Deep Workpiece Region Segmentation for Bin Picking

Muhammad Usman Khalid'*, Janik M. Hager?*, Werner Kraus!, Marco F. Huber?, Marc Toussaint?

Abstract— For most industrial bin picking solutions, the pose
of a workpiece is localized by matching a CAD model to point
cloud obtained from 3D sensor. Distinguishing flat workpieces
from bottom of the bin in point cloud imposes challenges in
the localization of workpieces that lead to wrong or phantom
detections. In this paper, we propose a framework that solves
this problem by automatically segmenting workpiece regions
from non-workpiece regions in a point cloud data. It is done
in real time by applying a fully convolutional neural network
trained on both simulated and real data. The real data has been
labelled by our novel technique which automatically generates
ground truth labels for real point clouds. Along with real
time workpiece segmentation, our framework also helps in
improving the number of detected workpieces and estimating
the correct object poses. Moreover, it decreases the computation
time by approximately 1s due to a reduction of the search space
for the object pose estimation.

I. INTRODUCTION

The task of grasping and picking objects belongs to the
most important task and is still difficult to perform reliably
for robots. Solving this task is fundamental as the ability
of grasping an object allows solving more complex tasks
relying on it, like emptying bins for industrial applications.
Several methods are available to find suitable grasps in a
cluttered environment. But the search space for finding such
a grasp location is often quite huge since the whole image,
either containing RGB, RGB-D or just depth information,
has to be taken into account. This slows down the whole
process which is crucial for industrial tasks because strict
time is a constraint and therefore fast solutions in real time
are demanded.

For some cases, end-to-end approaches like [2], [3] are
suitable enough to solve grasping and bin picking tasks.
However, for industrial use cases, the pose of the objects
is critical to be determined correctly since the objects have
to be processed further which is why end-to-end approaches
typically fail for these scenarios. Therefore, our approach
uses a post-processing method where the pose of the object
to be grasped is estimated and a suitable grasp point is com-
puted. The main part of our framework aims for segmenting
the objects from the background and getting a generalized

* Contributed substantially in implementing real data labelling frame-
work, complete fully convolutional network pipeline and experimentation.

* Contributed substantially in developing simulated data generation
pipeline and first patch-based framework used as baseline method [1].

1Robot and Assistive Systems, Fraunhofer IPA, Stuttgart, Germany
muk@ipa.fraunhofer.de

2Machine Learning & Robotics Lab, University of Stuttgart, Germany
janik.hager@ipvs.uni-stuttgart.de

3Center of Cyber Cognitive Intelligence (CCI), Fraunhofer IPA, Stuttgart
and Institute of Industrial Manufacturing and Management IFF, University
of Stuttgart, Germany.

Fig. 1.

Bin Picking Robot Cell for collecting training data and experiment.

network which can segment out any unseen objects from
background. Segmenting the background from the image
appears to be especially difficult for industrial use cases since
some of the scenarios might be more complex, e.g., having
flat workpieces, damaged bin walls or extra packaging in the
box. In this paper, our work mainly deals with solving the
problem of segmenting out flat workpieces from a bin.

Depth information is one of the most important ingredient
in computing grasps, especially regarding path trajectories
and collision checking. Several of the existing grasping
methods also use depth information for finding objects and
grasp points. Therefore, our work focuses on reducing the
search space for object and grasp point localization in depth
images. Furthermore, this limits the number of applicable
sensor types and data to only having depth sensors, point
clouds and the corresponding projections as depth maps.

Overall, our framework, based on a fully convolutional
neural network, can reliably segments workpiece regions and
background of complex and difficult workpieces and bin
situations in a point cloud. To further improve the generaliza-
tion of our framework, we created a simulation environment
to collect training data for different kinds of workpieces
and boxes. Our network is trained on this simulated data
combined with real data which has been gathered from a
robot bin picking cell as shown in Fig. 1. The data is
automatically labelled by a tool we designed for this task
to reduce the processing time and manual correction efforts.
In doing so, new training data can easily be created and new
workpieces can be easily integrated. Thus, our contribution
consists of 1) a framework based on a fully convolutional
neural network capable of segmenting arbitrary workpiece
regions in challenging scenarios (e.g., flat workpieces) using
depth data only and 2) a data labelling tool that allows the
framework to be adapted easily for new workpieces and new
bin shapes.

