
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2019 1

Planning Approximate Exploration Trajectories for
Model-Free Reinforcement Learning

in Contact-Rich Manipulation
Sabrina Hoppe1,2 and Zhongyu Lou1 and Daniel Hennes2 and Marc Toussaint2

Abstract—Recent progress in deep reinforcement learning has
enabled simulated agents to learn complex behavior policies from
scratch, but their data complexity often prohibits real-world
applications. The learning process can be sped up by expert
demonstrations but those can be costly to acquire. We demon-
strate that it is possible to employ model-free deep reinforcement
learning combined with planning to quickly generate informative
data for a manipulation task. In particular, we use an approx-
imate trajectory optimization approach for global exploration
based on an upper confidence bound of the advantage function.
The advantage is approximated by a network for Q-learning
with separately updated streams for state-value and advantage
that allows ensembles to approximate model uncertainty for one
stream only. We evaluate our method on new extensions to the
classical peg-in-hole task, one of which is only solvable by active
usage of contacts between peg tips and holes. The experimental
evaluation suggests that our method explores more relevant areas
of the environment and finds exemplar solutions faster – both
on a real robot and in simulation. Combining our exploration
with learning from demonstration outperforms state of the art
model-free reinforcement learning in terms of convergence speed
for contact-rich manipulation tasks.

Index Terms—Deep Learning in Robotics and Automation,
Dexterous Manipulation, Learning and Adaptive Systems

I. INTRODUCTION

THE field of deep reinforcement learning has seen rapid
progress in recent years, with deep Q-networks reaching

human-level performance in various games [1] as well as
simulated dynamical control tasks [2]. Most of these systems
can be trained in simulation using millions of samples and
often autonomously without human assistance.

For applications in robotics this is often barely feasible
as real-world experience can be slow, costly and might need
human supervision throughout. When enough data is available,
e.g. by collecting experience from several robots over the
span of multiple months, deep reinforcement learning has been
proven to outperform many conventional approaches [3].

In model-free reinforcement learning, exploration is notori-
ously hard since only dithering strategies or local exploration

Manuscript received: February 02 2019; Revised May 22 2019; Accepted
June 06 2019.

This paper was recommended for publication by Editor Tamim Asfour upon
evaluation of the Associate Editor and Reviewers’ comments.

1S. Hoppe and Z. Lou are with Bosch Corporate Research
first.last@de.bosch.com

2S. Hoppe, D. Hennes and M. Toussaint were with the Machine Learning
and Robotics Lab when the work was conducted. University of Stuttgart,
Germany. first.last@ipvs.uni-stuttgart.de

Digital Object Identifier (DOI): see top of this page.

A
double
peg-in-hole

B
contact-rich
extension

Fig. 1. Double peg-in-hole: With stiff joints (first row), the task can be
solved by avoiding contact. With dangling pegs (e.g. enforced by off-axis
joints) sustained contact for each successful solution is required (second row).
Also 3d-printed for a real robot.

can be used in general. The problem of exploration can be
circumvented by expert demonstrations [4]. If those are not
available, model-based solutions can also be used instead [5].
However, contact-rich manipulation is one of those domains
where accurate models are hard to obtain and purely data-
driven methods have been shown to outperform model-based
approaches [6].

In this work we investigate if model-free deep reinforcement
learning combined with trajectory optimization can perform
efficient exploration. Using this exploration data analogously
to demonstrations, we show that state of the art learning
from demonstration can outperform model-free reinforcement
learning from scratch. For efficient exploration, we use global
exploration in state space via trajectory optimization based
on a Bayesian-like Upper Confidence Bound (UCB) on the
advantage function. To approximate the UCB efficiently, we
extend networks that consist of separate streams for state-value
and advantage, allowing to estimate model uncertainty from
ensembles on the advantage stream only.

The approach is evaluated on two new extensions of the
peg-in-hole paradigm. We introduce double peg-in-hole – two
pegs connected by a bar need to be inserted into two holes.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2019

With stiff connections task A is equivalent to traditional peg-
in-hole: given the right pose, it is possible to insert the peg
while mostly avoiding contact. With dangling pegs and off-
axis joints (see Figure 1), sustained contact is needed to solve
task B. The task was also 3D printed for evaluation on a real
robot (see https://youtu.be/JTfeHhWSb0Y).

