
Auton Robot (2018) 42:1103–1115
https://doi.org/10.1007/s10514-017-9674-5

Efficient behavior learning in human–robot collaboration

Thibaut Munzer1 · Marc Toussaint2 · Manuel Lopes3,4

Received: 23 December 2016 / Accepted: 17 October 2017 / Published online: 25 November 2017
© Springer Science+Business Media, LLC 2017

Abstract We present a novel method for a robot to interac-
tively learn, while executing, a joint human–robot task. We
consider collaborative tasks realized by a team of a human
operator and a robot helper that adapts to the human’s task
execution preferences. Different human operators can have
different abilities, experiences, and personal preferences so
that a particular allocation of activities in the team is pre-
ferred over another. Our main goal is to have the robot learn
the task and the preferences of the user to provide a more
efficient and acceptable joint task execution. We cast con-
current multi-agent collaboration as a semi-Markov decision
process and show how to model the team behavior and learn
the expected robot behavior. We further propose an interac-
tive learning framework andwe evaluate it both in simulation
and on a real robotic setup to show the system can effectively
learn and adapt to human expectations.

Keywords Interactive learning · Human–robot collabora-
tion · Relational learning

This is one of the several papers published in Autonomous Robots
comprising the Special Issue on Learning for Human-Robot
Collaboration.

B Manuel Lopes
manuel.lopes@tecnico.ulisboa.pt

Thibaut Munzer
thibaut.munzer@inria.fr

1 Inria, Bordeaux, France

2 Machine Learning and Robotics Lab, University of Stuttgart,
Stuttgart, Germany

3 INESC-ID, Lisboa, Portugal

4 Instituto Superior Tecnico, Lisboa, Portugal

1 Introduction

Robots are still restricted to very controlled environments and
mostly separated from humans. New technological develop-
ments have improved the safety of robots, making it possible
to have robots and humans sharing the same space. For high
volume production, it will still be more efficient to fully
automatize the task. For low volume production, on the other
hand, having a team composed of a human expert and an
easily reconfigurable robot might be more efficient than full
automation as the setup cost will be greatly reduced allowing
for fast task switching. As a consequence, to be useful, robots
should be able to help as soon as possible. In this context,
robots should be able to learn how to assist a human operator.
This process should be intuitive for the operator, requiring as
little as possible knowledge about how the robot learns and
acts. It is also important for this process to be time efficient,
so that the learning phase is no longer than the actual task
execution.

In this paper we propose an interactive learning system
allowing a robot to learn to assist a human operator. We
mean by interactive learning, fusing the training (creating a
dataset of correct behavior) and execution (using the behav-
ior learned from the dataset to solve the task) phases. It has
several advantages: (i) it exploits the current execution data
to start acting autonomously as soon as it is confident on the
task, making the teaching process shorter and less tedious as
the robot can act autonomously when it is sure about the cor-
rect action to execute; (ii) the new experience and feedback
from the user are used to fix the learned behavior if some
parts are wrong or adapt if the expected behavior changes.

Another advantage of the interactive setting is to make
it easier for a naive user to use the system. In many cases
a deep understanding of the learning problem and learning
algorithms is needed to select parameters such as the size of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-017-9674-5&domain=pdf
http://orcid.org/0000-0002-6238-8974

1104 Auton Robot (2018) 42:1103–1115

the training dataset, the amount of feedback, and the length
of the training. Indeed, if the size picked is too small the sys-
tem will make mistakes with no possibility for improvement
other than retraining the system with a bigger dataset. If the
size is too big, the user will spend a lot of time recording
useless demonstrations.

Recent works have considered interactive learning from
imitation in robotics, but mostly in the context of single-
agent tasks and without concurrent actions and high-level
representations. In this paper, we propose a way to learn
a collaborative task. The work presented here focuses on
human–robot collaboration scenarios but could be applied
more broadly, to any virtual agent that has to work with a
human in a support fashion.Our contributions include the fol-
lowing: (i) proposing and evaluating an interactive behavior
learning framework for collaborative tasks with concurrent
actions (ii) the introduction of a decision risk estimation
mechanism for relational policy learning (iii) the introduction
of a formalism, based on relational semi-Markov decision
processes, to model concurrent decision problem and (iv)
how to learn preferences with the proposed framework.

After reviewing related work in Sect. 2, we present the
Relational Activity Process (RAP) framework and how to
represent a collaborative task with it in Sect. 3. In Sect. 4,
we present the interactive learning framework and the algo-
rithms used. Lastly, Sects. 5 and 6 are the evaluation and the
conclusion.

2 Related work

Research on learning from demonstration has included: (i)
low-level learning, where the goal is to learn a mapping from
sensor output tomotor command, e.g. learningmotor policies
(Chernova and Veloso 2009) or navigation (Knox et al. 2013;
Jain et al. 2013); (ii) symbolic learning, where the goal being
is to learn a policy, a mapping from a symbolic space state
to the space of actions (Natarajan et al. 2011) or learning
rewards (Munzer et al. 2015) from demonstration.

In most of those examples, there is a clear separation
between the learning and the execution phase. This has sev-
eral drawbacks as the number of demonstrations might be
larger than needed, and might not even cover critical aspects
of the task. To address such problems interactive scenarios
where both phases are merged have been proposed. In Cher-
nova and Veloso (2009), the robot only makes queries when,
in a given state, the confidence on the actions passes a given
threshold. Alternatively, in Lopes et al. (2009), the system
requests information about relevant states to learn a good
reward representing the task. Other approaches provide a
smooth transition between the phases, a first phase of tele-
operation where the policy (Grollman and Jenkins 2007), or
the preference (Mason and Lopes 2011), is learned and, at

any time, the user can resume teleoperating to provide cor-
rections.

A new trend of interactive learning systems is to rely on
weak feedback to handle situations where optimal feedback
is impossible or costly to produce by the human teacher. In
particular, Shivaswamy and Joachims (2012) and Jain et al.
(2013) relies on local improvements of the current policy
while Akrour et al. (2011) asks for ranking between two or
more policies.

