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Abstract—In this work, we present a hierarchical approach
to task and motion planning (TAMP) within an optimization-
based framework. Recent work on formulating TAMP as a logic
enhanced nonlinear program has shown remarkable capabil-
ities. However, scaling this approach to domains with many
discrete decisions or longer horizons implies a computational
bottleneck. To overcome this, we introduce hierarchies within
this framework, where on coarser levels a problem with less
discrete decisions is solved. Formally, the hierarchies are defined
in a way that the resulting nonlinear programs on coarser
hierarchy levels are lower bounds on the finer hierarchies. We
demonstrate the generality of the approach for both a bi-manual
manipulation task and a mobile manipulation scenario which
includes a “worm” like walking robot.

I. INTRODUCTION

In joint Task and Motion Planning (TAMP), it is common
to introduce discrete abstractions for the purpose of reasoning
over high level decisions. Given such a discrete decision
sequence, a geometric planner must figure out the continu-
ous motions of a robot to fulfill the planned tasks. Logic-
Geometric Programming (LGP) is one variant to formalize the
relation between discrete decision variables and a continuous
nonlinear mathematical program (NLP) that represents the
underlying continuous world problem [2]. The purpose of the
discrete decisions in LGP is to simplify the underlying math-
ematical problem – ideally by enumerating sub-problems that
can be handled efficiently by a continuous NLP solver. One
core property of LGP is that the resulting NLP optimizes for
a globally consistent continuous motion sequence conditioned
on the discrete decisions. This is important, since, for example,
the way an object is grasped greatly influences how it can be
placed or used as a tool.

However, when scaling this approach to longer horizons or
situations in which there are many possible discrete decisions
such as for grasping, the computational demand for solving
many NLPs during the search greatly increases. To overcome
this, we propose to introduce a hierarchy of LGPs at the
discrete decision level for the purpose of providing efficient
lower bounds of the underlying LGP problem.

In our approach, a coarse level LGP is solved first that
contains less constraints in the underlying NLP. The discrete
decisions of this solution conditions a fine level LGP in two
respects: Within the coarse LGP they imply an NLP which
checks geometric and kinematic feasibility of these coarse
decisions, potentially making simplifying assumptions about
the kinematics. On the fine level LGP, the decisions of the

Fig. 1. Box re-orientation task that requires both arms for the solution

coarse level imply constraints on the allowed sequences of
decisions of the real manipulation problem. The associated
NLP of the fine LGP then solves for a globally consistent
motion plan, which is in contrast to previous notions of
abstractions in hierarchical TAMP [1], since in LGP feasible
abstract decisions are not guaranteed to be refinable.

In Sec. III-A, we demonstrate the method and its computa-
tional benefit on a bi-manual manipulation task that involves
grasping, re-orientation, handover, and placing. The planning
on the fine level plans a motion that includes the detailed
grasping geometry of a box shaped object. In Sec. III-B, we
consider a novel domain where a “worm” robot can use its
two end-effectors to walk, climb and pick-and-place objects,
showing interesting sequential manipulation capabilities.

II. HIERARCHICAL LOGIC GEOMETRIC PROGRAMMING

We start by restating the LGP framework of [2] in a form
that will allow us to introduce a hierarchy. The goal is to find
a global path x in the configuration space as the solution of
a logic enhanced NLP, which solves a given TAMP problem,
while fulfilling plausibility constraints. The path itself consists
of K subpaths xk : [Tk−1, Tk] → Xk, xk ∈ C2. These K
different phases are referred to as kinematic modes, in which
the resulting path is smooth. The set Xk ⊂ Rlk × SE(3)ok ,
dim(Xk) = nk denotes the nk-dimensional configuration
space of all objects and articulated structures in mode k.
The central mathematical object to define the objectives and
constraints are so-called feature maps φ : X × Rnk × Rnk →
Rdk , φ ∈ C1, which map the world configuration (and their
derivatives) to a dk-dimensional space like positions of robot
links, distances between objects, object poses, etc. The sets
Tsos,ineq,eq(sk) of active objectives and constraints at a certain
phase k of the motion are determined by a discrete decision
variable sk. The possible transitions sk ∈ succ(sk−1) between
such discrete states from sk−1 to sk is defined by a first order




	Introduction
	Hierarchical Logic Geometric Programming
	Experiments
	Bi-Manual Box Re-Orientation
	Mobile Manipulation with Worm Robot

	Conclusion