II. RELATED WORK

Bin picking is considered as a special case of object
grasping, as it limits the environment to a box to pick objects
from. This task is tackled by different kinds of approaches
that can be roughly divided into two main categories: end-to-
end methods directly extracting grasp points from the image
and methods using an object detection framework beforehand
to find suitable grasp points on the detected objects.

The end-to-end methods typically provide a heat map
which encodes the probability of a successful grasp. In doing
so, the robot has to search for the highest probability to be
able to grasp the objects. A problem which might arise with
this approach is that the robot might not know the orientation
of the grasped object or even which object has been picked at
all. On the other hand, these approaches are independent of
previously defined objects and grasp points. Recent end-to-
end approaches have strongly improved the results of object
grasping, e.g., the use of several robots in parallel [2] or
computing the heat map from artificial grasps in simulations
for parallel grippers [3].

The other class of approaches tries to find suitable grasp
locations by first estimating the pose of object and then
extracting grasp points. Such a method is being used by the
Bin Picking 3D software, described in [4], [5], [6], which is
used by our approach as post-processing step to determine
object pose in a point cloud. It searches for local maxima in
the depth map to start a pose estimation of the known object
by fitting the CAD model and determining its pose using a
look-up table. Afterwards a collision free path is computed
to a predefined grasp location on the object.

Object detection and semantic segmentation are popular
topics and lots of research being done in these topics has im-
proved the achieved results. State-of-the-art results are being
pushed by strong frameworks like Fast/Faster/Mask R-CNN
[71, [8], [9]. The use of CNNs to solve semantic segmentation
tasks in terms of image classification is quite popular and
showed superior results in recent works [10], [11], [12].
Especially the usage of fully convolutional networks seems
promising [13], [14] which is why our framework adapts the
same general structure. Some segmentation methods are also
specifically configured for bin picking tasks like [15], [16],
[17]. Other than these methods, our framework considers
only object-background segmentation as part of semantic
segmentation, i.e., only two classes should be distinguished,
namely important objects to interact with in the scene and
background. We show that this is especially beneficial for
bin picking tasks since the background consists of any
environmental observations and the bin while the objects
to be grasped can belong to any kind of class. Therefore,
our approach is independent from previously chosen object
classes and can successfully segment the objects to be picked
from the background. Furthermore, most of the approaches
make use of RGB data which is why our approach provides
a solution using depth maps only to reduce the amount of
used data.

Automatic

Labelling

(b)

Orthogonal| Projection

Manual

Correction

(d) (c)

Fig. 2. Labelling flow for segmentation. (a) Point cloud PCy with
workpieces, (b) Labelled point cloud PCj generated by comparison of PC'y
and PCe, (c) Orthogonal projected depth map D M), Green rectangle shows
wrongly labelled region (d) Labelled depth map D M; by manual correction
of wrong labels.

III. DATA GENERATION

For most machine learning algorithms, a large amount of
labelled data is required. In our case, we want to use both
simulated and real data for training. Regarding simulated
data, we create a simulation environment to automatically
generate data and the corresponding labels. Labelling of the
real dataset requires most of the effort and resources. For a
machine learning algorithm to easily adapt to new data, it is
always essential to have a process which can do the labelling
fast and reliably. We have implemented a framework to do
automatic labelling for the workpiece segmentation in point
clouds. Additionally, we have also implemented a technique
to do manual correction of labels.

