets, which indicate the effi-
cacy of combining trajectory optimization and GP prediction.

Note that because gp-trajopt and lin_pred are informed
with the target position they both end at the correct position,
leading to first increasing loss and afterwards decreasing
when approaching the target position.

E. Joint positions accuracy with goal optimization

Figure 6 shows a comparison of the methods in position
space (Istm, gp_multistep and gp_trajopt) and the methods in
joint angle space (ja_multistep and ja_trajopt). The methods
in position space use the arm dataset based on the positions
of shoulder, elbow and wrist. To compare the methods in
joint angle space to the methods in position space we perform
forward kinematics for each configuration in the trajectory
to obtain the positions of shoulder, elbow and wrist.

Note that we do not display the LSTM prediction in joint
angle space as it performed worse than the other methods. We
assume that this is due to the one-layer LSTM not being able
to capture the high-dimensional state space correctly and that
more complex recurrent neural networks, such as Encoder-

206

0.7 0.25

¢4 vel_pred % vel_pred % vel_pred
06 [I ¢ lin_pred 4 lin_pred ¢4 lin_pred
J l 4 gp_multistep || 0.20|| $% gp_multistep ¢—¢ gp_multistep
o9 gp_trajopt 66 gp_trajopt gp_trajopt
0.5
0.15
= 8 o)
3 ko k]
i a =)
0.3 +\}\ 0.10
pe i
02 T T \‘\1
0.05
0.1
.
o — — °o— 0.00 000 000000000000000e,,7 8000000000000, .g
%% 30 a0 50 60 70 80 90 100 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Training size Prediction step Prediction step
(a) Test loss (b) Training set of size 25 (c) Training set of size 100
020 — T . —— , 0.08 0.08
t ? % vel_pred i 4 vel_pred ¢ vel_pred
0.18 44 lin_pred i 0.07|{ & lin_pred 0.07|| % lin_pred
#—¢ gp_multistep ¢—¢ gp_multistep &% gp_multistep
016 48 gp_trajopt 0.06{#—¢ gp_trajopt 0.06}| & gp_trajopt
0.14f
T T 0.05} 0.05
g 0.12 8 I+
W 5 0.041 5004
& o010} 2 g
[a a
0.03F 0.03
0.081
0.061 0.02 0.02
0.04 s] oo01 2o 0aoc .7.1“7'1" 0.01 48 C0000a,,
_— s — —q 28T ° o8) ® 0., by
z 3 -
00%5 60 80 00 120 140 160 10 200 % 5 10 15 20 25 30 % 5 10 15 20 25 30
Training size Prediction step Prediction step

(d) Test loss

(e) Training set of size 50

(f) Training set of size 200

Fig. 5: Comparison of prediction methods on the synthetic dataset (first row) and the wrist data (second row). The first plot in each
row shows the mean Euclidean norm between predicted and correct trajectory over training set size. The other two plots show the mean
Euclidean distance between states as a function of the prediction steps for two different training sizes. Error bars show the Standard Error

0.07

og 0tﬁhe Mean (SEM) over the test set.

4 vel_pred 4 vel_pred
&4 gp_multistep ¥ s 0.06] 44 gp_multistep
0-051 §—9 gp_trajopt p &% gp_trajopt
66 ja_multistep P 66 ja_multistep
008 9 ja_trajopt p o 005164 ja_trajopt
B 60 Istm s 60 Istm

0.04
0.03

Distance [
Distance [m]

0.02
0.02

0.01

o9
efeet

4 vel_pred
&4 gp_multistep
$—¢ gp_trajopt
66 ja_multistep
&9 ja_trajopt
60 Istm

15 20 10

Prediction step

(a) Shoulder joint

15
Prediction step

(b) Elbow Joint

20 20 30
Prediction step

(c) Wrist Joint

Fig. 6: Comparison of prediction methods on the arm dataset with goal optimization for the wrist joint. The y-axis shows the Euclidean
distance to the correct position, the x-axis shows the prediction time step, error bars show the SEM.

Recurrent-Decoder models [8], could be used to overcome
this issue.

The results show that all our models outperform the
constant velocity prediction on the test set. The ja_multistep
performs slightly worse than the gp_multistep, especially for
the elbow joint and the wrist joint. This result is expected
because the positions of the joints are calculated through the
kinematic chain and prediction errors of single joint angles
sum up through the chain. However, it can be seen that in
joint angle space the prediction improves more when setting
the target constraint to the wrist than in position space. This
is also expected because the constraint influences the whole
kinematic chain which is not the case with the joint center

207

position representation. Thus, although the goal constraint
is only used for the wrist joint, the trajectory optimization
in joint angle space with goal constraint also improves the
prediction for the elbow joint significantly.

E Longer trajectories

While we focused on short-term trajectories of 0.25 sec
in the previous experiments, in this section we propose a
study of longer reaching trajectories lasting 1 sec, which
are more challenging. We computed 15 test trajectories on
the reaching dataset in joint angle space. The mean distance
between the predictions for the wrist position by our method
and the ground truth is 0.078 meters (SD = 0.061) which is

(a)

B NS PN |

®

Fig. 7: Ground truth (green), prediction by our method (blue) and linear prediction baseline (orange). All trajectory durations are 1 sec.

less than the linear prediction with a mean distance of 0.087
meters (SD = 0.045). While our prediction method outputs
a trajectory for the whole human the linear prediction is only
a baseline for the wrist position.