Another line of research considers not just learning indi-
vidual tasks but also how to learn collaborative tasks. Several
works have shown that learning the expected behavior from
the human teammate has a positive impact on both collabora-
tion and engagement of the user (Lee et al. 2012; Mitsunaga
et al. 2008).

If the preferences of the user are known then planning
methods can be used to anticipate the needs of the user (Kop-
pula et al. 2016). Nikolaidis et al. (2014) show how to learn
different profiles of user’s preferences by clustering trajecto-
ries containing multiple types of execution. The preferences
of the user are modeled as a hidden state of a POMDP allow-
ing to adjust to the particular type of user in real time.

The concept of cross-training is explored in Nikolaidis
and Shah (2013) where the robot and the user simultane-
ously adapt to each other by switching roles. The robot
learns directly a policy that better adapts to the user pref-
erences. This improves team efficiency and acceptance
metrics.

Our work is different from the previous research because
we consider simultaneously: (i) how to interactively learn
behavior in a collaborative setting, (ii) we learn behavior in a
high-level relational formalism with concurrent actions, (iii)
to simultaneously do training and execution.

3 Team behavior modeling with RAPs

We model the concurrent task using Relational Action Pro-
cesses (RAP) (Toussaint et al. 2016). The RAP framework
relies on Relational MDPs, which model decision process
where both state and actions use relational representations,
and allows the concurrent execution of multiple actions that
can also be initiated or terminated asynchronously.

3.1 Markov decision process

Markov Decision Processes (MDPs) are widely used to rep-
resent the decision process of an agent that acts in an environ-
ment. AMDP is a quintuplet (S, A, R, T, γ)with S the space
of states, A the set of actions, R some reward function, T the
transition probability function that describes the dynamics
of the world, and γ the discount factor. The agent aims to
maximize the sum of the discounted reward

∑∞
t=0 γ t rt .

123

Auton Robot (2018) 42:1103–1115 1105

A policy is the decision function of an agent. It gives the
probability, given a state, to choose an action, π(s, a) =
P(a|s).1 Under a policy π one can compute the so-called
quality function:

Qπ (s, a) = R(s, a)+γ
∑

s′∈S
T (s, a, s′)

∑

a′∈A

π(s′, a′)Qπ (s′, a′)

that computes the expected sumof discounted future rewards.

3.2 Relational MDP

Relational MDPs generalize MDPs for high-level represen-
tations (Džeroski et al. 2001). This representation makes
possible tomodel generic objects instead of specific instances
of objects, allowing to generalize over objects, contexts, tasks
and policies. Solutions to the planning and learning problems
can be found in the literature (Kersting et al. 2004; Lang and
Toussaint 2010). Relational MDPs use a subset of first-order
logic. We now define the main concepts in a simplified way:

– Constant: a constant is a symbol that refers to an object
of the domain, usually a real world object but it can also
be a number, a color,….

– Variable: a variable is a symbol that can be substituted by
a constant. We follow the classic prolog notation where
identifier starting with a capital refer to variable and low-
ercase refers to constant.

– Term: a term is either a constant or a variable.
– Predicate: a predicate is a symbol p/n where n is the
arity of the predicate. It represents a relation between n
constants or variables.

– Atom: an atom is an expression of the form p(a1, . . . , an)
where p/n is a predicate and ai are terms.

– Formula: a formula is a set of atoms and negated atoms.
– Substitution: a substitution is amapping fromvariables to
terms, noted σ = {X1 �→ t1, . . . , Xn �→ tn}. Applying a
substitution to a formula f , noted f σ consists in replac-
ing all occurrences of X1, . . . , Xn in t by, respectively,
t1, . . . , tn .

– Grounding: a grounding is a substitution such that there
are no variables in the mapped terms.

Under this representation, the state of the environment,
given a set of predicates and a set of constants, is the set of
all true grounded atoms.

For example, we can model, using a relational represen-
tation, an environment where three blocks are on the top of a
table and can be stacked. There are four objects represented

1 We sometimes use the term policy to refer to a deterministic mapping
from S to A.

by the constants: b1, b2, b3 and table and we use three pred-
icates to represent the different states: on/2 (which states that
an object is on top of another object), clear/1 (which states
that there is nothing on top of an object) and block/1 (which
states that an object is a block). The state where b1 is on top
of b2 and both b2 and b3 lie on the table will then be:

{on(b1, b2), on(b2, table), on(b3, table),
clear(b1), clear(b3), block(b1), block(b2),
block(b3)}

The state of the actions are applied. In the blocksworld
example, we can model a move(A, B, C) action that rep-
resents moving object A from the top of B to the top of C.
The action is abstract in the sense that it can be grounded to
different objects. This action can represent moving b1 from
b2 to table,move(b1, b2, table) as well as moving b2 from
table to b1, move(b2, table, b1).

Traditionally, in such domains the transition function is
represented as a set of rules that contain 3 parts: the action,
the context and the outcomes. There are different ways to
represents it, we use the following one:

– The action and its argument (actions are atoms),
– The context, a formula that represents a precondition to
executing the action,

– The outcome, a formula that represents the effect of exe-
cuting the action,

and we represent them like this:
action:
{ context }
{ outcome }

The set of feasible grounded actions in a given state,D(st),
is composed of all grounded abstract actions for which a rule,
a : {c}{o}, exists and there is a grounding σ such that the
context is true in this state, cσ ⊂ st . An abstract action can
be present more than once in the decision set with different
groundings.

If the agent decides to execute the action aσ , the resulting
state is obtained by applying the list of effects.