A. Simulation environment

The simulation environment for generating simulated data
for training our network is created using Coppelia Robotics’
robot simulator V-REP [18]. The CAD models of five
different box types from industrial use cases are integrated
in the scene with two additional variations including small
damages. Some of these boxes have structured walls to
increase the difficulty, e.g., the lattice box. The boxes are
sized from 0.7m x 0.9m x 0.6m up to 1.0m x 1.2m x 0.9m.
Twelve different workpieces, e.g., a gear shaft or a ring bolt
are used to fill the bin. Ten of these workpieces are flat,
which also increases the difficulty as these are harder to
distinguish from the bottom of the box. The whole simulation
environment is shown in Fig. 3.

For generating data, one of the five boxes is chosen,
positioned in the middle of the scene on the planar ground
and filled with one type of workpieces. The reason for filling
the box with only one type of objects is the close relation
with the industrial use cases. While filling the box, the
scene is observed by a multifunctional camera collecting
depth images, RGB images, point clouds including pixel
wise labels for workpiece and environment. This camera is
fixed at a height of 2.4m above the ground and measures
the distances in millimetres. A scan is done every time

Fig. 3. Simulation environment containing the different bin types, work-
pieces and the sensor.

with random amount of workpieces to increase the variation
in collected scenes. The objects are dropped in random
orientations and positions above the box. This guarantees
a more realistic scenario because the workpieces are also
randomly dropped in boxes in the industry as shown in
Fig. 4. A full box can contain up to 30 to 130 workpieces,
depending on the size and shape of the box. Each scanned
image has a size of 512 x 512 pixels. The data collected
in this simulation does not contain noise of the sensor or
perturbations. That makes a huge gap between simulated and
realistic data. Therefore, real labelled data is also required so
that the neural network can learn more generalized realistic
features.

B. Real data labelling

The tool we developed for labelling real point cloud data
for bin picking task consists of several processing steps to
generate accurate ground truth data. First of all, for each
workpiece and bin scenario, the position of the bin is fixed.
Then multiple point cloud scans PC, of the empty bin are
recorded. The inaccuracies in sensor measurements can miss
some points in the scene. Therefore, multiple point clouds
of the empty bin are recorded to get dense point cloud with
no missing point. Keeping the position of the bin fixed,
workpieces are added in all kinds of poses and several point
cloud scans PCy of the filled bin are recorded. Using this
basic approach, different situations of workpieces and bins
can be used to create arbitrary data. In our experimental
setting, we use several 3D vision sensors, €.g., Stereo vision
and laser vision sensors. This ensures the variation of sensor
noise in the training data to help in generalization of trained
network for segmentation. Next, the point cloud data is
mapped to a X-Y grid with grid cell size s4.. Each point
pi = (i, yi, %) of the point cloud is projected to a cell (z, y)
as follows:

x:{xiJH, y=viJ+1 (1)

Sgc Sgc

Following this formula, all point clouds PC. with an
empty bin for one specific bin and workpiece scenario are
mapped to one X-Y grid G.. In the same manner, X-Y
grids Gy are created for all point clouds PCy with a filled
bin corresponding to the same bin and workpiece situation.

Fig. 4. Point clouds created in the simulation environment with two
different workpieces and two different bins. Colours correspond to different
objects (green = bin, yellow = floor, red = workpieces).

In the next step, the grid G5 is compared to the grid G,
with the same bin situation to label the point cloud PCY.
For each point p; € PCY, the euclidean distance d(py, pe)
of py to all points p. € PC. of the same grid cell (z,y)
is calculated and py receives a label I(ps) depending on the
calculated distance d as follows:

ly, if Vpe € (z,y): d(pf,De) > dmac
l(pf):{ (x.9) : dps.pe)

2
ln7 if Hpe € (ac,y) : d(pf;pe) < dmas @

This means that if one of these points p, is closer to py
than a predefined threshold d,qz, ps Will be labelled as [,, (in
our case [, = 0) which means non-workpiece. On the other
hand, if none of the points p,. is closer than d,,,,, the label
is I (in our case [,, = 1) referring to a workpiece point.
This automatic labelling process using eq. (2) is done for all
point clouds, resulting in fully labelled point clouds PC;.
The result of this method is shown in Fig. 2(b). Although
creating a nearly perfect labelled point cloud, this automatic
labelling process can still generate some wrong labels in the
point cloud because of the discretization and noisy sensor
data as can be seen in the top left corner of Fig. 2(b). These
wrongly labelled points should be corrected manually, as
described in the following section.