II. BACKGROUND

We consider a standard reinforcement learning setup where
an agent interacts with its environment over discrete time steps
t = 1, . . . , T . At each time t, the agent can observe its state
st and take an action at which determines the next state st+1

and an associated reward rt.
A policy π maps from states to actions and induces a

trajectory τπ = (s0, a0, s1, . . . sT). The sum of all (dis-
counted) rewards collected along a trajectory τπ is called
return: Rπt =

∑T
i=t γ

i−tri. The value of a state is then
defined as the expected future return when following policy
π: V π(st) = E [Rπt]. The expected future return for executing
an arbitrary action at and then following the policy is called
Qπ(st, at) = E

[
rt + γ ·Rπt+1

]
. The (dis)advantage the agent

can expect from choosing at rather than following π is
Aπ(st, at) = Qπ(st, at)− V π(st). The agent’s goal is to find
an optimal policy π∗ such that the expected future return is
maximized from any state.

Nowadays one of the most powerful function approximators
are neural networks and therefore they have also been used
to fit Q-functions [1]. Most techniques from reinforcement
learning with (conventional) function approximation transfer
to deep reinforcement learning, e.g. double Q-learning [7].
Additionally, there is a large body of work presenting network-
specific innovations (for an overview see e.g. [8]).

In actor-critic settings, the policy is approximated as one
function (the so-called actor), while a second function approxi-
mates the quality of a state-action pair - e.g. using the Q-value.
In the context of deep learning, the critic estimates can then
be used as a training signal for an actor network, e.g. using
deep deterministic policy gradients (DDPG) [9].

III. RELATED WORK

Deep Learning and in particular non-stationary itera-
tive Deep Reinforcement Learning are infamously sample-
inefficient.

If prior knowledge about the task is available, model-
based reinforcement learning can leverage this information and
enable efficient exploration [10]. In the presence of contacts
however, models are notoriously hard to obtain and are often
outperformed by model-free methods [6]. Even when models
are theoretically available, robotics practitioners might struggle
with limited knowledge about the materials at hand or the
availability of suitable environment representations.

Without imposing models or structure on the functions to
learn, exploration is the main bottleneck. There are different
dithering strategies ranging from ε-greedy [11] and Gaussian
noise to more sophisticated processes like the temporally
correlated Ornstein-Uhlenbeck [9] or adaptive parameter space
noise [12]. However, all dithering strategies mainly explore

locally around states that the current policy tends to visit and
it can take long until the relevant part of the state space is
discovered – even more so, if some area is only reachable
after a specific series of action.

Reward shaping can help to lure the agent into relevant parts
of the state space but it is typically manual effort and easily
leads to unintended local minima [13].

Count-based exploration schemes aim to explore the full
state space uniformly by keeping track of which area was
visited how frequently [14], [15]. This behavior is often seen
as an analogy to human intrinsic motivation [16], but in many
cases it is unrealistic to cover the full state space. If an agent
knows what it knows [17], [18] however, it can deliberately
explore areas it is unsure about. Model uncertainties from
neural networks can formally be obtained from Bayesian
Neural Networks that consider distributions over weights.
Since those are often intractable, there are approximations such
as network ensembles or multiple instances of dropout at test
time [19], [20]. Using information-theoretic criteria like the
upper confidence bound (UCB), these approximations can be
used to speed up learning [21]. Still, existing strategies only
explore greedily for a current state. In our method we combine
UCB-based exploration with global state space exploration via
trajectory optimization to also explore far-away states if they
seem promising in terms of their UCB.

Model-based and model-free methods have also been com-
bined in the past: For instance, guided policy search turns
reinforcement learning into iterative supervised learning from
model-based solutions [5]. This approach is limited to tasks
where model-based solutions are known or easy to obtain
though.

To perform our global exploration, we require a coarse
steering function: that is, we assume that some function
can return actions that will guide the agent approximately
towards some goal state. In contrast to model-based learning,
this steering function is only used for exploration while the
learned policy remains model-free. Therefore the method is
quite robust to perturbations in this function. Importantly, our
exploration scheme even generates informative data if it does
not solve the task, as we will show in our evaluations.

Supervised learning from fixed input-output pairs is gener-
ally much more sample efficient than iterative reinforcement
learning where changing optimization targets introduce some
non-stationarity. Instead of model-based solutions also expert
demonstrations can help speed up learning [4] but they are
often costly to acquire. When available, already single demon-
strations can be enough for robots to learn [22]. In this work,
we follow the idea that learning from demonstration could
also be used on top of automatically generated demonstra-
tions. When exploration is separated from policy learning,
the modalities can change between the two stages (e.g. [5])
and, crucially, exploration can be much faster when the value
function can change quickly without hindering convergence of
the actor network.

