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Abstract—In this work, we present a hierarchical approach
to task and motion planning (TAMP) within an optimization-
based framework. Recent work on formulating TAMP as a logic
enhanced nonlinear program has shown remarkable capabil-
ities. However, scaling this approach to domains with many
discrete decisions or longer horizons implies a computational
bottleneck. To overcome this, we introduce hierarchies within
this framework, where on coarser levels a problem with less
discrete decisions is solved. Formally, the hierarchies are defined
in a way that the resulting nonlinear programs on coarser
hierarchy levels are lower bounds on the finer hierarchies. We
demonstrate the generality of the approach for both a bi-manual
manipulation task and a mobile manipulation scenario which
includes a “worm” like walking robot.

I. INTRODUCTION

In joint Task and Motion Planning (TAMP), it is common
to introduce discrete abstractions for the purpose of reasoning
over high level decisions. Given such a discrete decision
sequence, a geometric planner must figure out the continu-
ous motions of a robot to fulfill the planned tasks. Logic-
Geometric Programming (LGP) is one variant to formalize the
relation between discrete decision variables and a continuous
nonlinear mathematical program (NLP) that represents the
underlying continuous world problem [2]. The purpose of the
discrete decisions in LGP is to simplify the underlying math-
ematical problem – ideally by enumerating sub-problems that
can be handled efficiently by a continuous NLP solver. One
core property of LGP is that the resulting NLP optimizes for
a globally consistent continuous motion sequence conditioned
on the discrete decisions. This is important, since, for example,
the way an object is grasped greatly influences how it can be
placed or used as a tool.

However, when scaling this approach to longer horizons or
situations in which there are many possible discrete decisions
such as for grasping, the computational demand for solving
many NLPs during the search greatly increases. To overcome
this, we propose to introduce a hierarchy of LGPs at the
discrete decision level for the purpose of providing efficient
lower bounds of the underlying LGP problem.

In our approach, a coarse level LGP is solved first that
contains less constraints in the underlying NLP. The discrete
decisions of this solution conditions a fine level LGP in two
respects: Within the coarse LGP they imply an NLP which
checks geometric and kinematic feasibility of these coarse
decisions, potentially making simplifying assumptions about
the kinematics. On the fine level LGP, the decisions of the

Fig. 1. Box re-orientation task that requires both arms for the solution

coarse level imply constraints on the allowed sequences of
decisions of the real manipulation problem. The associated
NLP of the fine LGP then solves for a globally consistent
motion plan, which is in contrast to previous notions of
abstractions in hierarchical TAMP [1], since in LGP feasible
abstract decisions are not guaranteed to be refinable.

In Sec. III-A, we demonstrate the method and its computa-
tional benefit on a bi-manual manipulation task that involves
grasping, re-orientation, handover, and placing. The planning
on the fine level plans a motion that includes the detailed
grasping geometry of a box shaped object. In Sec. III-B, we
consider a novel domain where a “worm” robot can use its
two end-effectors to walk, climb and pick-and-place objects,
showing interesting sequential manipulation capabilities.

II. HIERARCHICAL LOGIC GEOMETRIC PROGRAMMING

We start by restating the LGP framework of [2] in a form
that will allow us to introduce a hierarchy. The goal is to find
a global path x in the configuration space as the solution of
a logic enhanced NLP, which solves a given TAMP problem,
while fulfilling plausibility constraints. The path itself consists
of K subpaths xk : [Tk−1, Tk] → Xk, xk ∈ C2. These K
different phases are referred to as kinematic modes, in which
the resulting path is smooth. The set Xk ⊂ Rlk × SE(3)ok ,
dim(Xk) = nk denotes the nk-dimensional configuration
space of all objects and articulated structures in mode k.
The central mathematical object to define the objectives and
constraints are so-called feature maps φ : X × Rnk × Rnk →
Rdk , φ ∈ C1, which map the world configuration (and their
derivatives) to a dk-dimensional space like positions of robot
links, distances between objects, object poses, etc. The sets
Tsos,ineq,eq(sk) of active objectives and constraints at a certain
phase k of the motion are determined by a discrete decision
variable sk. The possible transitions sk ∈ succ(sk−1) between
such discrete states from sk−1 to sk is defined by a first order



TABLE I
RUNTIMES IN SECONDS TO FIND THE FIRST FEASIBLE SOLUTION

scenario no hierarchy with hierarchy
box re-orientation

place side 1 1035 122
place side 2 1643 202
place side 3 1596 230
place side 4 750 136

mobile manipulation 92 34

logic language. These considerations lead to the LGP:

min
K,{xk,sk}Kk=1

K∑
k=1

∫ Tk

Tk−1

∑
φ∈Tsos(sk)