C. Correction of labels

To use the labelled point clouds PCj in our approach,
we have to project them orthogonally to create a depth map
along with the corresponding labels. The label for each pixel
in a depth map DM, is the label of the highest point being
projected at this pixel location. Fig. 2(c) shows the projected
depth map along with the labels. To further improve the
quality of the ground truth data, we use the morphological
closing filter on the generated labels. First some stray non-
workpiece labels [,, are removed automatically by applying
a dilation filter on the labels with kernel size & = 3, i.e.
closing holes in the workpiece region. Afterwards an erosion
filter is applied with the same kernel size £ = 3 to keep the
initial region sizes. Along with that, it removes stray pixels
labelled as workpiece pixels [,,. These stray pixel labels
are removed automatically to reduce the required amount
of manual corrections of wrong labels.

Apply blur5

Labelled Depthmap Image Blur-Labelled Depthmap Image

Fig. 5. Applying the inpainting method (blurk) with £ = 5 to remove
holes in the depth map.

After removing the stray pixel labels, the labelled depth
maps are mapped to RGB images where workpiece labels
l, are mapped to red colour and non-workpiece labels [,
are mapped to blue color. Each RGB image is then shown
to the user such that user can select the wrongly labelled
regions as can be seen by the green rectangle in Fig.
2(c). For each selected region, all the red coloured pixels
are changed to blue, simultaneously those pixel labels are
changed from workpiece to non-workpiece in the projected
depth map DM,,. After having manually corrected the labels
in the depth map, the correctly labelled ground truth depth
map DM; is saved. Fig. 2(d) shows the finalized labelled
depth map DM;. These labelled depth maps can always be
projected back to the corresponding point clouds PC; to
correct all wrongly labelled points in them. The remapping
to point cloud is explained in Sec. IV-F.

IV. NETWORK ARCHITECTURE & PROCESSING STEPS

A fully convolutional neural network [13] is trained on
depth maps with some preprocessing and postprocessing
steps. These steps ensure the segmentation of workpiece
regions in the point cloud from non-workpiece regions.

A. Projection of point clouds

Point clouds PC' are generated by sensors for each scan.
As point clouds are in 3D space and the spatial dimension
of each point cloud varies, they cannot be fed directly into
the neural network. Instead of discretizing the points into
a voxel grid, we project the point clouds orthogonally to a
2.5D depth map space. A point cloud PC' is projected with a
resolution factor r to a depth map DM of size sg,, = dy xd,
with

Tmaz — Tmin
dz =

Ymaz — Ymin
. dy =T dmin (3
r r

where Tiazs Timin, Ymaz and Ymin correspond to the max-
imum and minimum values respectively in x- and y-direction
in a point cloud. r determines the resolution factor where
r = 1 represents each pixel in a depth map DM is mapped
to a cell of size 1 x 1 in the point cloud. As the point cloud
is dense, some points might be mapped to the same cell. In
this case, the highest point p; = (z;,y;,2;) with respect to
height z; is chosen. Fig. 6(c) shows a projected depth map
from the point cloud.

B. Hole removal

Due to shadowing effects and missing sensor data, holes
might be created when a point cloud PC' is projected to a
depth map DM as shown in Fig. 5. These holes can cause
ambiguities in training a neural network. We counter this
problem with an inpainting method, i.e., the mean value of
neighbouring pixels is used to fill the missing pixel values.
Only valid pixels contribute to this solution, i.e., either pixels
with a value defined by the point cloud or already filled
pixels, leading to the following equation:

> pE D))

1
(Z,9)eNk (z,y)

where Ny (z,y) is the neighbourhood of size k x k around
a pixel at position (z,y) and n is the number of neighbouring
pixels with valid values. For & = 3, this would give us the
eight neighbouring pixels around the center pixel. In general,
this method has a blurring effect, hence we also refer to it
as blurk. This hole filling filter is iterated over the whole
depth map image to fill all missing pixels. The label value
of the filled pixel corresponds to the majority vote of its valid
neighbouring pixels. Fig. 5 shows the image after applying
the hole filling filter with a size of kK = 5. As can be seen,
this filter has filled the black pixels within workpiece and
bin regions in a meaningful manner.