In our running example the transition function for the
action move(A, B, C) will be represented with three rules:

move(A, B, C):
{ clear(A) on(A, B) block(B) block(C) clear(C) }
{ ¬clear(C) ¬on(A, B) on(A, C) clear(B) }
move(A, B, C):
{ clear(A) on(A, B) ¬block(B) block(C) clear(C) }
{ ¬clear(C) ¬on(A, B) on(A, C) }
move(A, B, C):
{ clear(A) on(A, B) block(B) ¬block(C) }
{ ¬on(A, B) on(A, C) clear(B) }

We use the ¬ symbol to represent the negation.
Figure 1 illustrates a transition in the blocksworld exam-

ple.

123

1106 Auton Robot (2018) 42:1103–1115

Fig. 1 Sketch of an example of transition in the blocksworld domain.
The context is highlighted in blue, the positives outcomes are high-
lighted in green and the negatives ones in red. We favor red over blue.
The rule used in the first action is the first one with the substitution
{A �→ b1, B �→ b2,C �→ b3} (Color figure online)

3.3 Relational activity processes

ARAP is away tomodel concurrent collaboration ofmultiple
agents as a relational semi-MDP (Toussaint et al. 2016). The
formalism allows for multiple actions taken simultaneously
and asynchronously.

In order to do so, it decomposes the action concept into
two different concepts: decision and activity. Indeed, in the
classicalMDP formalism action encompasses at the same the
time the decision to start and the time to performan action.By
splitting it in two, and including the action being performed
(called activity) in the Markovian state, RAP can represent
a concurrent process. Roughly, RAPs define a sequential,
semi-Markovian decision process where decisions are about
the initiation of activities, and activities run concurrentlywith
random durations.

For brevity, we only describe RAPs in the deterministic
case. However, the interested reader can refer himself to Tou-
ssaint et al. (2016).

We will continue to use our running example of the
blocksworld. However, to showcase the concurrent aspect,
we introduce the presence of two agents and two activi-
ties will be used to realize the displacement of a block:
pick(Agent, Block) and place(Agent, Block1, Block2).
We also add two predicates, hand_free/1 (which states
that an end-effector object doesn’t hold another object) and
in_hand/2 (which states that an end-effector is holding an
object).

As for relational MDPs, the transition function is repre-
sented using rules. Given a set A of activity constants, for
each activity a ∈ A there exist one or multiple initiation
operators, encoded as rules of a Relational MDP. These ini-
tiations operators have a real value predicate go(a) = τa

in the outcome set that represents the running activity. The
value of τa encodes the duration of the activity. We decide
arbitrarily that the pick activity lasts 1 unit of time while the
put activity lasts 0.7 unit of time. For instance:

start(pick, X, A):
{ hand_free(X) clear(A) }
{ go(pick, X Y)=1 ¬hand_free(X) ¬clear(A) }

start(put, X, A, B):
{ in_hand(X, A) block(B) clear(B) }
{ go(put, X, A)=0.7 ¬clear(B) ¬in_hand(X, A) }

start(put, X, A, B):
{ in_hand(X, A) ¬block(B) }
{ go(put, X, A)=0.7 ¬in_hand(X, A) }

are the initiation operators of activities pick and put. In state s,
the decision set D(s) includes all initiation operators whose
context can be grounded (potentially more than once). In
addition, the decision set includes a single special decision,
the wait decision.

Transition model The transition model for activities is
equivalent to the transition model for Relational MDPs
except for the addition of a knowledge base KB, a set of first-
order rules.When the state st is modified by a rule it produces
an intermediate state s′

t . The new state, st+1, is obtained by
the stable model under this KB [cf. answer set programming
(Marek and Truszczyński 1999)], the result of forward chain-
ing all rules from the KB on s′

t until convergence.
When the decision iswait, the semantics is that all agents

decide not to initiate anything further and that real time pro-
gresses until the relational state changes and activities might
terminate. We concretely define the state transition for a
wait as the following procedure:

1. Find the go-predicate with the minimal time-to-go value
τmin.

2. Decrement all go-predicate-values by τmin.
3. All zero-valued go-literals, go(a) = 0, are deleted from

st and a corresponding terminate(a) is added to st .

This defines the intermediate relational state s′
t . Again, the

new state st+1 is defined as the stable model under the KB.
TheKB is assumed to include the rules that express the effects
of termination.

For the blocks world example, the termination rules are:

123

Auton Robot (2018) 42:1103–1115 1107

r1(X, A, B):
{ terminate(pick, X, A) on(A, B) }
{ ¬terminate(pick, X, A) in_hand(X, A) ¬on(A, B)

clear(B) }
r2(X, A, B):

{ terminate(pick, X, A) ¬on(A, B) }
{ ¬terminate(pick, X, A) in_hand(X, A) }

r3(X, A, B):
{ terminate(put, X, A, B) block(B) }
{ ¬terminate(put, X, A, B) hand_free(A) on(A, B) }

r4(X, A, floor):
{ terminate(put, X, A, B) }
{ ¬terminate(put, X, A, B) hand_free(A) on(A, table) }

Duration model In the context of hierarchical RL and
the standard Concurrent Action Model (Rohanimanesh and
Mahadevan 2005), steps of the sMDP correspond to the exe-
cution of an option, and the duration of the sMDP step is
integer-valued, counting the steps of the underlying MDP.
However, in general sMDPs the duration of one Markov step
is real-valued, arbitrarily depending on (s, d, s′). In the con-
crete case of RAPs, we assume that initiation and termination
decisions themselves have zero duration, while τ is equal to
τmin for the wait decision and therefore implicitly given by
the go predicates in initiation operators.

Reward model Rewards in RAPs are generally given as a
relational mapping (s, d, τ, s′) �→ r . In our applications, we
encode this mapping as a relational tree as it is a compact
and easily readable way to represent such mappings.

Optimality Unrolling a policy generates an episode (s0,
d0, τ0, r0, s1, . . .). We define the discounted return for an
episode as

R =
∞∑

i=0

γ τ̄i β(τi)ri , τ̄i =
i∑

j=1

τ j , β(τ) = 1 − γ τ

1 − γ

The β term weight each reward by the time taken by the
transitionwhile taking into account the impact of the discount
factor.

