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Abstract
Path planning is a crucial step in many robotic applica-
tions. To solve the planning problem the main approaches
are sampling-based and optimization methods, each of which
excel in different areas. However, methods combining both
areas in a principled way do not exist yet. In this work, we
formulate a representation which enable us to formalize vari-
ous path planning algorithms as state machines, and allows us
to combine the strengths of different approaches in a generic
framework. Using this formalism, a path planning problem is
solved by successively altering a state using various opera-
tions (e.g. sample, connect, etc.) until a solution is found. We
demonstrate the framework by constructing policies for the
state machine which correspond to widely known algorithms.
We present promising results of the framework in the form
of manually constructed state machines which combine opti-
mization and sampling based methods, and discuss their ad-
vantages and drawbacks. We show that our framework is able
to handle complex path planning problems, and is compet-
itive with traditional, more developed approaches. The sim-
plicity of the resulting state machines hints that such policies
could be learned, going in a similar direction as architecture
search in machine learning.

1 Introduction
Path planning can be seen as a solved problem for low di-
mensional spaces and simple systems. Various different ap-
proaches exist, and computational power to apply them is
abundantly available. Problems arise in high dimensional, or
dynamically constrained domains. Thus, different decompo-
sitions are often proposed, attempting to simplify problems,
and solve these first, and use them as guidance for the more
complex problem (e.g. (Wagner and Choset 2011) or (Or-
they, Escande, and Yoshida 2018)).

A complete discussion of path planning methods is out
of scope – we give a brief overview over the most relevant
material here. Path planning methods can generally be di-
vided into two large areas: (i) optimization based, and (ii)
sampling-based methods.

Optimization based methods have the advantage of be-
ing able to incorporate a wide variety of cost functions,
for which optimality can be guaranteed under some (usu-
ally strong) assumptions. Attempts to compute paths more
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robustly under a wider range of circumstances have been
made e.g. in (Ratliff et al. 2009; Kalakrishnan et al. 2011;
Schulman et al. 2013; Herbert et al. 2017). However, none of
these approaches are complete, i.e., a feasible path might not
be found, even if one exists. The reason for this failure mode
is usually the non-convexity of the formulated optimization
problem, caused by obstacles or other (non-holonomic) con-
straints.

Sampling-based algorithms such as RRTs (LaValle 1998)
and PRMs (Kavraki et al. 1996) are probabilistically com-
plete, and can be made probabilistically optimal (Karaman
and Frazzoli 2011). The resulting paths are in general non-
smooth, and have to be post-processed for smoothness, dy-
namic feasibility, and optimality before execution. For this
reason, sampling-based methods are often used as initializa-
tion or as a backup to a (possibly) faster, but non-complete,
optimization based planner. Extensions of the algorithms
help with convergence speed and sample efficiency, but do
not convincingly solve the problems. In addition, sampling-
based algorithms can break down in high-dimensional sys-
tems (for a more in-depth discussion, see (Branicky et al.
2001)).

Hybrid search methods combine different paradigms into
one algorithm, and could be seen as a third category of ap-
proaches: (Choudhury et al. 2016) uses a local optimizer
during the extend phase of the RRT algorithm, (Luna et
al. 2013) present a meta algorithm to merge different (par-
tial) solutions to a single path with shorter length.

Combining both sampling-, and optimization-based meth-
ods would be advantageous, but has not been done in the
most commonly used frameworks (OMPL (Şucan, Moll, and
Kavraki 2012), TrajOpt (Schulman et al. 2013)).

Our key contributions in this paper are

• A unifying representation for various path planning algo-
rithms in the form of a state-machine and a corresponding
policy, and

• Examples of policies that induce new algorithms and
combine sampling- and optimization based methods.

2 Problem Formulation
In this work, we focus on planning in the configuration
space, i.e. we decouple the planning problem into finding an
admissible path, and in a second step, search for an admissi-



ble time-parametrization that satisfies possible dynamic con-
straints f (for more details on this decoupling, see (Pham,
Caron, and Nakamura 2013)).

Hence, we formulate the problem of finding a path
x : [0, T ]→ XM for a robot-modelM as

x∗(t) = argmin
x

∫ T

0

c(x(t)) dt

s.t. x(0) = XM,start, x(T ) ∈ XM,goal

∀t ∈ [0, T ] : x(t) ∈ XM,free, (1)

where XM ⊂ Rn is the full configuration space of the robot
M, and XM,free = XM \ XM,obs is the free configuration
space. In practice, XM,free and XM,goal are defined by sets
of constraints1, i.e. g(x(t), t) ≤ 0, and h(x(t), t) = 0.

Common examples for the cost function c are path length
c = |ẋ(t)|, or squared acceleration c = ẍ(t)2. In case we
only want to find a path, we choose c = 0, and the problem
reduces to a constraint-satisfaction problem.