C. Resizing of depth maps

Each projected depth map can have arbitrary image sizes
Sqm depending on the spatial resolution of the scanned point
cloud. However, our fully convolutional neural network can
only take inputs of a fixed image size s,. To keep the
originality, aspect ratio of the depth map and to preserve
the shape characteristics in depth maps, instead of doing
interpolation to resize depth maps, an extra zero padding
is applied along the spatial dimensions of depth maps for
the depthmaps with spatial dimensions being smaller than
sy. If the original depth map DM has a spatial dimension
greater than s,., cropping is applied to resize the depth map.
The resized depth map D M, is then fed directly to the neural
network for training. Usually, point clouds are projected with
resolution factor » = 1, however, if both spatial dimensions
of the projected depth map DM are greater than the resized
image shape s,, point clouds are projected with greater
resolution factor such as r» = 2. It ensures that the regions of
interest of the bin and the workpieces are not cropped away
while resizing the depth map.

D. Training of neural network

For training a neural network, a segmentation mask M
is prepared from the labelled depth map DAM;. The seg-
mentation mask is then resized to M, accordingly to the
previous resizing step of the depth map DM to match
with the spatial dimensions of its resized version DM,.. In
this segmentation mask M,, each pixel is either labelled
as background class 0 or workpiece class 1. The resized
depth map DM, is then normalized by subtracting the

Fig. 6. Workflow for workpiece region segmentation on the gear shaft. (a) point cloud PC' taken from sensor, (b) orthogonally projected labelled depth
map, holes removed and resized to size s, (c) standarized depth map DM, used as input for the neural network, (d) fully convolutional neural network
[13] with convolutional and deconvolutional parts, (e) resized segmentation mask M., (f) projection of segmentation mask to point cloud PC to split it
into non-workpiece point cloud PC,, (upper part) and workpiece point cloud PC, (lower part).

mean from all the pixel values and dividing by its standard
deviation, such that the depth map has a zero mean and
a standard deviation of one. Following the architecture of
[13], a fully convolutional network is created which can
take normalized depth maps as its input and output the
corresponding segmentation masks. The network is trained
in an end-to-end fashion with per-pixel multinomial logistic
loss function. The error is calculated by taking the mean
over the loss for both classes. The network is validated by
taking the standard metric of mean pixel intersection over
union (IoU), with mean taken over both classes, including
background.

The network architecture consists of a convolutional and a
deconvolutional network. The convolutional part of the net-
work consists of VGG16 network [13] where fully connected
layers are replaced by convolutional layers. Following [13],
for the deconvolutional part, FCN-8s architecture is created
by fusing predictions from pool3 with a 2x upsampling of
predictions fused from pool4 and conv7. The weights of the
VGGI16 network are pretrained on ImageNet [19] while the
weights of the FCN-8s network are trained from scratch
by initializing them with random values sampled from a
Gaussian distribution with zero mean and standard deviation
of 0.02.

E. Resizing of segmentation masks

The trained neural network predicts a segmentation mask
M. of size s,. for each preprocessed resized depth map D M,..
To resize the segmentation mask to the original depth map
size Sqm, unpadding or repadding of zeros has to be done.
If additional padding is applied on depth map DM, the
same padding is removed by cropping to readjust the size of
the segmentation mask M equal to the size of original depth
map D M. If cropping is done while adjusting the size of the
depth map DM,., an additional zero padding is added on the
segmentation masks. This resizing of masks ensures a correct
remapping of the segmentation masks to the original point
clouds. Such a predicted and resized segmentation mask can
be seen in Fig. 6(e).