3.4 Decentralized team decision making

Using the RAP formalism, we can model teams of collab-
orating agents, where all agents are embedded in the same
semi-MDP and the decision space is the joint space of human
decisions and robot decisions, D. Given a reward and using
planning methods, for example, Value Iteration (VI), we can
compute an optimal Q-function over the next decision d ∈ D
in a given RAP state s. It provides values for decisions across
agents. If there was a single central decision maker, it could
read out the argmaxd Q(d, s) and transmit the decision d to

the agent it concerns. However, in real human–robot collabo-
ration, without such a central decisionmaker, the readout and
interpretation of this quality-function are non-trivial. With
two decision makers, both might want to start an activity at
the same time.

Ifmore than one agent can realize an activity, the grounded
activity must specify the agent as to avoid ambiguity. For
example, the pick activity. The joint grounded decision space
decomposes asD = DR ∪DH andDR ∩DH = {wait}, with
DR the robot’s and DH the human decision space.

Given the robot has a representation of the shared task
as a Q-function, we propose the following procedure for the
robot to decide on its own activities. If maxd∈DR Q(d, s) <

maxd∈DH Q(d, s), that is robot decisions have strictly less
value than optimal human decisions, the robot does not start
an activity and lets the initiative to the human. Otherwise,
the robot samples uniformly from the set of optimal robot
decisions ⊆ DR .

4 Interactive collaborative behavior learning

We now present the interactive learning framework. The
basic idea is to have a system where the user can instruct
the robot. But we make it also possible for the robot to act
before being instructed when it is certain about what activity
to execute. The underlying assumption is that, as the robot
does the task again and again, it will become more and more
certain about which activities to perform. To be certain about

Fig. 2 Schema of the interaction protocol. The three different cases
(confident, ask-before-act and waiting-robot) are shown in color (Color
figure online)

123

1108 Auton Robot (2018) 42:1103–1115

a decision we rely on decision risk estimation (detailed in
Sect. 4.5).

4.1 The interactive framework

Figure 2 presents the interaction flow.We incrementally build
a dataset of expert behavior during task solving and after
each episode (completion of the task) relearn the correct
behavior using batch learning. During an episode, for each
decision, based on the predicted decision and the decision
risk associated, we distinguish three cases: confident, ask-
before-act and waiting-robot. If the predicted activity is a
robot one (is_robot_activity(d) is true) and the estimated
risk is inferior to a threshold (e < threshold is true), called
risk threshold, the robot acts (s’ = transition(s, d)) and even-
tually gets feedback (d* = get_feedback(d)). If no feedback
is given before the end of the activity, the activity is consid-
ered to be correct. On the other hand, if the estimated risk is
over the risk threshold, the robot starts by asking the user if
the predicted decision is correct and use the user feedback to
execute a correct activity. If the predicted activity is a human
one or the decision is wait, the robot does nothing and gets
feedback either by observing a human activity or by getting
a command to do an action. After each activity (start human
activity, start robot activity or wait) D is updated.

Since our present goal is to produce an efficient learn-
ing procedure, we also added a memory system. If the robot
recognizes the current state as part of D, it predicts the corre-
sponding activitywith an estimated risk of 0. This also allows
avoiding loops during the execution.

4.2 Learning collaborative behavior

We learn the behavior based on the dataset gathered during
task solving. It is composed of tuples (statei , decisioni)
where decisioni is a semi-MDP decision and can, therefore,
be the activation of a human activity, the activation of a robot
activity or the wait primitive.

We propose to use the TBRIL algorithm (Natarajan et al.
2011) as it is, to our knowledge, the only policy learning
algorithm for relational knowledge. TBRILworks by finding
a quality function such that seen actions are optimal for their
associated state.

By first defining a smooth mapping between quality func-
tion and policy:

π(s, a) = e−βq(s,a)

∑
b∈D(s) e

−βq(s,b)
,

the problem becomes finding the function q∗ that minimizes
the negative log-likelihood of the dataset D. Formally:

q∗ = argmin(−log(L(D|q))

q∗ = argmin

⎛

⎝
∑

(s,a)∈D
−log(π(s, a))

⎞

⎠

TBRIL solves this problem using the Gradient Boosting
(GB) algorithm (Friedman 2001). GB it the transposition
of the gradient descent algorithm in function space. Given
a function space C → R and an objective functor L to
minimize, to apply gradient descent in function space, is to
iteratively define fi+1 = fi + δL(fi)

δ fi
with f0 an initial solu-

tion (can be the null vector). More precisely, for any value of
the input space, c ∈ C, fi+1(c) = fi (c) + δL(fi)

δ fi (c)
.

Gradient Boosting comes into play when it is impossi-
ble or not sensible to compute δL(fi)

δ fi (c)
for every c ∈ C ,

either because |C | is infinite or because there are c ∈ C for
which values of fi (c) have no influence on L(fi). A weak
regressor Ri is learned to predict/approximate the values of
δL(fi)
δ fi (c)

for any c ∈ C . From a subset B ⊂ C , a dataset is

build [(c, δL(fi)
δ fi (c)

)]c∈B from which Ri is learned. fi+1 is then
defined as fi+1 = fi + Ri .

In our case, the function space is S × A → R, the functor
is L(Q) = ∑

(s,a)∈D −log(π(s, a)) and B is defined as B =
∪(s,a)∈D{(s, a′)|a′ ∈ D(s)}.

Because we are working with relational representations,
we use as weak learner relational regression trees (Blockeel
and De Raedt 1998).

As a gradient algorithm, TBRIL needs a starting point.
This starting point is a quality-function, Q∗

prior , and can be
set to 0. However, it can also be set to any quality function
closer to the goal if prior knowledge is available, allowing to
speed up learning. Algorithm 1 sums up the algorithm.