3 The Planning State Machine
Our approach to solve the problem Eq. (1) efficiently is
to sequence and combine various computational operations,
and explicitly combining sampling- and optimization-based
methods. Solving the planning problem thereby becomes a
decision process of how to combine the computational oper-
ations. We describe the process as a state machine – alterna-
tive formulations in terms of (PO)MDPs (as done in (Choud-
hury et al. 2018) for learning ideal exploration strategies of
given graphs) would equally be possible.

We define the state x = (α,D,P) as a three tuple of
• the finite state α ∈ A, which primarily determines which

operations are performed and how the process transitions,
• the sample and path data D, which contains all data col-

lected from previous runs of sample-based searches, con-
straint solvers, or path optimizers (e.g. sampled vertices,
connected edges, values of objective functions),

• the problem specification P , which defines the robot
model M and the objectives c, (h, g)start, (h, g)free,
(h, g)goal.

In the following sections we give more details on each of
these state components.

3.1 P and Admissible Abstractions
In order to solve the original problem P0 (with modelM0),
it is often useful to first solve simpler problems. Hence, we
include the problem description Eq. (1) as part of our state
which can be altered. More specifically, to guide solvers of
P0 we may first want to solve easier versions of the prob-
lem (e.g. admissible2 abstractions of P0). Some examples of
such easier problems are:

1XM,start is commonly a single configuration x0, but can be a set
of configurations defined by constraints in the same way as XM,free
and XM,goal.

2A tuple (P, φ) is an admissible abstraction of an original
problem P0, if φ : XM0 → XM project from the configu-
ration space of P0 into the configuration space of M, and P

• Removal of a subset of collision shapes of the robot (e.g.,
only planning for the base of a mobile robot),

• Removal of kinematic constraints (e.g., making an end-
effector free flying),

• Planning for agents separately in a multi-agent setting.

These abstraction operations in our state machine modify
the state P of the planning process. Such an abstraction also
has to be un-done during the planning process: We will de-
fine operations to project abstract solutions back into the
original configuration space, thereby guiding the search for
solving the original problem.

3.2 D: Storing Preliminary Results
The output of sample-based methods like RRT and PRMs
are collections of (feasible) configurations, optionally to-
gether with neighborhood information. We store all results
generated by such methods in a configuration graph DP ,
where vertices are feasible configurations x ∈ XM (in the
configuration space of P), and edges e ∈ E indicate ε-near
neighborhood. In addition, we label vertices as goal-feasible
if x ∈ XM,goal. Thereby,DP also stores goal samples, which
are generated by dedicated constraint solvers, and used, e.g.,
by bi-directional RRTs. In addition, we store generated ad-
missible paths and their corresponding cost in D, i.e. paths
that satisfy the constraints in Eq. (1). These initial solutions
can be used for e.g. initialization of a possible solution when
projecting a path into a higher dimensional space, or for con-
straining the sampling or the optimization process.

To summarize, D = {D}iPi
, where DP is the tuple

(G,Q), where G is a graph of feasible configurations, and
Q is the set of feasible paths.

3.3 α, the Operations, and the Policy π
The finite state α uniquely identifies the operation that is
performed in the current state. Every operation may modify
D and P , and in addition may give a return value y, e.g.,
whether a feasible path was found. Based on α, the updated
D,P , and the return value, the policy determines the new
α′:

π : (α,D,P, y) 7→ α′, (2)

which defines a state transition in our state machine.
In Table 1, we define some possible operations, their pa-

rameters, and how they change the state. Concrete planning
policies π are described in the next section.

3.3.1 Termination Criterion In general, one would like
to know if a given P0 can be satisfied, and terminate if its
infeasibility is guaranteed. In practice, due to the nonlinear
constraints, this is not possible. We thus terminate the plan-
ning process either if P0 is satisfied (as is often done e.g.
with RRTs), or a computational budget is used up (as is often
the case for RRT*). Relaxing the constraint of the computa-
tional budget can make a planning policy π probabilistically

is a lower bound of P0 (Orthey, Escande, and Yoshida 2018;
Toussaint and Lopes 2017). Lower bound means that if the ab-
straction P is infeasible, then the original problem P0 must also
be infeasible.



Operation Parameter Description
Sampling Sampling strategy l Sampling the stateXM,free leads to a new sample inD. Strategies

include rejection-, goal-, and informed sampling.
Extend Goal vertex vg extend adds a new feasible state, and an edge to D. The vertex

which we extend from is the one that is closest to vg .
Connect Vertex v, Connection radius r The connect-operation tries to connect to feasible configura-

tions from the state D, and adds edges to the graph.
Prune pruning strategy q prune labels some edges in the graph (chosen according to q)

as invalid.
Optimize start and goal vertices vs, vg , cost

function c
optimize connects two nodes in D using an optimization ap-
proach. It can be seen as specialization of connect.