Figure 7 shows some examples of the predicted trajectories
along with the ground truth and the linear prediction baseline.
Some of the predicted trajectories are very similar to the
ground truth trajectory, however, some trajectories remain
further away from the ground truth in the specific case, for
example, Figure 7 (e) and (h). We assume that this could be
further improved with a GP method able to scale to larger
datasets such as [10], as well as optimization methods that
combine global and local optimization. We leave these for
future work.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an approach for prediction of
human motion that models the dynamic behavior of humans
using a Gaussian process and combines it with trajectory
optimization to account for additional constraints.

Our experiments on synthetic and motion capture data
demonstrate the efficacy of the approach. The experiments
show that the prediction using an iterative multistep GP can
be improved by optimizing for an additional goal constraint.
Moreover, we found that optimizing for a goal constraint
for the wrist in joint angle space significantly improves
the prediction for the elbow joint as well. Finally, we
demonstrated that the prediction method also works well for
longer reaching motions.

In future work we investigate the scalability of the ap-
proach to handle additional constraints, such as obstacle
constraints or increase smoothness by minimizing jerk. We
also wish to investigate combining goal constraints for other
activities, such as placing or drinking, which could also
be obtained by sampling object affordances as proposed by
Koppula et al. [7].

ACKNOWLEDGMENT

This work is funded by the research alliance “System
Mensch” of Baden-Wiirttemberg, Germany. All authors are
together with the International Max Planck Research School
for Intelligent Systems (IMPRS-IS).

REFERENCES

[1] J. Mainprice, N. Ratliff, and S. Schaal, “Warping the workspace geom-
etry with electric potentials for motion optimization of manipulation
tasks,” in IEEE/RSJ Int. Conf. on Intel. Rob. And Sys. (IROS), 2016.

208

[2] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164-1193, 2013.
M. Toussaint, “A tutorial on newton methods for constrained trajectory
optimization and relations to slam, gaussian process smoothing, opti-
mal control, and probabilistic inference,” in Geometric and numerical
foundations of movements. Springer, 2017, pp. 361-392.

C. E. Rasmussen and C. K. Williams, Gaussian process for machine
learning. MIT press, 2006.

D. Kuli¢ et al., “Incremental learning of full body motion primitives
and their sequencing through human motion observation,” Interna-
tional Journal Of Robotic Research, vol. 31, no. 3, pp. 330-345, 2012.
A. M. Lehrmann, P. V. Gehler, and S. Nowozin, “Efficient nonlinear
markov models for human motion,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

H. S. Koppula and A. Saxena, “Anticipating human activities using
object affordances for reactive robotic response,” IEEE transactions
on pattern analysis and machine intelligence, vol. 38, no. 1, pp. 14—
29, 2016.

K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik, “Recurrent network
models for human dynamics,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2015.

J. Martinez, M. J. Black, and J. Romero, “On human motion prediction
using recurrent neural networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 1EEE, 2017.

M. Al-Shedivat et al., “Learning scalable deep kernels with recurrent
structure,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp- 2850-2886, 2017.

B. Berret, E. Chiovetto, F. Nori, and T. Pozzo, “Evidence for composite
cost functions in arm movement planning: an inverse optimal control
approach,” PLoS computational biology, vol. 7, no. 10, 2011.

J. Mainprice, R. Hayne, and D. Berenson, “Goal set inverse optimal
control and iterative replanning for predicting human reaching motions
in shared workspaces,” IEEE Trans. Robotics, vol. 32, no. 4, pp. 897—
908, 2016.

J. Fu, K. Luo, and S. Levine, “Learning Robust Rewards
with Adversarial Inverse Reinforcement Learning.” arXiv preprint
arXiv:1710.11248, 2017.

J. Mainprice and D. Berenson, “Human-robot collaborative manipula-
tion planning using early prediction of human motion,” in IEEE/RSJ
Int. Conf. on Intel. Rob. And Sys. (IROS), 2013.

A. P. Shon, K. Grochow, and R. P. Rao, “Robotic imitation from human
motion capture using gaussian processes,” in IEEE-RAS International
Conference on Humanoid Robots (Humanoids). 1EEE, 2005, pp.
129-134.

J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process
dynamical models for human motion,” IEEE transactions on pattern
analysis and machine intelligence, vol. 30, no. 2, pp. 283-298, 2008.
R. Murray-Smith and D. Sbarbaro, “Nonlinear adaptive control using
nonparametric gaussian process prior models,” IFAC Proceedings
Volumes, vol. 35, no. 1, pp. 325-330, 2002.

F. Berkenkamp and A. P. Schoellig, “Safe and robust learning control
with gaussian processes,” in European Control Conference (ECC).
IEEE, 2015, pp. 2496-2501.

D. Kraft, “Algorithm 733: Tomp—fortran modules for optimal control
calculations,” ACM Transactions on Mathematical Software (TOMS),
vol. 20, no. 3, pp. 262-281, 1994.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