FE. Projection of segmentation masks

After resizing the predicted segmentation masks, each
predicted pixel label in the segmentation mask M is mapped
back to the corresponding point of the point cloud PC,
labelling the points either as workpiece point p,, or non-
workpiece point p,,. This labelled point cloud is then split
into two separate point clouds PC', containing workpiece
points only and PC,, containing non-workpiece points only.
Fig. 6(f) shows both of the resulting point clouds.

V. EXPERIMENTAL RESULTS

Due to unavailability of labelled point cloud data for
segmentation and to test the framework in real industrial
scenarios, we created our own dataset. This dataset con-
sists of both real data taken from different sensors and
also simulated data. We trained several neural networks on
different dataset combinations and evaluated the results of
workpiece segmentation. Moreover, we also present our cross
comparison results of object pose detection with and without
segmentation.

A. Description of dataset

Our dataset is created using twelve different workpieces,
of which ten are flat workpieces and two of them have
arbitrary geometry. Real scenes are captured with three dif-
ferent sensors, i.e., Ensenso N20, Ensenso X36 and Photoneo
Phoxi L. In order to have more variation in our dataset,
three different boxes are used, i.e., one box with a size of
one quarter of an europalett, one box with a size of one
eighth of an europalett and one flat tub with a size of one
half of a europalett. Additionally, some data is collected
when the workpieces lie on an empty table. All real data
is labelled with our automatic labelling along with manual
correction tool described in Sec. III-B and III-C. Overall, we
generated 590 labelled depth maps this way. To improve the
generalizability of our approach and to further increase the
size of our dataset, data augmentation is applied on the depth
maps including flipping, scaling and rotation. After data
augmentation, the dataset with real data contains 5,150 depth
maps. Out of the whole real data, 48 depth maps are reserved
for testing, i.e., four depth maps per workpiece. Along with

(cy) (cz) (c3) (dy) (d2) (ds)

Fig. 7. Results for object pose estimation with and without Segmentation. Detected objects are highlighted. Left image (1) shows point cloud, center
image (2) refers to object pose detection without segmentation (often having wrong and phantom detections) and right image (3) shows results on point
cloud with segmentation (typically correct predictions). (a) WP1: 3 wrong detections vs. 7 correct detections out of 7 visible, (b)) WP2: 6 wrong detections
vs. 8 correct detections out of 10 visible, (¢) WP3: 4 wrong detections vs. 10 correct detections out of 14 visible and (d) WP4: 1 correct detection vs. 3

correct detections out of 4 visible.

TABLE I
EVALUATION OF SEGMENTATION ON REAL DATA.

Trained Models | Mean Pixel Accuracy | Mean IoU
P-CNNg 79.31 29.69
P-CNN, 97.16 70.85
P-CNNys 97.78 75.50

FCN;, 85.35 48.85
FCN, 99.55 93.33
FCNys 99.67 95.78

real data, we also generated simulated data with five different
bins as described in Sec. III-A. The amount of simulated data
is 2,320 labelled depth maps. For each training experiment
with dataset combination, 10% of randomly chosen data is
used for validation.

B. Baseline

As a baseline for comparison with the proposed frame-
work, we employ a first version of our approach proposed in
[1]. This baseline is based on a patch-wise CNN to classify
the center pixel of each patch while sweeping over the whole
depth image.

C. Evaluation of point cloud segmentation

To get a generalized neural network for segmenting out
workpiece regions and to observe the effect of different
data combinations, three fully convolutional neural networks
FCN,,FCN,, FCN, are trained and tested with real test
data as described in Section V-A. FCN, is trained only
on real data with Adam optimizer and a fixed learning rate
of le—5 for 350 epochs (approximately 200, 000 iterations)
with a batch size of twelve. Similarly FCN; and FCN,.,
are trained on simulated and a combination of real and
simulated data respectively with the same training settings as
for FCN,.. For all of the trained models, the projected depth
maps are resized to s, = 800 x 800 pixels. The model with
lowest validation loss is stored and tested on the testing data.
We report mean pixel accuracy and mean intersection over
union (IoU) for the workpiece class. The hardware used for
segmentation is a NVIDIA DGX-1 with Tesla V100. Table I

TABLE I
EVALUATION OF ESTIMATED POSES IN MM AND DEGREES USING OBJECT
POSE ESTIMATION WITH AND WITHOUT SEGMENTATION.