Smooth cost function c, initial path y smooth is similar to optimize, but takes an initial path as
additional argument.

Abstract Abstraction method a This operation changes the problem description by e.g. abstract-
ing the robot model.

Project projection method p, vertex v Projects a given vertex v to a higher of lower dimensional state.
Graph Search Vertices vi, vj Checks if two vertices in D are connected.

Table 1: Operations, the relevant parameters, and a brief description

complete, however in practice, we want to have the guaran-
tee that the state machine halts.

4 The State Machines
We show examples of commonly known algorithms such as
RRT and PRM in Appendix A - this might help clarify some
of the concepts introduced before. In the following Section,
we describe new combinations of the previously introduced
operations to induce new planning algorithms in our frame-
work. In this work, we describe a policy π as a graph, where
the nodes describe the actions αi, and the transitions are de-
termined by π. In the sections where we adapt known algo-
rithms, the changed parts are highlighted in red.

Combined robust solver We first attempt to solve the
complete problem using an optimization approach, and
switch to a complete solver (i.e. either PRM or RRT in this
case) if the optimizer was unsuccessful:

Optimize Sample/
Extend Smooth

Failed

Success

Until Success

The path from the RRT solver then has to be smoothed.
This approach has the advantage of a more robust path plan-
ner, while keeping the advantage that a solution will be
found quickly by the optimization approach in some cases.

Informed RRT*-Smooth Informed RRT* changes how
samples are generated based on knowledge on the paths
found so far. However, it is inefficient in improving the
bound it uses because it limits itself strictly to sam-
pling based methods. We introduce an additional step here,

namely using a smoother on the path that was found to im-
prove the cost bound that is used for sampling.

Sample
start/goal
state(s)

Sample

Extend Connect

Prune

Smooth

Cheaper path found?

Convergence/
Computational

budget used?

This means that we are using RRT explicitly as path plan-
ner to discover paths in different homotopies, and assume
that improving the path using sampling-based methods is
wasteful compared to optimization based methods. Here, we
invoke the smooth operation when we found a solution
with lower cost than the current cost as a replacement for
checking if a solution is in the same homotopy as a previ-
ously found solution.

Lazy PRM with Optimization We propose a PRM with
lazy evaluations of the edges, and attempt to connect the
edges that are not viable using a nonlinear optimizer.

Sample
start/goal

states
Sample Lazy

Connect
Graph-
Search

EvaluatePruneOptimize
Success?

Success?

Compared to the connect operation, the lazy version of
it does not evaluate the edges, and thus necessitates the sep-
arate evaluate operation. If the whole path is evaluated
successfully, and none of the edges are in collision, the pro-
cess is terminated.



Optimal RRF We propose a probabilistically complete
and optimal version of the reconfigurable random forest-
algorithm (RRF) proposed in (Li and Shie 2002). RRF is
a multiquery-planner that makes use of the proposed data
structure and policy to incrementally build a roadmap, com-
bining the advantages of single-query, and multi-query plan-
ning approaches.

Sample
start/goal
state(s)

Sample
Extend

Each connected
component

Connect Convergence/
Computational

budget used?

D now being used over several planning queries means
that it needs to be persistent over the queries to keep track
of the state of the graph.

In this algorithm, we explicitly keep track of the con-
nected components in the graph D, and try to extend each
connected component in the graph towards the previously
obtained sample. Initially, this leads to just the start and goal
vertices being extended towards the sample. In the following
queries, the previous tree(s)/graphs are then also extended
towards the samples, leading to quicker initial solutions of
the algorithm.

5 Experiments
We run the resulting state machines on the following exam-
ples: (i) a cluttered 2D environment, (ii) a 2D problem with
a narrow corridor, (iii) a multi-query setting in a cluttered
2D environment (iv) a 12 DoF multi-agent system consist-
ing of a mobile robot and a crane (described in (Hartmann
et al. 2020)).

(i) Figure 1 shows snapshots from Informed RRT* with
smoothing on the cluttered environment. In Figure 2
the evolution of the length of the path is plotted for our
algorithm, and Informed RRT* without the smoothing
step. In an optimized implementation, the advantage of
using a smoother might be smaller, but we argue that
the better use of available information is beneficial –
especially in higher dimensional problems, where con-
vergence of pure sampling based approaches is slower.

(ii) The evolution of Lazy PRM with optimization is shown
for the narrow gap environment in Fig. 3. Note that
while the example we show here works, we do not ex-
pect the optimizer to always find a solution. Hence is
might be desirable to first try a graph search again
after pruning the infeasible edges from the graph. The
algorithm might perform very well in cases where the
edge is only slightly violating the constraints.