Algorithm 1 TBRIL
1: procedure TBRIL(Q∗

prior , D, nb_i ter)
2: Q∗

target ← Q∗
prior

3: for i ∈ [0, . . . , nb_i ter] do
4: Dg ← compute_gradient (Q∗

target , D)

5: fi ← learn_regression_tree(Dg)

6: Q∗
target ← Q∗

target + fi

7: return Q∗
target

4.3 Learning preferences

The previously defined algorithm can also be used to learn
the user’s preferences when the general task is known before-
hand.

Given a general task with different ways to solve it, i.e.
different optimal paths in the RAP, preferences are defined

123

Auton Robot (2018) 42:1103–1115 1109

Table 1 The different kind and ways to obtain feedback based on the predicted action and whether it is correct

Correct decision A robot decision is predicted Human decision or wait is predicted

Confident Ask-before-act

Predicted Implicit validation Explicit validation Implicit validation

Not predicted (robot decision) Explicit correction Explicit modification Explicit modification

Not predicted (human decision) Explicit correction Implicit modification Implicit modification

The cases to avoid, explicit (bold) and correction (italics) are highlighted

as the preferred subset of these paths. The task can be seen as
prior knowledge whereas preference is the learned behavior.
In the extreme case where no prior knowledge is available,
this problem is reduced to task learning.

More formally, under an MDP the task is defined by the
reward, Rtask . Using Value Iteration, we can compute the
optimal quality function Q∗

task . We can then represent the
behavior of the team taking into account human preferences
as another quality function Q∗

f ull = Q∗
task + Qp. Where

Qp is a shaping function of the task optimal quality function
such that Q∗

f ull maximizes task and human preference.
By initializing the parameter Q∗

prior of TBRIL to Q∗
task

we can use the same algorithm to learn preferences. The
advantage of learning the preferences is to, at the same time,
leverage prior knowledge to be efficient early on while being
able to adapt to different users.

4.4 Protocol of interaction

At this stage, we introduce three feedback types:

– Validation: the predicted decision is correct
– Modification: the predicted decision is not correct and
feedback is given before decision is executed

– Correction: the predicted decision is not correct and feed-
back is given after decision is executed

and two ways to get feedback :

– Implicit: the system can recover the information by
observing the scene

– Explicit: the system receives the information by the direct
intervention of the human. For example, using voice com-
mands or a graphical interface.

Based on the kind (robot/human/wait) of decision that is
predicted and if it is correct, different feedback will be gath-
ered. Table 1 presents these different feedback types. For
example, if the predicted decision is correct, a validation
feedback is gathered. If the decision risk is under the risk
threshold, it will be done implicitly as the robot will act in
confident mode. On the other hand, if the predicted decision

is a robot one, the robot is confident and this prediction is
wrong the feedback will be an explicit correction as the only
way for the system to get feedback is from the user after the
activity started.

An efficient learning procedure aims to minimize explicit
feedback, as it requires attention from the user and can break
the workflow of the task, as well as correction feedback,
meaning a mistake has been made which can also break the
workflow of the task. The challenge is due to these two objec-
tives being opposed.

4.5 Estimating decision risk

We now present how the decision risk is estimated allowing
acting differently when the system has enough information
to be confident or when it should acquire more data before
acting.

The estimation of the decision risk is based on a simple
idea: learning different prediction models and computing the
risk as a measure of the disagreement of the models.

In particular, we propose to learn N (= 50) models, each
from a datset, Si , corresponding to a random partition of D
(the optimal behavior dataset), with |Si | = 0.4 × |D|.

We need to consider a set of optimal decisions as in most
cases there are more than one and the user might give dif-
ferent ones. We define the risk of an optimal set of predicted
decisions, a subset p of D(s), as the averaged minimum dis-
tance between a quality vector such that every decision in
p is optimal, qpos , and the quality vectors predicted by the
models.

rp = 1

N

N∑

n=0

argminqpos∈Qp
|qpos − qnpred |

with qnpred = [Qn
f (s, d)]d∈D(s), the vector of quality val-

ues predicted by learner n, and Qp = {q ∈ R
|D(s)||∀d ∈

p, d ′ ∈ D(s), qd ≥ qd ′ }, the set of quality vectors such that
all decisions from p are optimal.

Given the state, for each possible set of decisions, the
risk is computed. The set with the least risk is the final pre-
diction. Sometimes more than one set shares the same risk
(for example, if only two decision, d1 and d2 are optimal for

123

1110 Auton Robot (2018) 42:1103–1115

every learner, three sets will minimize the risk: {d1}, {d2} and
{d1, d2}) we pick the one with the higher cardinality.

For a given set of decisions and a given model, we cast
the problem of finding the associated risk (finding the vector
qpos) as a quadratic optimization under constraints problem
and use an off-the-shelf solver to solve it.

5 Evaluation

This section presents the different experiments we conducted
to evaluate the framework. They are divided in simulation
experiments and a robotic experiment. In simulations, we
validate the approach and evaluate how it can handle different
situations. In the robotic setup, we validate it can be used on
a real world robot.

5.1 Simulation experiments

The simulation experiments are conducted on two domains
and evaluate different aspects: the impact of the risk thresh-
old, how the interactive approach performs compared to a
batch one, how sensitive to noise the system is, how well it
can transfer and what is the quality of the decision risk. We
use two metrics for most of these experiments. The cumu-
lated number of explicit instructions and cumulated number
of errors across different task executions. As explained ear-
lier, both explicit instructions and errors break the workflow
of the task and as such should be avoided.

5.1.1 Domains

We test our system in two domains: the blocksworld because
it allows to easily change its dimension, and a more realistic
collaborative human–robot assembling task.

Concurrent blocksworld This domain extends the stan-
dard blocksworld by allowing two activities (pick and put)
to be executed at the same time. Blocks can be put on top of
each other or on a surface (called floor) by a robot and by
a human. Unless otherwise specified we use 5 blocks (2 red
and 3 blue blocks).