. w/o Segmentation w/ Segmentation
Workpiece : -
pos. err. | orient. err. | pos. err. | orient. err.
WPI 70.26 25.97 1.68 2.67
WP2 121.24 47.90 243 341
WP3 71.68 47.32 1.25 0.90
WP4 71.39 42.50 6.71 4.67
WP7 162.14 52.01 2.27 29.19
WPI10 6.22 2.35 191 2.22
Ring screw 1291 18.52 13.50 24.45
Gear shaft 5.06 4.49 4.75 10.55
Average 65.11 30.13 4.31 9.76

shows that the best results are obtained with F'C'IN,.; because
the trained model has learned better features from real data
and the additional simulated data helps for generalization.
The model trained on only simulated data F'C'Ng shows
the worst results. The reason for this is that the simulation
data is considered as perfect data and the model is unable to
learn the perturbations only present in real data. In contrast
to this, the FFC'N, model shows better results than F'C' Ny
but worse than F'C'N,., because the real data is limited and
the model is not completely generalized. From these results,
we can observe that the labelling process of real data and
the additional generation of simulated data helps in getting
a reliable generalized segmentation network. Moreover, a
mean IoU of 95.78% for the F'C'N,.; model also shows the
robustness of our approach for segmenting workpiece regions
in point clouds.

To benchmark our results, we trained the same three
versions of the patch-wise baseline P-C N N,., P-CN Ny, P-
CNN,s [1]. Table I shows that the performance of our
fully convolutional approach is clearly superior to the patch-
wise framework. Additionally, the patch-wise approach is
computationally more expensive as it takes almost 23 sec
for segmenting one depthmap compared to 0.08 sec with the
fully convolutional approach. Therefore, our approach shows
state-of-the art performance and can be used in real time.

D. Segmentation with object pose estimation

In these experiments, an object pose estimation (OPE)
technique using generalized Hough transformation [5], [6]
is applied on the real point clouds. We estimated the ground
truth via manually adjusting the CAD model in the scene
and then applying the ICP algorithm. Experiments on each
workpiece are carried out for ten cycles to estimate object
poses with and without our segmentation framework. In these
ten cycles, random workpiece situations are created. The
FCN,s model is used for segmenting the workpiece region
in the point cloud. The OPE parameters are tuned once and
the results for estimated poses are recorded. Using estimated
and ground truth poses, position and orientation errors are
recorded individually. We test the OPE technique on the
whole point cloud against the segmented point cloud using
our approach. Evidently, as can be seen in Fig. 7, using
our approach, OPE helps to detect more workpieces and
especially estimating more correct workpiece poses. Table II
presents the mean error of position and rotation estimation
for both cases. Here, WP1 to WP10 are flat workpieces and
other two have symmetrical geometry. The results show that
for all workpieces, the OPE results are improved significantly
by segmenting the point cloud first. The segmentation is very
effective and helpful for OPE, especially when only a few flat
workpieces are present in the bin. It also helps in emptying
the bin as last workpieces in bin are difficult to detect.
Moreover, we also evaluated the computational time of OPE
with segmentation. Depending on the bin and workpiece
situation, the OPE without segmentation takes approximately
2—3.5s in comparison to 1.5—2.5s of OPE with segmentation
on CPU, out of which one forward pass of our neural network
took only 80ms on GPU. The computational time is reduced
due to the fact that after the segmentation process, the search
space for the object detection is reduced significantly.