Convergence can be additionally sped up by using the value
function as a control variate to reduce variance in the policy
gradient [23]. This idea has been transfered to deep learning
in [24] but their method ’loses the original semantics of V

https://youtu.be/JTfeHhWSb0Y

HOPPE et al.: PLANNING APPROXIMATE EXPLORATION TRAJECTORIES FOR MODEL-FREE REINFORCEMENT LEARNING 3

and A’. We introduce novel update rules that enable separate
training of both streams, preserving the semantics of both
streams and thus allowing to build policies on the actual
advantage.

IV. APPROACH

We split the problem of reinforcement learning into two
stages: exploration and learning from demonstration. For the
second stage, all samples from the first phase are slowly added
to a new replay memory, similar to [25]. For the first stage
we combine the following components to efficiently guide
exploration for DDPG-like Q-learning [9], each of which
will be discussed in greater detail in one of the following
paragraphs.
1) We structurally encode the decomposition of Q-values into

state-value and advantage in a network architecture with
two streams similar to [24] thereby reducing the gradient
variance which leads to faster and more stable training. To
preserve the semantics of both streams, we introduce novel
training updates for both streams.

2) Exploiting this network structure, we introduce an ensem-
ble of networks in the advantage stream to approximate
model uncertainty. We argue that only this portion of
uncertainty in the Q-function is relevant for exploration
and deriving a policy.

3) Using trajectory optimization under coarsely approximated
dynamics, we globally explore areas of high model uncer-
tainty by choosing trajectories such that the sum over the
upper confidence bound (UCB) on the advantage for a set
of way points is maximized.

Advantage Networks

Decomposing the state-action value Q into state-value V
and the advantage is formally equivalent to using V as a con-
trol variate which leads to more stable learning if V correlates
strongly with Q (but A does not) [23], [24]. If, for instance
in our environment, there is a reward at each time step, then
V and Q sum up (discounted) rewards over potentially long
trajectories, while the advantage is the difference between V
and Q. Effectively this means that V and Q might be in a very
large range of absolute values, while A might be on a range
of very small numbers. In those cases, V dominates gradients
and uncertainty measures derived from Q. If a policy is derived
from Q, its gradient is also dominated by V although actually
only A matters: argmaxaQ(s, a) = argmaxaA(s, a)

We structurally encode the split into Q and A as two fully
separate streams within our network that consists of four
multilayer perceptrons (MLP): The inputs, i.e. state and action,
are each processed by one MLP. The outputs of both MLPs are
added element-wise and fed into a third MLP that predicts the
advantage A(s, a). Since advantage values associated with the
optimal policy cannot be larger than zero, we use a ReLU
activation on the advantage stream and change the sign of
the output. The output of the state-MLP is also fed into the
fourth MLP to predict V (s) (see Figure 2 for illustration). In
contrast to [24] the network branches are trained separately as
described in the next paragraph.

s

a

critic

MLP MLP V (s)

µA(s, a)
σ2
A(s, a)MLP

+

MLP A(s, a)

Fig. 2. Bootstrapped Advantage Network: Four multilayer Perceptrons (MLP),
each consisting of 4 fully-connected layers - the first three using leaky ReLU
activations [26], the last one using linear activations. The advantage stream
of the network is bootstrapped, i.e. there are B copies of the lower part of
the network.

Greedy Exploration using Bootstrapped Advantage Networks

A greedy policy only considers single actions from a given
state s. Splitting Q into V and A, the greedy policy only
depends on the advantage:

π(s) = argmax
a∈A

(A(s, a) + V (s)) = argmax
a∈A

A(s, a) (1)

Bootstrapping uses ensembles of networks to get an un-
certainty estimate [19] which we will use for exploration.
In preliminary investigations, bootstrapping has outperformed
dropout-based methods for our setting. We only add boot-
strapping to two out of four MLPs, such that we obtain a
distribution over advantage predictions, but still only predict a
single state-value V (s). If multiple state-value estimates were
used as well, the direct comparison between advantages would
become misleading. The full architecture as shown in Figure 2.