‖φ(xk(t), ẋk(t), ẍk(t))‖22 dt (1a)

s.t. ∀k=1,...,K : x0(0) = x̃0, s0 = s̃0 (1b)
∀φ∈Teq(sk)∀t∈[Tk−1,Tk] : φ(xk(t), ẋk(t)) = 0 (1c)

∀φ∈Tineq(sk)∀t∈[Tk−1,Tk] : φ(xk(t), ẋk(t)) ≤ 0 (1d)

hk(xk−1(Tk−1), xk(Tk), ẋk−1(Tk−1), ẋk(Tk), sk) = 0 (1e)
sk ∈ succ(sk−1) (1f)

sK ∈ Sgoal, φgoal(xK(TK)) = ygoal (1g)

hk represents transitional conditions between the subpaths and
(1g) defines the symbolic and (optional) continuous goal state.
The purpose of the logic is not only to encode high level
reasoning like pick and place, but also physical plausibility.
The idea to introduce a hierarchy is to have a coarse LGP and
a fine LGP. Solving (1) for a logic on a coarse level gives
(probably multiple) feasible sequences {gj}Jj=1 of discrete
decisions. These coarse decisions imply constraints on the
allowed decision sequences on the fine level. This leads to
the LGP conditioned on {gj}Jj=1

min
K,{xk,sk}Kk=1

K∑
k=1

∫ Tk

Tk−1

∑
φ∈Tsos(sk)

‖φ(xk(t), ẋk(t), ẍk(t))‖22 dt (2a)

s.t. ∀k=1,...,K (1b), (1c), (1d), (1e), j0 = 1

sk ∈ succ(sk−1, gjk−1
) (2b)

jk = jk−1 + subgoalTrans(gjk−1
, sk−1) (2c)

jK = J, (2d)

where subgoalTrans(gjk , sk) = 1 if sk reached the subgoal
state gjk , 0 otherwise. The logic on the fine level contains
preconditions that depend on gjk . The coarse decisions gjk
can therefore be seen as symbolic subgoals and the index jk
as a subgoal counter. Since K ≥ J , the fine level can have
much more decisions. In order to simplify the problem on a
coarser level while being informative for the search in the finer
level, we want the coarser level to be a lower bound on the
fine level, which is expressed by the following theorem.

Theorem 1: If the set of active features on the coarser level
is contained in the finer level, i.e.

Tsos,eq,ineq(gjk) ⊂
⋃

sk∈succ(sk−1,gjk−1)

Tsos,eq,ineq(sk) (3)

then feasibility of the coarser level is a necessary condition for
the feasibility on the finer level. Furthermore, a solution of a
coarser level is a lower bound on the costs of a finer level.

Fig. 2. Box stacking with walking robot

Proof: Clear by construction of (3) and the non-negative
additive terms in the objective (2a).
By constraining on a subgoal sequence, the combinatorial
complexity on the finer level is greatly reduced. Here, we
simply alternate between searching on coarse and finer levels.

III. EXPERIMENTS

A. Bi-Manual Box Re-Orientation

In this experiment, we consider the task of placing a box
on a target location on a specific side of the box (Fig. 1). The
initial position of the box is out of reach of the robot arm that
could place it on the target (green square). Therefore, the two
arms have to collaborate with each other to solve the task.
In this specific experiment, we consider 6 different discrete
placement decisions and 8 different grasping decisions. On the
coarse level, only the placement on the different sides is part of
the decision, while it is assumed that an object can be grasped
whenever the end-effector can touch the object. The grippers
itself are not part of the collision model on the coarse level.
Given a feasible sequence of the coarse level, the problem
on the fine level then additionally figures out how the object
can be grasped, i.e. from which side and how the grippers
are oriented. Tab. I shows the runtimes in seconds for finding
the first feasible solution for tasks where the box should be
placed on 4 different sides at the green target location. The
reported values with the hierarchical approach is the total time
for solving on both hierarchy levels. With the hierarchy, the
solution is computed between 5.5 and 8.5 times quicker.

B. Mobile Manipulation with Worm Robot

In a second experiment a worm-like walking robot has to
stack objects on top of each other in a certain order (Fig. 2).
On the coarse level, the robot is represented as a free floating
robot which proposes the pick and place sequence for the fine
level, where the walking behavior is taken into account as
well. Tab. I shows the runtime for this scenario.

IV. CONCLUSION

The hierarchy turned out to greatly reduce the computation
time in our experiments. However, theoretically, the worst-case
complexity is still the same as without a hierarchy.
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