The domain is represented with the predicates: on/2,
clear/1, busy/1, in_hand/2, blue/1 and red/1. The activities
are pick(agent, block) and put(agent, block, block), both of
them last one unit of time and both of them can be realized
by either the robot or the human.

The goal of the task is to stack all blocks in one tower. To
avoid starting in a state too close to a goal state, starting states
are generated by uniformly drawing a state from the set of
state where the number of towers is 4 (so that a least three
blocks have to be moved to solve the task) and no activities
are running.

Fig. 3 The toolbox domain. A box can be assembled in an easier and
efficient way if a collaborator robot helps by providing the new parts
and by holding parts in place to make screwing easier for the user.
On the photo, the box is assembled by a human with the help of a
robot. The robots hold the piece in place while the human is screwing.
Concurrently, the robot is picking a piece in preparation for the next
step

Fig. 4 The toolbox to be assembled in the toolbox domain. On the left
a schematic top view of the box and on the right a picture of the box

Collaborative toolbox The collaborative toolbox domain
is inspired by industrial tasks. In this domain, represented
in Fig. 3, a robot must support a human in the assembly of
a toolbox. The toolbox is constituted by five pieces: han-
dle, side_left, side_right, side_front and side_back as shown
in Fig. 4. The toolbox can be built in different ways, the
side_left and side_right are interchangeable as well as
side_front and side_back.

At the beginning of the task, all pieces are set in a location
not accessible by the human. The robot has to realize consec-
utively two activities to put them in the human workspace :
pick(piece) and give(piece). Once the human has pieces in his
workspace he can start a positioning activity to put them in
a correct disposition for screwing. Simultaneously, the robot
should hold one of the pieces in order to allow the human to
screw them together. Hold activity is done with the right arm
of the robot whereas pick and give are done with the left arm
so the robot can do different activities at the same time (which
can be naturally represented with the RAP formalism). The

123

Auton Robot (2018) 42:1103–1115 1111

task is to build the toolbox. Due to the fact that the box can be
assemble in different ways and that the running activities are
embeded in the state representation, this domain has 240,000
states.

5.1.2 Results

Impact of the risk threshold parameter Previously, we
introduced the risk threshold that controls the trade-off
between the number of explicit instructions and the num-
ber of error of the system. Figure 5 presents the cumulative
number of explicit instructions and errors for different value
of risk threshold. We can see that, for both domains, with
high values, the number of explicit instructions is low but
the number of error is high and the other way around for low
values of the risk threshold. It can indeed be used to control
the trade-off between the number of explicit instructions and
the number of error of the system. For applications where
errors are costly, it should be set to a low value whereas non-
risky application should use a high value to increase learning
speed.

Incremental versus batch A main claim of this article is
that an interactive learning approach allows reducing the
numbers of instructions and errors made by a system when
compared to batch learning. Figure 6 displays the cumula-
tive numbers of instructions and errors for interactive and
batch after 20 task completions. Each approach has been run
with different values for the parameter that controls for the
trade-off between instructions and errors, risk threshold for
interactive and number of demonstrations (full solve of the
task) for batch.

For evaluating the batch learning, the interactive pro-
cess is used except for the following modifications, with
nb_demo = n:

– The policy is only learned once, at the end of the n-th
episode.

– Before the end of the nth episode, the robot will never
use the confident mode.

– After the nth episode, the robot will never use the ask-
before-act mode.

– After the nth episode, the user will never give feedback
to the robot.

The results show that for the blocksworld domain, for any
values of nb_demo, there is a value of risk threshold such
that the interactive approach is better both in terms of explicit
instructions and errors. This also true for the toolbox domain
except for nb_demo = 10 where even a very low value of
risk threshold, the interactive approachmakesmoremistakes.
We explain later why this is the case. We argue that in most
case, interactivewith threshold = 0.0005will be preferable

Fig. 5 Impact of the risk threshold parameter. Top is for the blocks
domain while bottom is for the toolbox domain. Shaded areas represent
the standard error of the mean

to batch with nb_demo = 10, the number of errors is only
0.3 more while the number of instructions goes down to 56
(from 115).

Noise sensitivity In a real life scenario, the feedbackmight
be noisy. For example, if the system is using speech recogni-
tion, some recognition error can occur or if the system is using
a graphical interface, the user might miss-click. To evaluate
the robustness of the proposed system to noise, we make the
assumption that the communication to instruct the robot of
the optimal action is noisy, for noise = n%, in n% of the

123

1112 Auton Robot (2018) 42:1103–1115

Fig. 6 Comparison of different batch and interactive strategies after
20 iteration in terms of number of errors and number of explicit instruc-
tions. Top is for the blocks domain while bottom is for the toolbox
domain

cases a random decision is given in place of an optimal one.
We can see in Fig. 7 that the proposed approach is robust
to noise. With a noise of 20%, the system requires approxi-
mately the same number of feedback and makes between 3
and 4 times as many mistakes than without noise. However,
at 50% noise the performances decrease considerably.

Transfer One of the reasons that we propose to rely on
relational representation is to naturally deal with domains
where the number of objects can change. It is an important
feature for robotics system that works with humans as the
domain cannot be fully defined in advance.Human are unpre-
dictable and very flexible (i.e having a second screwdriver
around because the handle is more comfortable). Figure 8
presents the results of an experiment in which we compare
transferring a policy from a 5 to 6-blocksworld and learning a
new policy from scratch on a 6-blocksworld. The transferred
policy is trained for 10 episodes, we then add a block to

Fig. 7 Cumulative numbers of explicit instructions and errors when
the communication is noisy. Top is for the blocks domain while bottom
is for the toolbox domain. Shaded areas represent the standard error of
the mean

the domain. The explicit instructions and errors counters are
reset. The not transferred policy starts at episode 10 to allow
comparing the two. The transferred policy requires fewer
instructions while making fewer errors showing a clear ben-
efit of transfer.