(iii) Figure 4a shows the necessary time required from the
RRF to find the solutions to 250 queries on the same
environment in comparison to RRT, and Lazy PRM.
The number of required collision checks is shown for
the planners in Fig. 4b, which shows that many less
than RRT, and approximately the same total number as
for lazy PRM are necessary.

(a) The initial path. (b) After smoothing the ini-
tial path.

(c) After finding a path in a
different topology.

(d) The final path.

Figure 1: Snapshots of the evolution of the Informed RRT*
with smoothing. The black path is the lowest-cost-path, the
lighter paths are the previously identified solutions. The red
ellipsoid is the currently active set from which we sample,
the other ellipsoids are the previously used ones.

0 2 4 6 8 10 12 14

t [s]

6.5

7.0

7.5

8.0

8.5

c(
x

)
(l

en
gt

h
)

Informed RRT*

Informed RRT*-Smooth

Initial Solution

Smoothed

Solution in
different
homotopy

Smoothed
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(a) After evaluating the ini-
tially found path.

(b) After applying the op-
timizer to fix the infeasible
edge.

Figure 3: Snapshots of the evolution of the lazily evaluated
PRM with optimization. Green edges are feasible edges, red
edges are not feasible, and blue are not evaluated yet.
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Figure 4: Results and comparisons for the Optimal RRF-
planner for 250 queries on the cluttered environment.

(iv) For a more complex example of the combined robust
solver, see (Hartmann et al. 2020). There, we use the
planner to solve a multi agent problem in a cluttered
environment. In this use-case, we are more interested
in robustness rather than optimality. Detailed statistics
of the usage of the optimizer and the RRT-planner are
reported to demonstrate the usefulness of the frame-
work.

6 Limitations & Outlook
The presented work is still in the early stages of develop-
ment. Hence there are still open questions and limitations
that need to be investigated in more depth:

• We present the policies implied by known algorithms in
our framework, and simple, hand-crafted new policies in
this work. Better, more complex ones might be able to
highlight the benefits of this framework more clearly.

• The basic operations presented here are still complex and
inspired by existing algorithms. This leads to the building
blocks being specialized for the use cases we present here.
More work is necessary to arrive at a general formulation
of the operations that allows to combine them more flex-
ibly. We note that some algorithmic improvements made
in path planning research (e.g., sampling a hyper-ellipsoid
as in (Gammell, Srinivasa, and Barfoot 2014)) would be
hard to identify using this framework.

• There is still a gap in information exchange from
sampling-based to optimization based methods.
Sampling-based methods, in general, do not incorporate
even first order information about the environment.

These limitations lead directly to possibilities for further de-
velopment:
• Search for a policy π using more advanced methods, e.g.,

genetic algorithms - this is what we intend as a future goal
for this work. The currently presented status is the pre-
liminary work which is necessary to go towards a meta-
planning algorithm. We note that learning new algorithms
might face typical non-trivial challenges such as sparsity
in the solutions domain, and a hard to tune reward func-
tion.

7 Conclusion
In this work, we presented a new framework to describe and
combine the two different areas of path planning. Using this
framework to reason about an algorithm helps make some
choices made in common path planners more explicit, and
thus improving the algorithms by modifying those choices.
Introducing the planning process as a decision process gov-
erned by a policy π is the first step towards enabling a policy
search that might find new and more performant solvers for
the path planning problem. It is thus an initial step towards a
meta planner, meaning that we propose a representation for
learning path planning algorithms.

The examples show that we are able to unify common
planners in our framework by using different policies which
work with the same underlying data structures and oper-
ations. The demonstrations of the algorithm using simple
handcrafted policies show that algorithms which are better in
some aspects on some planning problems can be described
using our framework.
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A Known algorithms in our framework
A.1 RRT/RRT*
The following architecture is a typical unidirectional RRT-
algorithm. Extensions such as bidirectionality or various
mechanisms to bias the growth of the tree(s) can be taken
into account by changing the sample operation.

Sample
start/goal
state(s)

Sample Extend
Success?

Our version of RRT* takes some elements of a PRM to
rewire the tree after the extend operation.

Sample
start/goal
state(s)

Sample

Extend Connect

Prune
Convergence/

Computational
budget used?

RRT* can be readily modified to e.g. Informed-RRT* by
using the best current cost to inform the sampling strategy.

A.2 PRM
The PRM algorithm below is a naive implementation of the
known algorithm - no lazy evaluation, or biased/hierarchical
sampling is done:

Sample
start/goal

states
Sample Connect Graph-

Search
Success?

A.3 Quotient space planning
The following architecture can be used to start with a simpler
approximation of a complex, high dimensional path plan-
ning problem, and inform the later iterations with the previ-
ous ones.

Abstract/
Project Plan

Solved P0?

Here, we use the plan-operation as a meta operation that
consists of a full solve of the path planning problem Pi. This
can be done via any method described in this paper.
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