VI. CONCLUSION

In this paper, we provided a framework to segment work-
piece regions reliably from point clouds in real time. We
have observed that the workpiece segmentation improves
object pose estimation and reduces the search space, hence
decreasing the overall computational complexity of object
pose estimation. By augmenting the real data and adding
simulated data, the trained network generalizes better due to
increased variation in the data and hence an improvement
in the segmentation results is observed. Another reason for
the generalizability of our framework is the usage of different
types of bins and workpieces. Therefore, our method is espe-
cially helpful for object pose estimation in difficult scenarios,
e.g., flat workpieces, which allows completely emptying the
bin which was not possible beforehand. Furthermore, with
our labelling tool only little effort is required to create new
data from point cloud scans and to let our framework adapt to
new workpiece situations. In future work, we will further in-
vestigate tackling the challenges of additional packaging and
we would also like to combine our segmentation method with
an object pose estimation approach to create one integrated
framework for the whole task.

ACKNOWLEDGMENTS

This work was financed by the Baden-Wiirttemberg
Stiftung grant NEUO16/1 and H2020 project Robott-Net
under grant number 688217.

REFERENCES

[1] J. Hager, M. Teschner, K. Kleeberger, W. Kraus, P. Englert, M. Tous-
saint, and D. Hennes, “Dense 3d segmentation for bin picking,” 2018.
ICRA 2018 Workshop: Advances in Robotic Warehouse Automation.

[2] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” The International Journal of Robotics
Research, vol. 37, no. 4-5, pp. 421-436, 2018.

[3] J. Mabhler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,

and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps

with synthetic point clouds and analytic grasp metrics,” arXiv preprint

arXiv:1703.09312, 2017.

R. Dieter Schraft and T. Ledermann, “Intelligent picking of chaotically

stored objects,” Assembly Automation, vol. 23, no. 1, pp. 38—42, 2003.

[5] M. Palzkill and A. Verl, “Object pose detection in industrial environ-
ment,” in ROBOTIK, 2012.

[6] F. Spenrath, M. Palzkill, A. Pott, and A. Verl, “Object recognition:
Bin-picking for industrial use,” in IEEE ISR 2013, IEEE, 2013.

[7] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE international
conference on computer vision, pp. 1440-1448, 2015.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, pp. 91-99, 2015.

[9] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
Proceedings of ICCV, 2017.

[10] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell,
“Understanding convolution for semantic segmentation,” in WACV,
2018.

[11] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in ECCV, 2018.

[12] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, 2018.

[13] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3431-3440, 2015.

[14] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in ICCV, 2015.

[15] C. R. Hema, M. Paulraj, R. Nagarajan, and Y. Sazali, “Segmentation
and location computation of bin objects,” International Journal of
Advanced Robotic Systems, vol. 4, no. 1, p. 9, 2007.

[16] M. Schwarz, A. Milan, A. S. Periyasamy, and S. Behnke, “RGB-D
object detection and semantic segmentation for autonomous manipu-
lation in clutter,” I. J. Robotics Res., vol. 37, no. 4-5, 2018.

[17] M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and
K. Goldberg, “Segmenting unknown 3d objects from real depth
images using mask R-CNN trained on synthetic point clouds,” CoRR,
vol. abs/1809.05825, 2018.

[18] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and
scalable robot simulation framework,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Tokyo, Japan, Novem-
ber 3-7, 2013, pp. 1321-1326, 2013.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and E-F. Li, “ImageNet:
A large-scale hierarchical image database,” in (CVPR 2009), 20-25
June 2009, Miami, Florida, USA, 2009.

[20] A. Schyja and B. Kuhlenk®étter, “Realistic simulation of industrial bin-
picking systems,” in 2015 6th International Conference on Automa-
tion, Robotics and Applications (ICARA), pp. 137-142, IEEE, 2015.

[21] F. Engelmann, T. Kontogianni, J. Schult, and B. Leibe, “Know what
your neighbors do: 3D semantic segmentation of point clouds,” in
European Conference on Computer Vision, Springer, 2018.

[22] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4490-4499, 2018.

[4