Preference learning Figure 9 evaluates the impact of
leveraging prior knowledge about the task when such knowl-
edge is available. In this experiment, we changed the task in
both domains to add a preferences component. For the block

123

Auton Robot (2018) 42:1103–1115 1113

Fig. 8 Impact of transferring a learn policy from a 5 blocks world to a
6 blocks world. Shaded areas represent the standard error of the mean

domain, the user prefers to only handle red block. In the tool-
box domain, the user prefers to get pieces one by one and as
much as possible for the robot to have the arms in home
position.

We can see that in both domains using the prior knowledge
of the task allows learning faster while making no mistakes.

Decision risk quality We are interested in evaluating if the
measure used to estimate the decision risk clearly predicts the
future risk. In Fig. 10 we plot the distribution of the decision
risk for correctly and wrongly predicted decisions. We used
the data of 45 runs of the interactive approach for 20 episodes
with a risk threshold value of 0.01.

We can see that, for both domains, most of the correct
decisions have a very low decision risk (the y-axis uses a log
scale). And, for the blocks world domain, the distribution of
wrong decisions is clearly different. For the toolbox domain,
however, the two distribution are more alike. It explains that,
even for low values of the risk threshold, errors are made by
the interactive approach.

5.2 Robotic implementation

We now present an experiment of a joint human–robot task
realized with a user and the Baxter robot. This experiment
uses the toolbox domain (Fig. 3) and consists of a collab-
orative assembly of a toolbox. We run the system for three
episodes, each following a different RAP trajectory. The first
two start with all the pieces not in the human workspace
but the handle piece is assembled differently (it is reversed).

Fig. 9 Impact of using prior knowledge to learn the task. Shaded areas
represent the standard error of the mean

The third one starts with the side_front already in the human
workspace.

The perception system relies on Optitrack cameras for
object tracking and human activity recognition, both out-
side the scope of this paper. Based on this information, we
compute the truth values of the domain predicates for all
objects with simple heuristic rules. For example, a predicate
in_human_workspace/1 that represent if an object is reach-
able by the human is used. It is computed by comparing the
distance between the human and the object to a predefined
distance. The system is also programmed to recognize the
different human activities once again using heuristic rules.

123

1114 Auton Robot (2018) 42:1103–1115

Fig. 10 Distribution of the decision risk for correctly and wrongly
predicted decisions. Top is for the blocks domain while bottom is for
the toolbox domain

Using an algorithm on a real robot is always more chal-
lenging than in simulation. The list of additional difficulties
includes : an imperfect perception system and a model not
conform with the reality. The imperfect perception system
leads to predicates wrongly detected as true as well as the
other way around (for example, because of occlusion). Hav-
ing an algorithm robust to noise helps to cope with that.
The mismatch of the model from the reality leads to mak-
ing decision in states that are not predicted by the model.
The presented algorithm allows learning what to do in those
cases.

The results are presented in Table 2.We set the risk thresh-
old low enough such that no errors are made by the system.
We can see that the algorithm allows the system to signifi-
cantly reduce the number ofmodification feedback after only
one assembly. A modification feedback is given when the
robot suggests a nonoptimal activity. So, a decrease in the
number of modification feedback shows the robot correctly
learned the task and is capable of generalizing. The bottom
graph shows that the number of uses of the interface decrease
with the number of assemblies. Which means that the robot
is capable of correctly estimating its confidence. The video

Table 2 Number of modification feedbacks and number of uses of the
interface during three consecutive assemblies of the toolbox with a real
robot

Episode number 1 2 3

Number of modification feedback 22 6 4

Number of uses of the interface 22 9 5

Because there was no error made by the robot, a decrease in the number
of modification feedback shows the user needs to instruct less and so
that the robot correctly learned the task

of the whole learning process can be found at https://vimeo.
com/196631825.

6 Conclusion

In this work we present the first approach for a robot to
interactively learn a support behavior during concurrent
human–robot collaboration. In our setting, the robot simul-
taneously executes the task and learns what the user expects
it to do. Our main contribution is to consider such behavior
learning in an interactive and concurrent multi-agent setting.

We first detailed the RAP framework and how to use it
to represent concurrent and collaborative task realization.
Because RAP is constructed on an underlying relational
semi-MDP model, one can use pre-existing policy learning
algorithm such as TBRIL. After introducing an interactive
behavior learning framework that mixes the usual training
and exploiting phase, we presented an estimate of the deci-
sion risk for a given activity prediction.

We have shown that using the proposed framework leads
to the robot making fewer errors and requiring less explicit
instruction thanmore traditional batch learning.Wealso eval-
uate how robust our approach is for intra-domain transfer and
noise. We demonstrate that we could change the dimension
of the problem and still reuse parts of the information to learn
fast.We describe how to use the proposed framework to learn
user’s preference during the execution of a collaborative task.

Lastly,we evaluated the implementationof this framework
on a real robot and showed its viability.

We believe interactive learning is an important feature to
allow naive users to teach behavior to a robot. Future works
could include supporting a greater variety of feedback mech-
anism to make the interaction more natural.

Acknowledgements This work was supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT) with reference
UID/CEC/50021/2013 and by the EU FP7-ICT project 3rdHand under
Grant Agreement No. 610878.

123

https://vimeo.com/196631825
https://vimeo.com/196631825

Auton Robot (2018) 42:1103–1115 1115

References

Akrour, R., Schoenauer, M., & Sebag, M. (2011). Preference-based
policy learning. In ECML/PKDD Springer.

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order
logical decision trees. Artificial Intelligence, 101(1), 285–297.

Chernova, S., & Veloso, M. (2009). Interactive policy learning through
confidence-based autonomy. Journal of Artificial Intelligence
Research, 34(1), 1.

Džeroski, S., De Raedt, L., & Driessens, K. (2001). Relational rein-
forcement learning. Machine Learning, 43(1–2), 7–52.

Friedman, J. H. (2001). Greedy function approximation: A gradient
boosting machine. In Annals of statistics (pp. 1189–1232).