To determine the next action to take for exploration, acqui-
sition functions inspired by Bayesian Blackbox Optimization
can be used, e.g. the upper confidence bound (UCB) in a Q-
learning setting [21]:

π(s) = argmax
a∈A

UCBQ(s, a)

= argmax
a∈A

(
µQ(s, a) + κ · σ2

Q(s, a)
)

where κ is a hyper-parameter that trades off variance and
mean1.

Each advantage network is updated independently with data
from its separate replay memory. During each episode all data
is written to one of these replay memories. To update the state-
value network, samples are drawn from all replay memories.

All networks are trained using stochastic gradient descent
to approximate iterative targets Â and V̂ which are computed
from replay memory samples (st, at, rt, st+1)i.

V̂ (st) = rt + (1− 1st+1 is terminal) · γV (st+1)

Âb(st, at) = Q̂b(st, at)− V (st)

where

Q̂b(st, at) = rt + (1− 1st+1 is terminal) · γQb̂(st+1, π(st+1))

π(st) = argmax
a∈A

µA(st, a)

where 1 is the indicator function and µA denotes the mean
advantage for a given input. Since µA can in general be a

1For all experiments, we fixed κ to 1.96 which corresponds to the 97.5
percentile under a Gaussian.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2019

highly non-convex function, the argmax to compute π was
approximated by evaluating 100 sampled actions. Empirically,
a higher sample size did not improve performance in our eval-
uation setting. Moreover, our experiment on the real robot has
confirmed that the additional time for this update is negligible
compared to the time needed for the robot rollouts. b̂ 6= b is a
uniformly sampled replay memory index that was introduced
in analogy to double Q learning [27], [7]. It reduces bias in
estimating Q which is caused by the over-estimation of the
typical Q update using Q(s, argmaxaQ(s, a)). This bias oc-
curs analogously if A is estimated based on argmaxaA(s, a)
and its prevention turned out crucial for performance.

Global Exploration using Trajectory Optimization

Just using the UCB over the advantage is already enough to
derive a greedy exploration policy. This will explore locally
but often it is necessary to go through well-explored areas
for several steps before reaching a point of high uncertainty.
To incorporate global state space exploration into the UCB
policy, we use Trajectory Optimization to compute a series of
h waypoints2 that approximately maximize the sum over UCBs
along a number of waypoints using the Powell method [28]:∑
i∈0..hmaxa UCBA(si, a). Thus, the resulting exploration is

referred to as global, because the full state space is considered
in general.

The agent is supposed to move towards each waypoint
successively. This could in principle be achieved by exploiting
a dynamics model, but contacts and friction are hard to model
and some of the physical properties of relevant materials might
be unknown. Instead we rely on general domain knowledge
for robotic manipulation tasks in form of a steering function:
It uses straight-line velocity control to reach any robot config-
uration. This is only a coarse approximation of the dynamics
and will fail whenever obstacles or contacts come into play. In
section V, we demonstrate the robustness of exploration under
noise and miscalibration of the steering function.

Thus, the agent will subsequently try to reach the waypoints
by moving straight (in configuration space) towards it, which
leads to piecewise linear motion in configuration space. Since
an action in most reinforcement learning settings is restricted,
the agent might effectively take several small steps towards
the waypoint. If the waypoint is reached, the optimal action
argmaxa UCBA(s, a) is executed. If the agent does not get
any closer to a waypoint, e.g. because of obstacles, the agent
moves on to the next waypoint. After the last waypoint was
reached or discarded, we use the greedy exploration policy as
a fallback for the rest of the episode.

Empirically, we found it beneficial to start with a small
number of episodes using a random policy and introduce
some random steps after each waypoint was reached to further
explore the area of high uncertainty3 Starting from its current
position, the steering function will drive the agent towards the
next waypoint.

2we fixed h = 5 waypoints per rollout of 200 steps.
3we used 5 random steps after each waypoint and 10 random episodes in

the beginning of each experiment.

0 25 50 75 100 125 150 175 200
episodes

0

5

10

15

20

25

cu
m

ul
at

iv
e

nu
m

be
r o

f s
uc

ce
ss

fu
l t

ria
ls task A

ours: UCB-TrajOpt
UCB-greedy
Q-net

0 25 50 75 100 125 150 175 200
episodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

cu
m

ul
at

iv
e

nu
m

be
r o

f s
uc

ce
ss

fu
l t

ria
ls task B

ours: UCB-TrajOpt
UCB-greedy
Q-net

Fig. 3. Ablation study of off-policy exploration performance: All algorithms
were tested on a grid of hyperparameters with ten random seeds per hyper-
parameter configuration. The best performance is shown as the mean over
random seeds as a solid line, the shaded area covers one standard deviation
of the mean estimator.

V. EXPERIMENTAL RESULTS

Our exploration scheme is supposed to generate useful data
such that in a second step, these samples can give a head start
to train a policy, similar to learning from demonstration.

We have evaluated how fast our exploration scheme is able
to find successful solutions, how robust the scheme is to a per-
turbed or mis-calibrated steering function, the feasibility of our
exploration strategy on a real robot, and if the combination of
exploration and learning from demonstration is more sample-
efficient than direct reinforcement learning from scratch.

Simulation Tasks

All results are based on the double peg-in-hole tasks il-
lustrated in Figure 1 where two pegs need to be inserted
into an object with two holes. Bot state and action spaces
are continuous. The blue object can move in a plane, i.e.
there are two positional degrees of freedom and one rotational
(
[
−π2 ;

π
2

]
). The state is defined by the raw coordinates for

these three dimensions. The state space was manually re-
stricted to some box area around the green object and scaled
linearly to [−1,+1] in all dimensions. The initial state of the
blue object was uniformly chosen from all states at the upper
end of the box and combined with any possible rotation.

The agent uses velocity control with an action being the 3D
offset of the next state from the current state. The simulation
is designed to wait until the agent including both pegs has
reached a stable position before the next action is applied.
The terminal states were manually defined such that only states
with both pegs correctly inserted were included. The reward
is based on the euclidean distance in state space between the
current state s and the goal g: rt = exp

(
− ||s−g||2σ

)
− 1. 4

Since the state representation does not include the peg
rotation, task B is technically partially observable. However,
due to the nature of the task, locally the unobserved degrees
of freedom (DoF) are often a function of the observed DoFs.

A. Exploration Speed

We first evaluate the speed of exploration, measured by the
number of successful trials generated during exploration, i.e. in

4σ was manually fixed to 0.3 for all experiments

HOPPE et al.: PLANNING APPROXIMATE EXPLORATION TRAJECTORIES FOR MODEL-FREE REINFORCEMENT LEARNING 5

0 25 50 75 100 125 150 175 200
episodes

0

5

10

15

20

cu
m

ul
at

iv
e

nu
m

be
r o

f s
uc

ce
ss

fu
l t

ria
ls task A

ours
normal-0.1
normal-0.01
30° 3D
30° 1D
10° 3D
10° 1D
 5° 3D
 5° 1D

Fig. 4. The experiment from Figure 3 re-run with different perturbations
to the steering function: Gaussian noise (’normal-STD’) and systematic mis-
calibrations of 5◦, 10◦ and 30◦ around one (’X◦ 1D’) or all three action
dimensions (’X◦ 3D’). Each line represents the mean over results from 10
different random seeds, the gray shade represents the standard deviation
around the mean estimator without disturbance.

off-policy behavior. In an ablation study, we compare the full
system (ours) to two baselines: (1) a system with bootstrapped
Q networks (Q-net), i.e. without the split into state-value and
advantage. We changed the number of states in the last MLP
to match the total number of parameters used. (2) a system
with advantage networks but with greedy UCB exploration
instead of trajectory optimization (UCB-greedy). The approach
in [21] is a combination of these two baselines, where a greedy
exploration is chosen based on Q networks. Each method was
tuned with a hyper parameters grid search5 and ten random
seeds per parameter set. Only the set with best performance
on average was chosen for evaluation. Figure 3 illustrates the
mean cumulative number of episodes that ended in a terminal
state for different random seeds. Our full exploration system
achieves more successful episodes than the same algorithm
based on Q networks or a greedy UCB policy.

B. Robustness to Corrupted Steering Functions

To perform global state-space exploration, our method uses
a so-called steering function to perform straight-line velocity
control towards any configuration space state. Since the steer-
ing function is only used for exploration, we hypothesized that
our approach would be robust to perturbations. To test this,
we re-ran the experiment from the previous section on task A
with different kinds of disturbances: Additive Gaussian noise
(’normal-X’) that might cancel out over longer trajectories as
well as systematic mis-calibrations of 5◦, 10◦ and 30◦ around
one (’X◦ 1D’) or all three action dimensions (’X◦ 3D’). This
experiment was conducted on the best set of hyperparameters
from the previous section. The results in Figure 4 show that
indeed the system is robust to most disturbances: Gaussian
noise does not affect performance on average, presumably be-
cause it cancels out over multiple steps. Similarly, rotations of
5◦ and 10◦ around one axis can be tolerated. The performance
decreases for stronger disturbances. Except for the 30◦ rotation
around all dimensions, all exploration schemes based on noisy
steering functions outperform the best baseline from Figure 3
on average.