Grollman, D. H, & Jenkins, O. C. (2007) Dogged learning for robots.
In ICRA.

Jain, A., Wojcik, B., Joachims, T., & Saxena, A. (2013). Learning tra-
jectory preferences for manipulators via iterative improvement. In
NIPS.

Kersting, K., Otterlo, M. V., & De Raedt, L. (2004). Bellman goes
relational. In ICML.

Knox, W. B., Stone, P., & Breazeal, C. (2013). Training a robot via
human feedback: A case study. In ICSR.

Koppula, H. S., Jain, A., & Saxena, A. (2016). Anticipatory planning
for human–robot teams. In ISER.

Lang, T., & Toussaint, M. (2010). Planning with noisy probabilistic
relational rules. Journal of Artificial Intelligence Research, 39(1),
1–49.

Lee,M. K., Forlizzi, J., Kiesler, S., Rybski, P., Antanitis, J., & Savetsila,
S. (2012). Personalization inHRI: A longitudinal field experiment.
In HRI.

Lopes,M.,Melo, F.,&Montesano, L. (2009).Active learning for reward
estimation in inverse reinforcement learning. In ECML/PKDD.

Marek, V., & Truszczyński, W. (1999) Stable models and an alter-
native logic programming paradigm. In The logic programming
paradigm: A 25-year perspective.

Mason, M., & Lopes, M. (2011) Robot self-initiative and personaliza-
tion by learning through repeated interactions. In HRI.

Mitsunaga, N., Smith, C., Kanda, T., Ishiguro, H., & Hagita, N. (2008).
Adapting robot behavior for human–robot interaction. Transac-
tions on Robotics, 24(4), 911–916.

Munzer, T., Piot, B.,Geist,M., Pietquin,O.,&Lopes,M. (2015). Inverse
reinforcement learning in relational domains. In IJCAI.

Natarajan, S., Joshi, S., Tadepalli, P., Kersting, K., & Shavlik, J. (2011).
Imitation learning in relational domains: A functional-gradient
boosting approach. In IJCAI.

Nikolaidis, S., & Shah, J. (2013). Human–robot cross-training: Com-
putational formulation, modeling and evaluation of a human team
training strategy. In HRI.

Nikolaidis, S., Gu, K., Ramakrishnan, R., & Shah, J. (2014). Effi-
cient model learning for human–robot collaborative tasks. arXiv
preprint arXiv:1405.6341.

Rohanimanesh, K., & Mahadevan, S. (2005) Coarticulation: An
approach for generating concurrent plans in markov decision pro-
cesses. In ICML.

Shivaswamy, P. K., & Joachims, T. (2012). Online structured prediction
via coactive learning. In ICML.

Toussaint, M.,Munzer, T., Mollard, Y.,Wu, L. Y., Vien, N. A., & Lopes,
M. (2016). Relational activity processes for modeling concurrent
cooperation. In ICRA.

Thibaut Munzer received his
Master Degree in Artificial Intel-
ligence from UPMC (Univer-
sity Pierre and Marie Curie).
He is currently working toward
the Ph.D. degree at Inria Bor-
deaux in the Flowers team. His
Ph.D. is focused on in Interac-
tive Learning for Robotics. His
research interests include Inter-
active Machine Learning, Rela-
tional Learning, and Develop-
mental Robotics.

Marc Toussaint is a full pro-
fessor for Machine Learning and
Robotics at the University of
Stuttgart since 2012. He stud-
ied Physics and Mathematics at
the University of Cologne and
received his Ph.D. from Ruhr-
University Bochum in 2004
before staying with the Univer-
sity of Edinburgh as a post-doc.
In 2007 he received an assis-
tant professorship and Emmy
Noether research group leader-
ship at TU and FU Berlin. His
research focuses on the combina-

tion of decision theory andmachine learning, motivated by fundamental
research questions in robotics. Reoccurring themes in his research are
appropriate representations (symbols, temporal abstractions, and rela-
tional representations) to enable efficient learning and manipulation in
real world environments, and how to achieve jointly geometric, logic
and probabilistic learning and reasoning. He is currently a coordina-
tor of the German research priority programme Autonomous Learning,
member of the editorial board of the Journal of AI Research (JAIR),
reviewer for the German Research Foundation, and programme com-
mitteemember of several top conferences in thefield (UAI,R:SS, ICRA,
IROS, AIStats, ICML). His work was awarded best paper at R:SS’12,
ICMLA’07 and runner up at UAI’08.

Manuel Lopes is an associate
professor on Artificial Intelli-
gence at Instituto Superior Tec-
nico, Lisbon, Portugal and a
senior researcher and INESC-ID.
His background is on electri-
cal engineering, computer sci-
ence and control theory. His
research and contributions are
on the area of artificial intel-
ligence, machine and natural
learning.Understanding learning
in machines and animals is his
long-term goal with many con-
tributions on understanding how

to learn from humans, how to teach humans and robots, how to improve
collaboration in teams, and models of exploration and learning in com-
putational neuroscience. He his currently coordinating several national
and international research projects on learning and robotics. Most of his
contributions where published in important venues on artificial intelli-
gence, machine learning, robotics and biological sciences.

123

http://arxiv.org/abs/1405.6341

	Efficient behavior learning in human–robot collaboration
	Abstract
	1 Introduction
	2 Related work
	3 Team behavior modeling with RAPs
	3.1 Markov decision process
	3.2 Relational MDP
	3.3 Relational activity processes
	3.4 Decentralized team decision making

	4 Interactive collaborative behavior learning
	4.1 The interactive framework
	4.2 Learning collaborative behavior
	4.3 Learning preferences
	4.4 Protocol of interaction
	4.5 Estimating decision risk

	5 Evaluation
	5.1 Simulation experiments
	5.1.1 Domains
	5.1.2 Results

	5.2 Robotic implementation

	6 Conclusion
	Acknowledgements
	References