5learning rates {10−2, 10−3, 10−4}, batch sizes {32, 64}, noise scales
{0.1, 0.2, 0.3}. 50 update steps were performed by SGD after each rollout.

0 50 100 150 200 250
episodes

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

task A
DDPG-adaptive-param
DDPG-normal
DDPG-ou
ours-adaptive-param
ours-normal
ours-ou

0 200 400 600 800 1000
episodes

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

task B
DDPG-adaptive-param
DDPG-normal
DDPG-ou
ours-adaptive-param
ours-normal
ours-ou

Fig. 5. Sample efficiency in policy learning: Policies learned from scratch
(’DDPG’, dashed lines) are compared to policies that started with data
from our exploration scheme (’ours’, solid lines starting after exploration
episodes). Each line represents the ratio of successful policies during on-
policy evaluation from ten different random seeds.

C. Feasibility on a Real Robot

We have replicated the experiment from subsection V-A, i.e.
the exploration phase, using a real KAWADA Nextage Open
and a 3D printed version of the harder double peg-in-hole
(task B) as illustrated in Figure 1. States and actions were
defined exactly as in simulation. The object was approximately
4.5cm wide, the state space covers 8cm from right to left,
5cm from the lowest to the highest point in z direction and
a rotation of up to 30◦. One action could move the robot
by up to 0.5cm. To avoid harmful collisions, a force-torque
sensor was installed at the end effector. Whenever the force or
torque exceeded a manually set threshold, the current action
was aborted and the end effector moved upwards until the
pressure was relieved. Since evaluation on real hardware is too
time-consuming to perform statistically sound analyses with
multiple hyperparameters and random seeds, we used those
hyperparameters that performed best in simulation. To save
time, we only executed 2 random episodes in the beginning.
As the video illustrates, visually plausible exploration behavior
emerges and both tangling pegs are inserted after less than
1200 steps.

D. Sample Efficiency for Policy Learning

Exploration should at some point discover successful be-
havior but since the main purpose in our case is to facilitate
learning, we here examine how fast a full policy can be trained
utilizing the exploration data. This means we consider on-
policy data in the following.

A DDPG actor-critic setup6 serves as a baseline for learning
from scratch with Gaussian noise, Ornstein-Uhlenbeck [9] and
adaptive parameter noise [12]. Additional parameters for these
noise processes were included in the hyper parameter grid
search. For learning from demonstration, we use the same
setup but slowly add experience from our exploration scheme
to the replay memory similar to [25].

We used the data for the best performing hyperparameter
set from our ablation study as exploration samples. Since all
configurations were run 10 times, we chose the random seed
whose performance was closest to average to keep the data as
representative as possible. Empirically, we found it beneficial

6as implemented in the openAI baselines repository

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2019

to discard the initial random episodes and add samples from
10 exploration episodes at each training episode.

Training an actor from the exploration data in a supervised
setting without any further environment interaction failed
completely – most likely due to compound errors known
in behavioral cloning. Also training an actor network while
exploring with our strategy off-policy was empirically unstable
unless a very small learning rate was used (which in turn
counteracts the sample efficiency).

Figure 5 compares the performance of a vanilla DDPG
trained from scratch to our DDPGfD (DDPG from demon-
stration) using 80 episodes of exploration data for the simpler
task and 160 for the harder one. There were no successful
samples in the demonstration data before episode 80 or 160
respectively, but it can be observed that injecting the data
from our exploration scheme speeds up learning anyway.
Interestingly, the improvement of the full policy trained on
our data over training from scratch is larger for the harder
manipulation task B, although the steering function is clearly
less accurate in task B. Together this indicates that the data
created is generally informative.

VI. CONCLUSION

To overcome the infamous sample inefficiency of explo-
ration for model-free reinforcement learning from scratch,
we have proposed to use global state space exploration via
trajectory optimization to generate informative data in a first
step and then use this data in analogy to expert demonstrations
when training a full model-free policy in a second step.

The approximate trajectory optimization aims to maximize
the upper confidence bound on advantages at a set of way
points that the agent visits sequentially using some coarse
steering function. We have also demonstrated the robustness
of the approach to noise and systematic mis-calibration of the
steering function. We have shown that our approach rapidly
finds successful sample trajectories; and experience collected
during this exploration can significantly speed up policy learn-
ing even if the exploration data does not contain successful
samples. These results indicate that data from our exploration
scheme is generally more informative than existing strategies.
Visual inspection of the agent’s exploratory behavior on a
real robot shows that our method identifies areas of high
uncertainty and relevance to the task (e.g. the holes of the
object rather than its contour in general).

Separating exploration from policy learning in general also
allows to change modalities in between. We leave it to future
work to investigate to which degree our exploration can also
speed up learning in high-dimensional state spaces, e.g. image
space – or whether low-dimensional spaces with a specific
kind of dynamics can be automatically inferred from high-
dimensional input data.

We argue that this work represents one successful way of
combining planning and model-free reinforcement learning,
and will explore further combinations of classical robotics
techniques and model-free learning in the future.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[2] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in ICML, 2016, pp. 1928–1937.

[3] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data
collection,” CoRR, vol. abs/1603.02199, 2016.

[4] S. Schaal, “Learning from demonstration,” in NeurIPS, 1996.
[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of

deep visuomotor policies,” JMLR, vol. 17, no. 1, pp. 1334–1373, 2016.
[6] N. Fazeli, S. Zapolsky, E. Drumwright, and A. Rodriguez, “Learning

data-efficient rigid-body contact models: Case study of planar impact,”
in CoRL, 2017, pp. 388–397.

[7] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in AAAI, 2016.

[8] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015.

[10] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and
P. Abbeel, “Vime: Variational information maximizing exploration,” in
NeurIPS, 2016, pp. 1109–1117.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[12] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen,
T. Asfour, P. Abbeel, and M. Andrychowicz, “Parameter space noise for
exploration,” arXiv preprint arXiv:1706.01905, 2017.

[13] K. Lowrey, A. Rajeswaran, S. M. Kakade, E. Todorov, and I. Mordatch,
“Plan online, learn offline: Efficient learning and exploration via model-
based control,” CoRR, vol. abs/1811.01848, 2018.

[14] R. I. Brafman and M. Tennenholtz, “R-max-a general polynomial time
algorithm for near-optimal reinforcement learning,” JMLR, vol. 3, no.
Oct, pp. 213–231, 2002.

[15] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, “# exploration: A study of
count-based exploration for deep reinforcement learning,” in NeurIPS,
2017, pp. 2750–2759.

[16] N. Chentanez, A. G. Barto, and S. P. Singh, “Intrinsically motivated
reinforcement learning,” in NeurIPS, 2005, pp. 1281–1288.

[17] L. Li, M. L. Littman, and T. J. Walsh, “Knows what it knows: a
framework for self-aware learning,” in ICML. ACM, 2008, pp. 568–
575.

[18] M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer, “Exploration in
model-based reinforcement learning by empirically estimating learning
progress,” in NeurIPS, 2012, pp. 206–214.

[19] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped dqn,” in NeurIPS, 2016, pp. 4026–4034.

[20] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in ICML, 2016.

[21] R. Y. Chen, S. Sidor, P. Abbeel, and J. Schulman, “Ucb and infogain
exploration via q-ensembles,” CoRR, vol. abs/1706.01502, 2017.

[22] P. Englert and M. Toussaint, “Learning manipulation skills from a single
demonstration,” IJRR, vol. 37, no. 1, pp. 137–154, 2018.

[23] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction tech-
niques for gradient estimates in reinforcement learning,” JMLR, vol. 5,
pp. 1471–1530, 2001.

[24] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
ICML, 2016, pp. 1995–2003.

[25] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. A. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” CoRR, vol. abs/1707.08817, 2017.

[26] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML. Citeseer, 2013.

[27] H. van Hasselt, “Double q-learning,” in NIPS, 2010.
[28] M. J. Powell, “An efficient method for finding the minimum of a function

of several variables without calculating derivatives,” The computer
journal, vol. 7, no. 2, pp. 155–162, 1964.

	Introduction
	BACKGROUND
	Related Work
	APPROACH
	EXPERIMENTAL RESULTS
	Exploration Speed
	Robustness to Corrupted Steering Functions
	Feasibility on a Real Robot
	Sample Efficiency for Policy Learning

	CONCLUSION
	References

